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An energy-variable synchrotron diffraction technique is being

established as a novel method for the depth-resolved measurement

of residual strains in polycrystalline structures. An analytic expres-

sion for the diffraction pro®le is obtained by taking into account the

instrument misalignment, change of the height of an incident X-ray

beam with energy, and penetration of X-rays into the sample depth. It

is shown that the maximum diffraction intensity recorded in the

detector is coming from a certain depth beneath the surface of the

sample, the depth being energy-dependent. This ®nding opens a way

for precise strain measurements with high depth resolution by

changing the X-ray energy in small enough steps. An experimental

example, residual strain measurements across an alumina/zirconia

multilayer, demonstrates the capability of the method.
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1. Introduction

Very recently we have started to explore the capability of energy-

variable diffraction (EVD) on synchrotron beamlines to provide

depth-resolved microstructural characteristics in polycrystalline

structures (Zolotoyabko & Quintana, 2002a,b, 2003). In that method,

precise energy variation is accomplished by a computer-controlled

double-crystal monochromator, which provides the desirable changes

in the X-ray penetration depth. We demonstrated that energy-

dependent diffraction intensities could be used to study preferred

orientation with depth resolution (Zolotoyabko & Quintana, 2002a),

while diffraction pro®le analysis (pro®le broadening) at variable

X-ray energy supplies depth-resolved information on grain size and

microstrain ¯uctuations (Zolotoyabko & Quintana, 2002b, 2003). At

the same time it turned out that the depth-resolved macro- or residual

strains could not be derived directly from the diffraction peak posi-

tions measured. Even in free-of-strain samples we found small but

systematic deviations of the measured Bragg angles from those

expected in the case of undistorted lattice parameters. For example,

in powdered alumina samples in the energy range 7±40 keV, the

angular deviations, �2�, reached 0.03�, a fact that complicates the

precise strain determination below 10ÿ3. In order to overcome this

dif®culty we used an empirically derived correction function, which

we called the `chromatic aberration' of the instrument (Zolotoyabko

& Quintana, 2003). That function was determined by measuring the

energy-dependent peak positions with a standard sample (free of

residual strains), but at the stage reported its origin remained unclear.

In this paper we develop a comprehensive analysis of the chro-

matic aberration in EVD. Chromatic aberration originates in the

initial misalignment of the diffraction instrument, which cannot be

totally eliminated, and in energy-dependent changes in the height of

the X-ray beam issuing from the double-crystal monochromator. The

analytic description of the chromatic aberration effect allowed us to

realise that under appropriate conditions it can be used for strain

measurements with high depth resolution. This ®nding opens the way

for a novel method of depth-resolved strain analysis by EVD.

2. The chromatic aberration effect

We begin our analysis by calculating the height of the synchrotron

beam after the double-crystal monochromator, as a function of the

X-ray energy, in standard vertical-scattering geometry. It is known

that the X-ray beam rises with energy. In order to obtain an analytic

expression in appropriate notations, let us consider a white beam

entering a double-crystal monochromator at height H0 above the

ground level (see Fig. 1). The gap (normal to the surface) between

crystals is designated G, and the energy-dependent Bragg angle �m .

It is easily shown that the outgoing beam is shifted upwards by �H

with respect to an incident beam,

�H � 2G cos �m: �1�
The height difference, �H, measured at some energy, E > E0, relative

to the initial energy, E0, is

�H � �H�E� ÿ�H�E0� � 2G cos �m�E� ÿ cos �m�E0�
� �

: �2�
When analyzing the angular positions of the diffraction peaks in

polycrystalline materials, synchrotron radiation is well approximated

by parallel rays; hence the ray optics approach is adequate. The

monochromated X-rays of energy E, entering a sample at point A

(the height H = H0 + �H), penetrate some depth Z (counted normal

to the surface) within the sample, and in point B are scattered

towards the detector, the energy-dependent double Bragg angle

being 2� (see Fig. 2). The scattered X-rays cross the detector circle at

point M. If B does not coincide with the center of rotation C of the

detector, the detector reading will differ from the true angle of

diffraction, 2�, by some extra quantity, �, which, in fact, is energy-

dependent (at least via �H and Z). The value of � determines the

chromatic aberration of the instrument.

