
J. Synchrotron Rad. (2004). 11, 17±20 # 2004 International Union of Crystallography � Printed in Great Britain ± all rights reserved 17

research papers

Secure UNIX socket based controlling
system for high throughput protein
crystallography experiments

Yurii Gaponov, * Noriyuki Igarashi, Masahiko Hiraki,
Kumiko Sasajima, Naohiro Matsugaki, Mamoru
Suzuki, Takashi Kosuge and Soichi Wakatsuki

Photon Factory, High Energy Accelerator Research
Organization (KEK), Japan. E-mail: gaponov@post.kek.jp

A control system for high throughput protein crystallography
experiments has been developed based on multilevel secure (SSL
v2/v3) UNIX socket under the Linux operating system. Main
features of protein crystallography experiments (purification,
crystallization, loop preparation, data collecting, data processing) are
dealt with by the software. All information necessary to perform
protein crystallography experiments is stored (except raw X-ray
data, that are stored in Network File Server) in a relational database
(MySQL). The system consists of several servers and clients.
TCP/IP secure UNIX sockets with four predefined behaviors ((a)
listening to a request followed by a reply, (b) sending a request and
waiting for a reply, (c) listening to a broadcast message, and (d)
sending a broadcast message) support communications between all
servers and clients allowing one to control experiments, view data,
edit experimental conditions and perform data processing remotely.
The usage of the interface software is well suited for developing
well-organized control software with a hierarchical structure of
different software units (Gaponov et al., 1998), which will pass and
receive different types of information. All communication is divided
into two parts: low and top levels. Large and complicated control
tasks are split into several smaller ones, which can be processed by
control clients independently. For communicating with experimental
equipment (beamline optical elements, robots, and specialized
experimental equipment, etc.), the STARS server, developed at the
Photon Factory, is used (Kosuge et al., 2002). The STARS server
allows any application with an open socket to be connected with any
other clients that control experimental equipment. Majority of the
source code is written in C/C++. GUI modules of the system were
built mainly using Glade user interface builder for GTK+ and
Gnome under Red Hat Linux 7.1 operating system.

Keywords: high throughput SR protein crystallography
experiment, TCP/IP UNIX secure socket, database, Linux, control
application.

1. Introduction

There are several different tasks one should solve during
programming of control software for operating scientific
experiments. In general, different types of equipment with different
control-device interfaces are used in typical experimental set-ups.
One of the main demands of such software is user-friendliness and
Graphical User’s Interface (GUI) plays a significant role in the
control system. Sustaining the capabilities of facilities for protein
crystallographic experiments at a synchrotron for an extended period
of time demands stringent conditions: it is necessary to keep all parts
of the system in reliable conditions and protected from any mistakes
or errors due to software/hardware features and human error. The
software architecture must be carefully considered for rapid
expansion of the scope of the experiments and necessary equipment,

which means that the software must be upgradeable and adaptable
for new experimental features to be incorporated. Another demand
for such experimental control software is the possibility to control
and assist during an experiment remotely. This is of considerable
importance for high throughput protein crystallography experiments,
in which many participants from different institutes participate.

To satisfy the demands described above with one standalone
application on one computer is quite problematic. For example, to
control several tens of different equipment units makes the
application large, heavy, and difficult to modify. Response time of
such large application may not be so fast, because everything will be
processed in one computer. It is more advantageous to split the large
number of tasks to smaller ones, which is indeed a preferred choice
in the field of controlling design and large-scale programming
(Ohata et al., 1998; Pugliese et al., 1998). Typically, such a system
is based on a local network or a data-bus with a real time operating
system of the console computer and CPU board computers are
spread (for example, vxWorks with VME-bus equipment). These
systems tend to be expensive and quite complicated for extensive
programming and modification.

