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Coherent diffractive imaging using a coherent X-ray source promises

to be a useful microscopic method for imaging noncrystalline objects

at high spatial resolution. In this article a simple method to estimate

the coherently scattered signal as a function of resolution is

presented, and it is shown that the required X-ray ¯ux or dose scales

as the inverse third power of resolution for a specimen of constant

volume and density. A simulated case study using the proposed

energy-recovery linac source is also presented, which con®rms the

estimated ¯ux requirement.
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1. Introduction

In recent years there has been considerable interest in coherent

diffractive imaging on noncrystalline specimens using coherent

synchrotron radiation (Sayre, 1980, 2002; Miao et al., 1999, 2002, 2003;

Howells et al., 2003; Williams et al., 2003; He et al., 2003). The activ-

ities are mainly motivated by two areas of desired advances in X-ray

technology and science: X-ray imaging beyond the resolution limit set

by X-ray optics, and development of next-generation intense

synchrotron sources, such as X-ray free-electron lasers (XFELs) and

energy-recovery linacs (ERLs), that have a high degree of transverse

coherence (Arthur et al., 2002; Gruner et al., 2002; Shen et al., 2003;

Bilderback et al., 2003).

The idea of coherent diffraction imaging, as proposed by Sayre

(1980) in the early 1980s, is to determine the spatial distribution of

electron density �(r) in a noncrystalline specimen by measuring its

far-®eld coherent X-ray diffraction pattern, which is essentially the

Fourier transform F(Q) of density �(r), and retrieving the phases of

the measured diffraction amplitudes. This methodology is very much

analogous to X-ray crystallography, but with two important distinc-

tions. First, the Fourier transform F(Q) is a continuous function in

reciprocal space for a noncrystalline specimen, as opposed to discrete

Bragg peaks for a crystal. This allows the application of an iterative

oversampling phasing algorithm (Fienup, 1982; Gershberg & Saxton,

1972; Miao et al., 1999; Elser, 2003) for phase retrieval and structure

determination. Second, the method requires an intense fully coherent

X-ray beam incident on the specimen in order to preserve the phase

information in the diffraction pattern and overcome the lack of

periodicity in the specimen.

The requirement of an intense X-ray beam may cause substantial

radiation damage to the sample, which would limit the applicability of

the coherent diffraction imaging technique. In a recent study,

Marchesini et al. (2003) applied a dose-fraction theorem (McEwen et

al., 1995) to coherent diffractive imaging and concluded that, owing

to radiation damage to the sample and dose required to achieve a

given resolution, the spatial resolution using this technique may be

limited to �10 nm for biological specimens and to �1 nm for

samples in materials science that are more radiation resistant. It has

been proposed (Neutze et al., 2000) that a possible way to overcome

the radiation-damage limit is to use a single ultrashort pulse from an

X-ray free-electron laser and record a diffraction pattern before a

macromolecule Coulomb-explodes in the intense X-ray beam.

However, the intensity from a single pulse may not be strong enough

to record a high-resolution diffraction pattern. In this case many

thousands of identical copies of each pattern need to be sorted from

millions of diffraction patterns and added up to provide statistically

signi®cant signals at atomic resolution (Miao et al., 2001).

In this article we address the basic questions of radiation dose

requirement versus spatial resolution and radiation damage, using a

straightforward ®rst-principle calculation of coherently diffracted

X-rays from a small ®xed volume. Some of the derivations are

elementary but are included nonetheless for completeness. The main

focus here is to investigate the situation using a high-repetition-rate

intense X-ray source such as the ERL, although a useful result for the

XFEL is also presented. Various experimental parameters such as

sample volume, detector pixel size and X-ray wavelength are

discussed in the context of realistic experiments.