In order to calculate �, let us plot the straight line, CN, which is

parallel to BM, passes through the detector's center of rotation, C,

and crosses the detector circle at point N. Evidently,

��Z� � MN=R; �3�
where R is the distance between the sample and the receiving slit of

the detector and MN is an arc length (see Fig. 2). Since practically the

� values are very small (� << 1), in further analysis we will not

distinguish between arcs and their segments. It is worth noting that,

even when an instrument is ideally aligned at a given energy (points B

and C coinciding), the misalignment emerges when the energy is

changed.
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Figure 1
Change in the height of the X-ray beam after the double-crystal
monochromator.
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Let us ®rst calculate the value of �(0) at Z = 0, which depends on

the vector r(�, �) connecting points A and C. The horizontal

projection, �, is parallel to the direction of an incident beam (x axis),

the � projection is parallel to the vertical direction (y axis) (see Fig. 2).

The origin of the coordinate system is placed at point C(0, 0). The

diffracted beam crosses the detector circle at point K, hence

��0� � KN=R: �4�
The equation for CN is

y � ÿx tan 2� �5�
and for AK

y � �� � � tan 2�� ÿ x tan 2�: �6�
Calculating the points of intersection of these lines with the detector's

circle,

x2 � y2 � R2; �7�
yields the KN value

KN � � cos 2�� � sin 2�; �8�
and, hence,

��0� � KN=R � � cos 2�� � sin 2�� �=R: �9�
If the scattering event takes place at some depth, Z, beneath the

sample surface, this leads to the reduction of the � projection by the

segment, AB = Z/sin�. Correspondingly,

��Z� � � cos 2�ÿ 2Z cos �� � sin 2�� �=R: �10�
In order to ®nd the change in the � value as a function of energy, we

have to take into account both the turning of the sample about its

center of rotation (to ®t the energy-dependent Bragg angles, �) and

the above-mentioned energy-dependent changes in the height of the

incident beam.

Let us assume that the sample's center of rotation is located at

point O(X,Y) of the sample surface, i.e. it is displaced from the

detector's center of rotation by segments X and Y along the x and y

axes, respectively (see Fig. 3, in which the positive directions of the

coordinate axes are indicated by arrows). To simplify the geometrical

problem and come closer to our experimental conditions, let us also

assume that the alignment of the instrument is accomplished at the

lowest energy, Eo, and that at this energy the incident beam is

crossing the sample's center of rotation, i.e. point O. Naturally, these

restrictions can be easily removed, if needed. It follows immediately

from Fig. 3 that, at E = Eo,

�o � Y;

�o � X:
�11�

Using (10) yields

�o�Z� � �1=R� Y cos 2�o � X sin 2�o ÿ 2Zo cos �o� �; �12�

where Zo and �o are the X-ray penetration depth and Bragg angle,

respectively, at E = Eo. At E > Eo,

��Z� � �1=R� ÿ�H � Y cos 2�� X sin 2�ÿ 2Z cos �� �
� �ÿ ��2Z cos ��=R�; �13�

where � = (ÿ�H + Y cos2� + X sin2�)/R is the Z-independent part

of the angular deviation in (13).

The measurable parameter is the difference, �� = �(Z) ÿ �(Zo),

�� � �1=R� ÿ�H � Y�cos 2�ÿ cos 2�o� � X�sin 2�ÿ sin 2�o�
�

ÿ 2Z cos �� 2Zo cos �o

�
: �14�

Some examples of the energy-dependent �� functions at Z = 0 and

different values of X, Y are shown in Fig. 4. The plots in Fig. 4

represent the chromatic aberration in EVD, depending on the

experimental parameters. A question regarding the Z values in (13)

and (14) requires deeper investigation and is treated in the following

section.

Figure 3
X-ray trajectories at different energies.

Figure 4
Selected examples of the chromatic aberration function calculated using (14)
for Z = 0 and the following parameters X, Y: bottom curve, X = 1 mm, Y =
1 mm; middle curve, X = ÿ0.6 mm, Y = 0; upper curve, X = ÿ1 mm, Y =
2.2 mm.

Figure 2
Sketch of the chromatic aberration effect.