An alternative approach is Internet based distributed systems.
Network with communication speed of 100Mb/s is widespread now.
With a 1Gb/s network extension, the performance of such network-
based system is already comparable with the performance, for
example, of VME-based systems. In a distributed system, many
different computers running under different operating systems are
integrated through the network, which makes it feasible to develop
different parts of the system simultaneously by a group of system
engineers and computer scientists. Since it will be of modular nature,
future upgrade and modification will be manageable. Thus we chose
such a network based distributed control system to develop and
design a control system of the high-throughput facilities for
synchrotron X-ray protein crystallography experiments (Abola et al.,
2000).

Protein crystallography experiments are complicated in that it is
a multi stage experiment. There are several key stages: over
expression of a protein, purification, crystallization, harvesting and
mounting the crystal in cryo-loops, data collection, data analysis and
structure determination. To perform tasks in these stages in a high-
throughput mode, it is necessary to integrate all the systems,
responsible for the different experimental stages, into one control
system with a database to store all the experimental parameters and
results of the experiments.

The main goal of the current project is to develop a control
system with a unified database for protein overexpression,
purification and crystallization, automated harvesting and mounting
of protein crystals in cryo-loops, X-ray data acquisition, data
analysis and structure determination.

2. UNIX TCP/IP secure socket client/server scheme

We chose the UNIX TCP/IP socket client/server as the principal
communication scheme. To make communication secure we chose
OpenSSL, an open-source implementation of the SSL (Secure
Sockets Layer) and TLS (Transport Layer Security) protocols, which
is one of the most popular protocols used in Internet programming.
This scheme is reliable and well designed under all operating
systems for inter-process/program asynchronous communication
(Pugliese et al., 1998; Ohata et al., 1998; Sweet et al., 2001). It
allows the server and client to authenticate each other and to
negotiate an encryption algorithm and cryptographic keys before any
data will be transmitted between server and client. After establishing
the secure connection with a server, the client is able to
communicate with the server in both directions: to send and to
receive information.

research papers

18 Gaponov et al. � High-throughput protein crystallography experiments J. Synchrotron Rad. (2004). 11, 17±20

There are four types of software (communication interface)
behaviors during sending and receiving the information (Fig. 1): (a)
a Send/Receive (S/R) type of interface performs a sequence of two
operations sending a request followed by waiting/expecting to
receive a reply (in this case, the interface is responsible to receive
the reply from the other side to which it sent the request), (b) a
Receive/Send (R/S) type of interface performs a sequence of two
operations receiving a requires (in a listening mode) followed by a
sending a reply (the interface is responsible to send a reply to the
other side from which it received the request), (c) a Send (S) type of
interface only sends a request or message without waiting for
/expecting a reply, (d) a Receive (R) type of interface receives a
request or message (in the listening mode) without sending any
replies. A combination of the first two types of interfaces allows one

Figure 1

Different types of socket communication interfaces: a) sending a request and
waiting for a reply; b) waiting for a request and sending a reply, c) sending a
request or message without waiting for a reply (is used in a broadcast mode),
d) receiving a request or message without sending a reply.

to build network communication with a high reliability. On the other
hand, a combination of the last two types allows for network
communication with a high communication speed, a preferred choice
for broadcast systems. A mixture of the two combinations can be
made optimized for the best performance of our control system. The
usage of the interface software allows one to develop well-organized
control software with a hierarchical structure of different software
units (Gaponov et al., 1998), which will pass and receive different
types of information (different levels of commands in control
applications), to avoid the burden of keeping track of all the low
level details of information. This hierarchical organization of servers
and clients is best achieved by the use of multiple sockets for each
interface, which ensures the high fidelity of communication.