2. Coherent diffraction intensity

Suppose that a coherent X-ray beam with intensity I0 is incident on a

specimen of atom density n0 and volume V = L3, with L being the

edge length of a cube (Fig. 1). According to the kinematic theory of

X-ray scattering (Warren, 1969), the intensity I(Q) scattered into a

solid-angle pixel �
 at scattering angle 2� is given by

I�Q� � I0r2
e F�Q��� ��2�
; �1�

where Q is the momentum transfer with Q = |Q| = 4�sin�/�, � is the

X-ray wavelength, re = 2.818 � 10ÿ5 AÊ is the classical electron radius

and F(Q) is the scattering factor for the whole volume.

2.1. Ensemble-averaged coherent scattering

In order to obtain a realistic estimate of I(Q), we ®rst evaluate the

coherent scattering amplitude S(Q) from a single volume resolution

element �V, and then calculate the ensemble-averaged scattering

intensity by all volume elements in the sample. For convenience we

choose to use a spherical volume element with radius R so that

�V = 4�R3/3 and the scattering amplitude S(Q) can be expressed as

(Kirz et al., 1995)

S�Q� � 4�n0R3f �Q� sin QRÿQR cos QR

QR� �3 ; �2�

where f (Q) is the scattering form factor of an average atom in the

volume.
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Figure 1
Schematic illustration of a coherent X-ray diffraction experiment.



Within sample volume V there are N = V/�V volume elements. In a

coherent scattering experiment, when all volume elements scatter in-

phase, F(Q) = NS(Q), and, when half of the volume elements scatter

out-of-phase with respect to the other half, F(Q) = 0 (assuming

identical volume elements). This gives rise to a typical `speckle'

pattern. Without knowing the speci®c arrangements of volume

elements in a sample, the best estimate of F(Q) is given by the

ensemble-averaged scattering amplitude represented by the root-

mean-square value, F(Q) = N1=2S�Q�. Thus the average intensity in a

solid-angle pixel �
 is

I�Q� � I0r2
e N S�Q��� ��2�
: �3�

We note that this result is identical to that in conventional small-angle

and wide-angle scattering. This is due to the fact that, as stated above,

only an averaged coherent diffraction pattern can be evaluated

without a given speci®c arrangement of all atoms in the sample. In

fact, equation (3) represents the coherently scattered intensity aver-

aged over all possible arrangements or ensembles of atoms. In x4 we

will give an example of a speci®c diffraction pattern from a single

ensemble of atoms, which would be completely different from the

incoherent small-angle or wide-angle scattering results.

2.2. Angle-integrated coherent scattering

From equations (2) and (3) we can calculate the total scattered

intensity integrated over all solid angles 0 � � � �/2 and 0 � ' � 2�,

Iscat �
R R

I0r2
e N S�Q��� ��2 d
:

We now assume that a single sphere is our sample, N = 1 and V =

4�R3/3. By noting that d
 = sin2�d(2�)d' and de®ning u = QR =

4�R sin�/�, we obtain

Iscat � 4I0r2
e 4�n0ZR3
ÿ �2 �

4�R

� �2

2�

Z4�R=�

0

�sin uÿ u cos u�2
u5

du;

where n0 is the atom density and we have omitted the angle depen-

dence of f(Q) for now. As given in the literature, the result of the

above integral in the short-wavelength limit (� << R) is (Kirz et al.,

1995)

Iscat � I0r2
e 2�n2

0�
2R4Z2: �4�

This result shows that the total integrated coherent scattering

intensity from a sphere of radius R is proportional to �2R4, or its

volume to the power 4/3 multiplied by the X-ray wavelength squared.

However, in the long-wavelength limit, 4�R/� << 1, the integrand

above can be approximated to the ®rst two terms in its Taylor series,

which yields

Iscat � I0r2
e 4�n2

0Z2 16�2=9
ÿ �

R6

� I0r2
e 4�n2

0Z2V2; �5�
which is simply the scattered intensity of a single electron multiplied

by the total number of electrons squared.