3. Depth sensitivity in EVD measurements

It turned out that the `Z problem' is quite fundamental and is directly

related to the depth sensitivity of the EVD technique. In fact, in the

conventional X-ray diffraction analysis of polycrystalline materials

(Warren, 1990) the diffraction signal is considered as being detected

from an entire sample thickness. It is assumed that the X-rays

emanating from the different sub-layers are recorded with equal

probabilities within the detector. The depth dependence of the

diffraction intensity is introduced via an exponentially decreasing

weight function, W = exp(ÿZ/�), which takes into account the in-

depth attenuation of the X-ray ¯ux. The characteristic depth,

� � �sin ��=2�; �15�
is determined by the Bragg angle, �, and the linear absorption

coef®cient, �, both of which are energy-dependent. The diffraction

pro®le is effectively collected from a layer a few � thick (the thick-

ness being counted from the sample surface) and hence the depth

sensitivity is rather poor.

The situation is drastically changed for the diffracted quasi-parallel

synchrotron beam, which has an offset, �(Z), with respect to the axis

of the detector's collimating system (see Fig. 2). In fact, it follows

from (13) that the diffracted X-rays issuing from various depths, Z,

enter the detector at different angles, �. They will therefore not

register there with equal probability. Under appropriate conditions

(� > 0 is a necessary one), an increase in the probability of regis-

tration with increasing depth owing to decreasing � can overcome the

reduction in intensity owing to the X-ray attenuation. In that case, the

maximum diffraction intensity registered in the detector originates at

a certain depth beneath the surface. We stress that this characteristic

depth is energy-dependent, which generally provides high depth

resolution to the strain measurements if the energy steps applied are

small enough. The requirement for positive � could be justi®ed by

recalling that the probability of the X-ray registration in the detector

depends on �2 = f�ÿ �2Z�cos ��=R�g2 [see (13)]. Since in our analysis

only positive Z values (i.e. pointed from the surface to the crystal

bulk) make sense, then a decrease of the parameter �2 =

f�ÿ �2Z�cos ��=R�g2 (i.e. an increase of the registration ef®ciency

with increasing Z) can only be achieved for � > 0. In the case where

� < 0, the parameter �2 is always growing with Z.

Let us support these qualitative considerations by the direct

simulation of the diffraction pro®le, i.e. the dependence of the

measured diffraction intensity, I(�2�), on the deviation, �2�, of the

detector angle from the exact Bragg position, 2�. Let us assume that

the probability of registration in the detector is described by the

Gaussian function with the dispersion �,

P � 1=��2��1=2
� �

exp ÿ��2�ÿ ��Z��2=2�2
� 	

: �16�
This is a rather standard approximation to describe the transmission

function of the receiving slit of diffraction instruments. In this

approximation, the dispersion � is related to the receiving slit width,

D, as

� � D= 2R�2 ln 2�1=2
� � ' D=2R:

In our experiments described in x4, R ' 1 m and D = 1 mm, so

� ' 5 � 10ÿ4.

By taking into account the exponential attenuation of the X-ray

¯ux with depth, W = exp(ÿZ/�), the diffraction intensity, I(�2�),

can be expressed as

I��2�� � R1
0

�SWP� dZ; �17�

where S is the scattering power of the material. If the S(Z) function is

slowly changed on the distances of the order of �, we can take S(Z)

out of integral (17) and obtain

I��2�� � S

��2��1=2
Z1
0

dZ exp
ÿZ

�

� �
exp
ÿ��2�ÿ ��Z��2

2�2

� �

� S

��2��1=2
Z1
0

dZ exp
ÿZ

�

� �

� exp
ÿ��2�ÿ �� �2Z cos �=R��2

2�2

� �
: �18�

To integrate over Z in (18), let us complete the square in the expo-

nent,

1

2�2

�
�2�ÿ � � 2Z cos �

R

�2

� Z

�
�

ÿ R

2� cos �
�2�ÿ �� �2R

4� cos �

� �
� 1

2

2Z cos �

�R
� �2�

�
ÿ �
�
� �R

2� cos �

� �� �2

: �19�

Integral (18) is then reduced to

I��2�� � RS exp ���2�ÿ ��R=�2� cos ��� exp �2R2=�8�2 cos2 ��� �
2�2��1=2 cos �

� R1
t0

exp ÿt2=2� � dt �20�

where

t � �2Z cos �=�R� � t0;