In principle, all connections between different clients can be
established through one communication server (Abola et al., 2000).
It simplifies the control software for a multiple set of experimental
equipment. Indeed, it is not necessary to create the control software
as a server, because it can be connected to the main communication
server. It will be a control client application with different types of
communication interfaces mentioned above and it will wait for
requests or some messages (broadcast) or it can generate its own
requests or messages (broadcast). STARS, (Simple Transmission
and Retrieval System) was developed at the Photon Factory, KEK,
Tsukuba, Japan as such a multi socket server. It allows any clients
with open sockets to be connected to STARS with predefined names.
One client can be connected to STARS through several sockets. Any
combinations of communications between clients connected to
STARS are performed with the use of predefined names. The

STARS server has a broadcast mode of operation. Therefore, all the
types of communication interfaces mentioned above can be used
with this server. Fig.2 shows a simple case of control for the X-ray
area detector and a goniometer using the STARS server.

Figure 2

Simple control system with the STARS server. User’s control client sends a
request to Goniometer interface client to set the necessary angle and checks
the completion of the operation. Then User’s control client sends a request to
Detector interface client to collect data, checks the completion of the
operation and finally reads the data into storage media. In an emergency case,
Detector interface client sends the emergency message to User’s control
client. R/S – Receive/Send type, S/R – Send/Receive type, S – Send type, R -
Receive type of communication socket.

3. Unified database

To keep all the details of complicated protein crystallography
experiments requires an extensive use of a database linked to the
control system. The main goal in designing such database is to allow
systematic analyses of the information such as target selection,
protein overexpression, purification, crystallization, crystal
harvesting and handling, data collection and analysis and structure
determination. Such analyses will be essential in the high throughput
protein crystallography experiments to avoid human errors and
mistakes. We started with a concept of unified database, which can
oversee all the aspects of the experiments and have developed a
relational database and implemented it as part of the control system.

Fig.3 shows the database layout. The main object in the database
is Crystal Table, which contains information on a protein crystal
mounted in a cryo-loop (which in turn is described in the
CrystalLoop table). Crystal loops are stored in a loop tray (LoopTray
table). Protein crystals are harvested from crystallization drops
(CrystallizationDrop table), which are stored in a crystallization tray
(DropTray table). A protein drop is prepared from a purification
batch (PurificationBatch table), which is part of a large set of
experiments defined in a protein project (Project table). Protein
crystals are grouped into sets of protein crystals (SetOfCrystals
table) according to scientific task or methodology. The details of
X-ray experiments are stored in experimental conditions
(ExperimentCondition table), which are associated with
experimental schedule (ExperimentalSchedule table). Concerning
X-ray data analysis, the details of data indexing and integrating,
and data reduction procedures are stored in indexing and
integrating conditions and reduction conditions
(IndexingAndIntegratingCondition and ReductionCondition tables
respectively), which are associated with indexing and integrating
schedule and reduction schedule (IndexingAndIntegratingSchedule
and ReductionSchedule tables respectively).

J. Synchrotron Rad. (2004). 11, 17±20 Gaponov et al. � High-throughput protein crystallography experiments 19

research papers

Figure 3

Relational database layout. The symbol in the square box signifies a type of
relation: “1-“ one record in the table is related with; “M –“ many records in
the table are related with. In this database there are all types of relations:
‘one’ to ‘one’, ‘one’ to ‘many’, ‘many’ to ‘many’. An asterisk * indicates a
table, whose records belong to different users.

4. Two-level control system

A control system for complicated multi-stage protein crystallography
experiments needs to handle an extremely large number of tasks in
sequence and simultaneously. In such a case, it is advantageous to
divide the tasks to logically connected smaller ones. These smaller
tasks can be made responsible for a subset of functions in the control
system or a part of equipment control. In the chosen client/server
model, this means to prepare client software for a set of logically
connected equipment, for example, a beam stopper, a fluorescence
detector, and a collimator, that all need to move in a synchronized
way. The client server will be connected to STARS, thus it is
possible to communicate with other control clients responsible for
other subsets of equipment. This way of distributing multiple tasks
to several control clients simplifies the control system enormously
because it is not necessary to control all the details of the
equipments.