2.3. Coherent intensity at a given resolution

Our goal is to estimate the coherently scattered intensity at a given

spatial resolution d = 2R. Thus Q = 2�/d = �/R. Setting QR = � in (2)

yields

S��=R� � �4=��n0R3f ; �6�
and (3) becomes

I�Q� � 1= 4�2
ÿ �� �

I0N r2
en2

0 f 2d6 �
: �7�

Equation (7) shows that I(Q) is independent of X-ray wavelength �
for a ®xed-solid-angle element �
. However, as shown in the

following section, the requirement for an oversampled diffraction

pattern would result in a �2-dependence in �
, which leads to a

�2-dependence in I(Q).

2.4. Oversampling in Fourier space

From the experimentalists' point of view, the oversampling of a

coherent diffraction pattern is directly related to the angular reso-

lution of a detector acceptance angle. For a two-dimensional area

detector such as a charge-coupled device (CCD), its angular accep-

tance resolution is set by its pixel size �x or �y divided by its distance

r from the sample. As illustrated in Fig. 2, if the longest length scale

that exists in an object is L, then the detector angular resolution �Q

in reciprocal space has to be ®ner than half of the corresponding

spatial frequency 2�/L, i.e. �Q � �/L, in order to make the inter-

ference fringes at that spatial frequency observable in a diffraction

experiment. This means that the Fourier space needs to be over-

sampled by at least a factor of two compared with the highest spatial

frequency 2�/L.

It has been shown (Miao et al., 1998) that the above statement is

valid for two-dimensional (2D) and three-dimensional (3D) objects

as well, and the overall minimum oversampling factor is always two
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Figure 2
Illustration of the oversampling requirement from the point of view of
detector angular resolution in a double-slit experiment. (a) The detector pixel
size corresponds to an angular resolution that is equal to the highest spatial
frequency 2�/L, and no intensity modulations due to interference can be
observed in this case. (b) Intensity variations can be observed if the detector
pixel size corresponds to an angular width �/L and the pixels are spaced at
�/L, which is half of the highest spatial frequency. Now the Fourier space is
`oversampled' by a factor of two compared with (a).



regardless of the dimensions. Thus the oversampling factor in each

direction is

�Q �
2�=�2L�; for the 1D case

2�=�21=2L�; for the 2D case

2�=�21=3L�; for the 3D case

8>>><>>>: : �8�

In practice, a 3D diffraction pattern is always obtained by taking

many 2D projections at different specimen orientations with respect

to the incident beam. We note that the difference between 2D and 3D

cases is only 12%, and we will use the more conservative 2D

requirement for our estimation of scattered intensities.

Since the scattering signal in each solid-angle pixel is proportional

to �
, it is preferable to use the largest �
 permitted, as given in

(8). Using Q = 4� sin�/�, we obtain

�Qx � ��4� cos ��=���� � ��2� cos ��=����2��;
�Qy � �2�=���';

�9�

and the solid-angle element is thus (using the 2D case)

�
 � ��2���' � �

2�

� �2 �Qx�Qy

cos �
� �2

2L2 cos �
: �10�

As an example, for � = 1.5 AÊ , L = 1000 AÊ and � ' 0, we have �
 =

1.52/(2�10002) = (1.06 mrad)2. For a CCD located at 100 mm from

the sample, oversampling requires a pixel size no greater than 106 mm

� 106 mm, which is very reasonable in practice. It is also interesting to

note that the maximum solid angle scales with 1/cos�, so that the

oversampling requirement becomes more relaxed in the radial

direction at higher scattering angles.

3. Scaling law and dose requirement

In this section we derive a ®nal expression for coherent diffraction

intensity, examine how it scales with various parameters, and estimate

the ¯ux and dose requirements for achieving a certain diffraction

resolution.

3.1. Scaling with diffraction resolution

Inserting (10) into (7), we obtain

I�Q� � I0

8�2L2
Nr2

e�
2n2

0 f 2d 6; �11�

for N/L2 = a constant. In the case of a constant volume V = L3 with

atom density n0, N = V/�V for the number of volume elements, we

have

I�Q� � I0

8�2L2

V

�4=3��R3
r2

e�
2n2

0 f 2d 6;

or

I�Q� � 3I0

4�3
Lr2

e�
2n2

0 f 2d 3 �12�

for V = L3 = a constant. Equation (12) may be compared with the

recent result of Howells et al. (2003) if the sample thickness L scales

with the desired resolution d, i.e. L / d,

I�Q� � 3I0

4�3
r2

e�
2n2

0 f 2d 4; �13�

for V = L2d.