t0 � ��2�=�� ÿ ��=�� � �R=�2� cos ��: �21�

As we have already mentioned, for estimations one can take R' 1 m,

� = 10±100 mm, � ' � ' 5 � 10ÿ4, which yields �=� ' 1 and

�R=2� cos �� 1. Because we are interested in the peak position,

then �2�=� � 1. Substituting the above estimations into (21) yields

t0 >> 1. Using the known asymptotic of the error function at large t0

values, R1
t0

exp�ÿt2=2� dt ' exp�ÿt2
0=2�� �

=t0; �22�

yields an analytical expression for the diffraction pro®le near the

Bragg angle,

I��2�� � ��R�S
2�2��1=2 cos �

exp ÿ��2�ÿ ��2=2�2
� �

� �2�ÿ �� �2R=�2� cos ��� �ÿ1
: �23�

Maximum intensity is achieved at angular deviation (�2�)p, satis-

fying the condition

@I

@��2�� � 0; �24�

which yields

��2��p � �ÿ �2� cos ��=R: �25�
By comparing (13) and (25), it can be concluded that the maximum

intensity recorded in the detector comes from the depth

Zp � �: �26�
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This result quantitatively explains the depth sensitivity of the method

and hence is of principal importance to the establishment of the EVD

technique. It should be emphasized that (23) determines the actual

shift in the peak position rather than some distortion of the pro®le's

left-hand tail only, as is observed in conventional powder diffraction

pro®les taken from transparent samples (see e.g. Ida & Kimura,

1999). The depth resolution of EVD will primarily depend on how

precisely an angular position of the diffraction peak can be deter-

mined. This can be done very accurately from the diffraction pro®le

®ttings, since we are using intense quasi-parallel synchrotron radia-

tion and have no problems with counting statistics.

By combining (14) and (26), ®rst, we are able to complete an

analysis of the chromatic aberration effect,

�� � �1=R��ÿ�H � Y�cos 2�ÿ cos 2�o� � X�sin 2�ÿ sin 2�o�
ÿ 2� cos �� 2�o cos �o�: �27�

A comparison of the calculated and the measured �� functions is

shown in Fig. 5. In these measurements we used the (104) re¯ection of

a sample of powdered alumina (NIST standard). The agreement

between calculated and measured data is fairly good. Note that the

in¯uence of depth, Z, on the chromatic aberration is clearly revealed

in the form of a gradual reduction in the ��(E) values at higher

energies, which is absent in calculations for Z = 0 (see Fig. 4). By

applying (27) to reference data we are able to extract the instrument

parameters X, Y (for a given alignment procedure) and use them to

precisely measure the diffraction peak positions of the investigated

samples. Besides that, such measurements may serve to perform very

accurate instrument alignments, if needed.

Changing the X-ray energy and the depth of the X-ray penetration,

�, by controlled steps allows us directly to obtain depth-resolved

residual strains. We stress that in this method we avoid inverse

Laplace transformation of the measured parameters in the spatial

domain, as was proposed, for example, in the `scattering vector mode'

(Genzel, 1996). Concerning depth resolution, our estimations show

that, as a rule, energy steps of 100 eV provide depth variations on a

sub-mm scale. Working near an absorption edge, the in-depth steps

may be as small as a few tens of nm. These numbers are much better

than the depth resolution obtained by using energy-dispersive X-ray

diffraction of white synchrotron radiation (see e.g. Hall et al., 1998;

Korsunsky et al., 2002).

4. Experimental example

In order to illustrate the capability of the method, we applied it to the

measurement of residual strains within an Al2O3/ZrO2 multilayer

consisting of 90 layers with nominal thickness of 30 and 20 mm for

alumina and zirconia, respectively, produced by electrophoretic

deposition followed by sintering for 2 h at 1823 K (Gal-Or et al.,

1999). The basis of the deposition method can be found e.g. in Sarkar

& Nicholson (1996). These laminates have improved mechanical

properties and can serve as structural ceramics for applications

requiring high fracture toughness. Alternating alumina and zirconia

layers are clearly seen in SEM cross sections (see Fig. 6a). In fact,

some amount of alumina particles had been added to the zirconia

layers and vice versa in the deposition stage (Gal-Or et al., 1999), in

order to reduce the thermal stresses caused by the different thermal

expansion coef®cients, viz. 13.5 � 10ÿ6 Kÿ1 of zirconia and 8.5 �
10ÿ6 Kÿ1 of alumina. The zirconia particles in an alumina layer and

the alumina particles in a zirconia layer are discernible in SEM

images under higher magni®cation (see Fig. 6b). Inclusions of a

secondary phase in the matrix are the sources of the inhomogeneous

residual strains in¯uencing mechanical properties.