Fig.4 shows the overall scheme of the control system. There are
two levels of control. On the top level, the main server module,
PCCServer, allows user’s client applications to be connected in a
multi-user mode. This server has a socket connection with the

MySQL database, which stores all the top-level information. The
server is able to execute applications for indexing, integration and
scaling of the experimental data. On the top-level, control commands
reflect the modes of operation of the experimental equipment, for
example, data collection, direct beam measurement, beam stopper
alignment, etc.

Figure 4

The overall scheme of the multi-level UNIX socket based controlling system.

On the low-level all units of experimental equipment are
grouped into several sets, for example, (1) optical elements, (2)
goniometer including the one-circle goniometer with an XYZ stage
for crystal alignment, (3) the area of the goniometer-head (which we
call FancyBox) including a collimator, fluorescent and X-ray
detectors and a beam stopper, (4) the area detector control and data

research papers

20 Received 30 April 2003 � Accepted 15 October 2003 J. Synchrotron Rad. (2004). 11, 17±20

X-ray data collection, and (5) manipulation/crystallization robots.
An interface control clients connected to STARS through a
predefined communication interface are responsible for the control
of each set of equipment. Commands from the top-level control
software are transformed into several ones for different sets of
experimental equipment. For example, the FancyBox interface
control client has several communication interfaces: (1) R/S-type of
interface to receive commands mainly from PCCServer (2) S/R-type
to communicate with the security control client, and (3) S-type to
send out information such as the status of the equipment or an
emergency case.

5. Operating system and programming environment

The main operating system is Linux RedHat 7.1. The multi-user
server, user’s control client and database client, PCCServer,
PCCTools and PCDBEditor all operate under the Linux.

Figure 5

The main window of the user’s control client, PCCTools.

Figure 6

The main window of the user’s database client, PCDBEditor.

Figure 7

The main window of the interface control client, PCCServer.

The operating systems for other interface control clients are not
fixed so far– it may be a combination of in-house development and
third-party software. For example, interface control client to operate
with FancyBox is realized under Linux, user’s low-/top-level client
CNTL (to operate with different stepping motors, beam shutter) –
under Windows 2000. MySQL database is operating under Linux.

Majority of the source code is written in C/C++ (GNU C/C++
compiler v.2.97). GUI modules of the system were built mainly
using Glade user interface builder for GTK+ and Gnome under Red
Hat Linux 7.1 operating system. STARS server is written in Perl.
Fig.5, 6, and 7 represent the main windows of the control clients
PCCTools, PCDBEditor, and server PCCServer.

This work was supported in part by Grants-in Aid for Scientific
research from the Ministry of Education, Culture, Sports, Science
and Technology (MEXT) of Japan, Special Coordination Funds for
Promoting Science and Technology, and Protein 3000 Project of the
MEXT.

References

Abola, E., Kuhn, P., Earnest, T. & Stevens, R.C. (2000). Nature. Struct. Biol.,
7, 973-977.
Gaponov, Yu. A., Ito, K. & Amemiya, Y. (1998). J. Synchrotron Rad, 5, 593-
595.
Kosuge, T., Saito, Y., Nigorikawa, K., Katagiri, H., Shirakawa, A.,
Nakajima, H., Ito, K., Kishiro, J. & Kurokawa, S. (2002). Oral talk on 4th
International Workshop on Personal Computers and Particle Accelerator
Controls, 14-17 October, 2002, Frascati (RM), Italy, http://
www.lnf.infn.it/conference/pcapac2002/TALK/WE-03/WE-03_talk.pdf.
Ohata, T., Konishi, H., Kimura, H., Furukawa, Y., Tamasaki, K., Nakatani,
T., Tanabe, T., Matsumoto, N., Ishi, M. & Ishikawa, T. (1998). J.
Synchrotron Rad. 5, 590-592.
Pugliese, R., Gregoratti, L., Krempska, R., Bille, F., Krempasky, J., Marsi, M.
& Abrami, A. (1998). J. Synchrotron Rad, 5, 587-589.
Sweet, R. M., Skinner, J.M. & Cowan, M. (2001). Synchrotron Radiation
News, 3(14), 5-11.