It is apparent from (11)±(13) that the coherently diffracted

intensity I(Q) has different scaling behavior with diffraction resolu-

tion d under different circumstances. For a constant 2D-projected

particle density N/L2, the scattered intensity I(Q) scales as d 6, as

given by (11). For a constant volume with ®xed atom density n0,

intensity I(Q)/ d 3, as given by (12). Finally, for a sample volume V =

L2d, intensity I(Q) / d 4, as given by (13). In an experiment on a

single given specimen, (12) applies and the coherently scattered

signal scales with d 3 and is proportional to sample thickness L. A

summary of these scaling laws is given by

I�Q� /
d 6; if 2D; N=area � a constant

d 4; if 2D; V � area� d

d 3; if 3D; V � a constant

8>>><>>>: : �14�

We note that (12), or the 3D case in (14), represents the scaling law of

an individual 2D-projected diffraction pattern from a specimen of a

constant 3D volume.

3.2. X-ray wavelength dependence

In addition to the resolution dependence, (11)±(13) also show that

the coherent diffraction intensity is proportional to �2. This, coupled

with the fact that the coherent scattering cross section for carbon

scales with � in the energy range 2±10 keV, seems to favor the use of

lower-energy X-rays. However, since the photoelectric absorption

cross section has a �3-dependence, the overall ratio of coherent

scattering to photoabsorption cross section stays more or less

constant in this energy range [see also the discussion on wavelength

dependence in x3.4]. In practice, higher-energy X-rays are easier to

use since unwanted absorptions can be minimized. A more detailed

examination regarding the choice of wavelength will have to include

speci®c beamline arrangements, specimen characteristics and desired

diffraction resolution etc.

3.3. Required X-ray ¯ux

With equations (11), (12) and (13) it is straightforward to evaluate

the required incident photon ¯ux I0�t for a desired time-accumulated

diffracted intensity I�t at a given diffraction resolution d. We assume

that I�t = 5 counts per pixel is a reasonable minimum signal with

I/�I = 2.24 at the highest resolution d. For convenience, we now

consider only the cases (12), when sample volume is a constant,

I0�t � 20�3

3r2
eLn2

0d 3f 2�2
; �15�

for 3D, V = L3 = a constant, and, (13), when sample thickness scales

with resolution d,

I0�t � 20�3

3r2
en2

0d 4f 2�2
; �16�

for 2D, V = L2d.

As an example, for a protein sample of volume 0.1 mm � 0.1 mm �
0.1 mm and density � = 1.35 g cmÿ3 with f' Z = 6.6 and atomic weight

A = 13, atom number density n0 = �N0/A = 1.35 � 6.02 � 1023/13 =

6.25 � 1022 atoms cmÿ3, where N0 is the Avogadro constant. From

(15) we obtain that if a diffraction resolution d = 1 nm is desired using

� = 1.5 AÊ X-rays, then the required accumulated incident coherent

X-ray photon ¯ux is

I0�t � 20�3=3

�2:82�10ÿ13�2 �10ÿ5 ��6:25�1022�2 ��10ÿ7�3 �6:62 ��1:5� 10ÿ8�2
� 6:7� 1021 photons cmÿ2 � 6:7� 1013 photons mmÿ2:
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3.4. Required X-ray dose

One can convert incident photon ¯ux into required dose, which is

de®ned as absorbed energy per unit mass in a specimen,

Dose � I0�t� ��E=�; �17�

where � is the density, � is the linear absorption coef®cient and E is

the X-ray energy. Equation (17) shows that the required dose is

independent of X-ray wavelength � since, according to (15), I0�t

scales as �ÿ2, E as �ÿ1 and � as �ÿ3 (if discontinuous effects owing to

absorption edges are ignored). Using the above example, and

assuming a mass absorption coef®cient �/� = 4.26 cm2 gÿ1 for C at

8 keV, the required dose for obtaining a suf®cient scattering signal at

1 nm resolution is given by

Dose � 6:7� 1021 � 4:26� 8000� 1:6� 10ÿ19 � 103

� 3:6� 1010 Gy;

which is a large radiation dose for a biological specimen.