In order to obtain depth dependence of the strain component, ",
normal to the sample's surface, we measured the (012) Al2O3 and

(101) ZrO2 diffraction pro®les in the energy range 7±40 keV. Resi-

dual strains as a function of the X-ray penetration depth (see Fig. 7)

were extracted from the measured diffraction peak position by

applying the chromatic aberration correction, as was explained in

previous sections. Owing to the presence of Zr atoms, which have the

K absorption edge at E = 17.997 keV, the effective X-ray penetration

depth, �(E), through the alumina/zirconia multilayer at energies

used is con®ned to 6±34 mm. Because of this limited penetration, the

strain sensitivity is enhanced in the interface region near 30 mm. In

Figure 5
Comparison between the measured (dotted line) and the calculated (solid
line) chromatic aberration, as a function of the X-ray energy. The solid line
was calculated using (27) and X = ÿ1 mm and Y = 2.2 mm.

Figure 6
SEM cross sections at (a) lower and (b) higher magni®cations. In these images,
zirconia particles appear bright, while alumina appear dark.



the reported measurements we applied energy steps in a keV range,

resulting in depth changes of 100±400 nm near the interface, which

were ®ne enough to follow strain modi®cations in this region (see

Fig. 7). We repeat that, from an energy point of view, the depth steps

can be easily reduced ten times if necessary.

The major source of residual strains in our system is the difference

in thermal expansion coef®cients of the components. On this basis, we

expect that, after cooling from 1823 K to room temperature, the

zirconia particles in the alumina matrix are stretched, while the

alumina particles in the zirconia matrix shrink. The depth-dependent

strains obtained in zirconia and alumina particles (see Fig. 7) support

these considerations.

In fact, zirconia particles in the alumina layer (which is the ®rst one

in the stack) are under tensile stresses (" > 0) (see region � < 30 mm

in Fig. 7), as was deduced from the (101) ZrO2 diffraction peak

positions. At � > 30 mm, i.e. in the zirconia layer itself, the strain

value within the zirconia particles diminishes to some low level, which

depends on forces acting on the alumina/zirconia interface. At the

same time, when analyzing the (012) Al2O3 diffraction pro®les, resi-

dual strains in the alumina matrix (� < 30 mm) were found to be close

to zero (see Fig. 7). Alumina particles in the zirconia matrix (at � �
30 mm) are, as expected, under compressive stresses (" < 0) (see

Fig. 7).

The dashed lines in Fig. 7 represent the strain levels calculated in

the framework of a simple model for local stresses. In this model the

local thermal stress is a result of two contributions: biaxial stress

arising at the alumina/zirconia interface (see e.g. van Heerden et al.,

1996), and isotropic hydrostatic pressure around an isolated particle

of the secondary phase within a homogeneous matrix (see e.g.

Chawla, 1998). The normal stress component is assumed to be zero

across the entire multilayer. Simulated strain values are in reasonable

agreement with the experimental data. At the same time, we have to

acknowledge that in the alumina layer (� < 30 mm) the measured

strains are a little lower than theoretical predictions. Further studies

are needed to shed additional light on the discrepancies observed.

5. Summary

The analysis developed allowed us to quantitatively describe the

chromatic aberration effect in EVD. Using the appropriate correction

function opens the way for a novel strain analysis with high depth

resolution via precise measurements of energy-dependent diffraction

peak positions. We used the procedure developed in order to study

residual strains across the alumina/zirconia multilayer and found

signi®cant strain modi®cations near the alumina/zirconia interface. To

the best of our knowledge there is no established method to the non-

destructive measurement of the depth-resolved strains with a sub-mm

resolution at a depth of 30 mm beneath the surface of the sample.

Finally, we would like to make some general remarks concerning

the restrictions of the EVD technique. Strictly speaking, the devel-

oped mathematical analysis is valid for a homogeneous and in®nite

medium. In the case of inhomogeneous materials, in which the scat-

tering power notably varies with depth, the mathematical equations

should be rewritten to take into account the structure of speci®c

materials systems. However, the main principle, viz. that the

maximum of diffraction intensity registered in the detector originates

at certain depth, which is energy-dependent, remains with no change.

The characteristic depth value could be different from � (being

determined by another equation or numerical procedure), but depth-

dependent strain modi®cations will still be visible, as is shown in the

current study of ceramic multilayers. Further investigation is needed

in order to evaluate the real potential of the developed technique.
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Figure 7
Depth-dependent residual strains measured in zirconia (squares) and alumina
(circles) particles. The dashed lines represent calculated strain levels.