In Fig. 3 we show the required X-ray dosage to achieve I�t =

5 counts per pixel as a function of diffraction resolution for a

0.1 mm � 0.1 mm � 0.1 mm biological sample (carbon, � =

1.35 g cmÿ3), with minimum oversampling as de®ned in (8). The

curves show power-law behaviors as discussed in the previous section,

with a slight deviation at high resolutions owing to the effect of

atomic form factor. Also plotted are the X-ray doses used in a few

studies in the literature on biological specimens, which are in general

agreement with our requirement curves.

Fig. 4 shows the same required dose versus resolution curves for an

inorganic specimen of gold (� = 19.7 g cmÿ3), with volumes V =

10 nm � 10 nm � d (2D case, thin solid curve) and V = 10 nm �
10 nm� 10 nm (3D case, thick solid curve). Several cases reported in

the literature, plus a new simulation result discussed in x4, are shown

by the ®lled circles in Fig. 4, again in agreement with our estimated

dose requirement.

3.5. Effect of radiation damage

Radiation damage is a critically important issue in high-resolution

diffraction imaging of biomaterials with synchrotron X-rays. Several

studies have shown that radiation-damage effects in biological

specimens at a given dose level depend on the spatial resolution of

interest. At atomic resolution it is commonly accepted (Henderson,

1995) that a dose of 2 � 107 Gy would be enough to destroy crys-

talline orders in protein crystals. At much lower resolutions, however,

soft X-ray microscopic studies of mass losses in biological specimens

have shown that much higher X-ray dosages of 1010±1011 Gy can be

tolerated at cryotemperatures (Maser et al., 2000). A dotted straight

line connecting these two extreme cases is shown in Fig. 3 as a simple-

minded guideline to the radiation-damage limit at different spatial

resolutions. It shows that in a continuous-wave imaging experiment

with X-rays, radiation damage would limit the spatial resolution to

about 5 nm for biomaterials in ice and to about 3 nm for biomaterials

in a vacuum.

It may be noted that the radiation-damage limit shown in Fig. 3 is

purely empirical, and is for biological specimens only. For inorganic

materials the radiation tolerance may be much higher. For example,

based on electron microscopy observations, the damage dose level to

carbon nanotubes can be 102 times higher than that to biological

materials (Zuo et al., 2003). This fact, together with a higher density,

would allow much higher spatial resolution, perhaps approaching

atomic resolution, for coherent diffraction imaging of inorganic

materials.

4. Simulated case study

It is important to verify that a minimally oversampled diffraction

pattern with minimally satis®ed X-ray intensity requirement can in

fact be analysed to faithfully recover the original real-space object

using the iterative phasing method. In order to test this, we have

performed computer simulations of a coherent diffraction pattern on

a 2D object, as shown in Fig. 5. The object consists of 2894 gold atoms

located in a 10 nm cube, arranged in such a way that its 2D projection

along the z-axis exhibits the pattern in Fig. 5(b). The coherent

diffraction pattern from such an object, shown in Fig. 5(a), is calcu-

lated using equation (1), with incident coherent X-ray ¯ux I0 =

3 � 1014 photons sÿ1 mmÿ2 at an X-ray wavelength � = 1.5 AÊ . This
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Figure 3
Required X-ray dose at 8 keV to achieve a given diffraction resolution for
biological samples in ice (thick solid line) and in a vacuum (thin solid line). A
®xed sample volume of V = 0.1 mm � 0.1 mm � 0.1 mm is assumed. Also
plotted are several studies in the literature. The radiation-damage limit is
shown as the dotted line connecting Henderson's limit at atomic resolution
and microscopy studies against mass loss at low resolutions. Dose levels of
proposed ERL and XFEL sources are also indicated in the plot. See text for
more details.

Figure 4
Required 8 keV X-ray dose as a function of diffraction resolution for gold
samples in 2D (thin solid curve) and 3D (thick solid curve). The sample
volume is indicated in the legend. Also plotted are several studies in the
literature, plus our simulation results described in x4.



corresponds to a 30:1 doubly focused beam from the proposed ERL

source. An oversampling solid angle �
 = (�/2L)2 is used in the

calculation. The structure factor F(Q) is given by a coherent super-

position of scattering amplitudes from all 2894 atoms in the sample

(at Qz = 0),

F�Q� �P
j

fj exp�iQxxj � iQyyj�; �18�

where fj is the atomic scattering factor for the jth gold atom located at

(xj, yj). In our case, all fj values are the same, and are calculated using

the published values in International Tables for Crystallography

(2001). The ®nal intensity at each pixel is evaluated for a data-

acquisition time of �t = 4 s, plus a constant dark-current background

of 2 counts per pixel, and includes a statistical noise within plus or

minus one standard deviation. Furthermore, the 3 � 3 pixels at the

center of the diffraction pattern are assumed to be blocked by a beam

stop. The total dose accumulated in the specimen is 3 � 1013 Gy.

The simulated diffraction pattern, shown in Fig. 5(a), is then used

as the input to a phase-retrieval computer program based on the

difference-map iterative algorithm developed by Elser (2003).

Starting from a random density, the algorithm updates this object by

adding, in each cycle, the difference of two modi®cations. In one

modi®cation the object is minimally changed to agree with the

measured diffraction data. The other modi®cation re¯ects the

knowledge about the extent of the object and sets the contrast to zero

in the region not occupied by the object. When these two modi®ca-

tions produce the same object, their difference vanishes and the

iterative updates are halted. As can be seen in Fig. 5(c), after some

200 iterations the real-space image retrieved using this technique is in

excellent agreement with the original object, Fig. 5(b). The retrieved

image shows that individual gold atoms can be resolved in this

simulation experiment at 2 AÊ resolution.

The use of a focused incident X-ray beam for coherent diffraction

requires some discussion. In general the convergent angle �� of the

incident beam should be small compared with the oversampling

angular requirement. We note that a 30:1 focused ERL beam would

give rise to a convergent angle �� = 0.16 mrad, which is much smaller

than the oversampling requirement of 1.06 mrad for an object size of
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Figure 5
(a) Simulated coherent X-ray diffraction pattern of a 2D object made of 2894 gold atoms in a 10 nm by 10 nm square, as shown in (b), with an oversampling ratio of
2� 2 on a CCD detector with 255� 255 pixels located at 10 cm from the sample. The incident coherent intensity is assumed to be a 30:1 doubly focused ERL high-
coherence beam with 3� 1014 photons sÿ1 mmÿ2. Diffracted intensities are shown on a logarithmic scale (color bar on right-hand side) and the counting time is 4 s.
Statistical noise is included in the intensity signal at each pixel. (c) Examples of real-space images retrieved using the iterative phasing method, with labels showing
the number of iterations in each image. (d) Azimuthally averaged coherently scattered intensity per pixel in the simulated diffraction pattern (a) as a function of Q,
compared with the estimated intensity per pixel using equation (12).



100 nm. Thus the focusing should have minimal effects on our

simulated diffraction pattern and the phase retrieval.

In Fig. 5(d) we show the azimuthally averaged intensity per pixel as

a function of Q for the diffraction pattern Fig. 5(a). Our intensity

estimate (solid curve), equation (12), agrees very well with the actual

pixel intensity in the resolution range of interest. We note that (12)

deviates more from the actual counts at low Q. This is due to the fact

that, when the resolution (volume element) approaches the size of

the specimen, (11)±(13) become invalid as I diverges at Q = 0. A

reasonable validity requirement for these equations is that the size of

the specimen should be at least ten times larger than the resolution

volume element.

The X-ray dose corresponding to our simulation and phasing result

is plotted in Fig. 4 at 0.2 nm resolution. We have veri®ed that the

average accumulated count at 2 AÊ resolution is I�t = 4.7 photons per

pixel in Fig. 5(a), very close to what is assumed in Fig. 4. It is inter-

esting to note that the corresponding dose level is apparently below

the minimum dose level as required by the dÿ4 scaling law based on

(16) for thickness L / d.

5. Discussion and conclusions

One may ask the question of whether a larger specimen would

increase the coherently scattered signal and would thus require a

smaller dose to achieve the same resolution. From (10) we see that a

larger volume L3 requires a smaller oversampling solid angle which

scales as Lÿ2 and cancels out the factor L2 in the increase of scattered

signal. Therefore the coherently scattered intensity scales linearly

with the sample thickness L, or as V 1/3, as shown in (15). It can be

concluded that a larger specimen would indeed help in a coherent

diffraction imaging experiment. This conclusion is consistent with, for

example, Henderson (1995), where the scattered signal is shown to

scale as the inverse third power of the particle size.

It remains to be seen whether the increased number of atoms or

volume elements, which scales as L3, would pose dif®culties in

achieving the same high-resolution real-space image in the iterative

phasing procedure. For example, a macromolecular specimen of

100 nm� 100 nm� 100 nm contains roughly 6� 107 atoms using � =

1.35 g cmÿ3. If the volume is increased to 100 mm� 100 mm� 100 mm

there would be 6 � 1016 atoms in the specimen! It would indeed be a

challenge to locate all these atoms. Nonetheless, if phasing could be

performed, then the lower required dose would allow higher reso-

lution to be reached in a diffraction imaging experiment.

The effect of radiation damage in biological materials dictates the

highest spatial resolution that can be achieved in a continuous-wave

coherent X-ray scattering experiment, as shown in Fig. 3. In order to

overcome this limit, Neutze et al. (2000) proposed to take advantage

of the short-pulse nature of XFEL sources and to try to record a

coherent diffraction pattern from single macromolecules in a single

shot of a < 10 fs X-ray burst. As indicated in Fig. 3, the X-ray ¯ux from

a single pulse of the LCLS source is not suf®cient to provide an

atomic resolution diffraction pattern, and repeated pulses have to be

used to build up the statistics on a diffraction pattern from many

single particles. Because each pattern is collected on a different

molecule with presumably unknown orientation, millions of diffrac-

tion patterns from randomly oriented but otherwise identical mole-

cules have to be sorted and classi®ed. Our dose estimate results in

Fig. 3 con®rm that this approach may indeed be feasible, at least in

principle. Fig. 3 shows that a single LCLS pulse containing

1012 photons may be strong enough to provide diffraction patterns at

6±12 AÊ resolution, which may allow proper classi®cation and sorting

of the patterns obtained on different orientations. Once these

patterns are properly sorted, accumulations of the same patterns

could allow structure determination at close to atomic resolution as

demonstrated by Miao et al. (2001). Of course, many technical chal-

lenges remain to be solved for this type of experiment on single

particles, and further discussion of this topic is well beyond the scope

of present work.

In conclusion, we have presented a simple estimation of coherent

X-ray ¯ux and dose requirement in diffraction imaging experiments

on nonperiodic specimens. Our results show that the scaling law of

¯ux or dose versus spatial resolution can vary, depending on whether

certain quantities are kept constant. In the most common case of a

specimen with a constant volume and 3D density, we show that the

required ¯ux and dose scales as dÿ3, or the inverse third power of

spatial resolution. Based on this result and on empirical radiation-

damage data in the literature, we conclude that the resolution would

be limited to 3±5 nm in conventional diffraction imaging experiments

on biological specimens of size 100 nm. Larger specimens would help

to enhance the scattering signal and thus potentially increase the

achievable spatial resolution. For radiation-resistant non-biological

materials such as nanostructures and nanocomposite materials, a

much higher spatial resolution, perhaps close to atomic resolution,

may be obtained.
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