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The Talbot effect is the self-imaging, at distances D multiple of DR, of

the intensity downstream of a periodic object. Earlier work with hard

synchrotron radiation X-rays showed the variation with D of the

fundamental Fourier component of intensity to be a good measure-

ment of beam coherence. Any higher-order Fourier coefficients
~II(D, m > 1) would be periodic with a reduced period DRm = DR/m for

an ideally coherent incident beam (partial Talbot effect). The degree

of coherence (x) is sampled through the ratio of ~II(D, m) at D = 0

and multiples of DRm. This requires the Fourier coefficient for D = 0,

which is not accessible for a phase object (no contrast at D = 0).

However, the ratio of the slopes of ~II(D, m) at D = 0 and D = pDRm

also provides this information. Furthermore, a characterization of

(x) is possible, provided an assumption is made on its shape, using

only the ratio of the Fourier coefficient ~II(D, m) of two images a

distance pDRm apart. Experiments with one- and two-dimensional

phase gratings and a mixed (amplitude and phase) two-dimensional

grating confirm that the partial Talbot effect approach is viable. It

requires a reduced range of distances, and yields important results

directly, obviating the need for computer fits. In particular, 8% of the

beam intensity was found to have very low coherence in the vertical

direction, probably due to monochromator imperfection.
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1. Introduction

The Talbot effect (Talbot, 1836) is a long-familiar spectacular

consequence of Fresnel diffraction, itself a description of the effect of

optical propagation over a finite distance. It consists of the lensless

replication, at positions periodically distributed along the propaga-

tion direction, of the optical amplitude distribution due to a one- or

two-dimensionally periodic object illuminated by a coherent wave

(Winthrop & Worthington, 1965; Patorski, 1989). This self-imaging

effect was explored in the case of hard X-rays from a long beamline

(ID19 at ESRF), expected to feature high spatial coherence, at a

third-generation synchrotron radiation source (Cloetens et al., 1997).

It was then found, using a one-dimensional phase grating, that the

variation with defocusing distance D of the first Fourier coefficient of

the intensity distribution provides a way of measuring the degree of

spatial coherence of the X-ray beam, and hence the source size. This

approach is particularly robust because it is independent of the shape

of the periodic object and the transfer function of the detector. In this

paper, we investigate extensions of this approach, and use them to

determine the source size in the case of a beamline with substantially

lower coherence than in the initial measurement. This study handles

several points in order to make the coherence measurement as

practical as possible: the choice of the object type (phase or/and

amplitude object; one- or two-dimensional grating), the choice of the

order m of the Fourier coefficient, and the choice of the distances.

The effect of Fresnel diffraction can be described, in the case of a

one-dimensional sample which we will retain for simplicity’s sake in

most of the discussion below, by convolving the amplitude distribu-

tion g(x) right after the object, with the propagator exp(i�x2/�D),

where � is the radiation wavelength. In terms of Fourier transforms, f

being the spatial frequency conjugate to the coordinate x, the Fourier

transform of the amplitude distribution, ~ggð f Þ, is multiplied by

exp(ÿi��Df 2) (Goodman, 1968). This term is equal to unity for

distances D = pDT, with p an integer and DT the Talbot distance,

DT = 2a2/� for any periodic object with period a, because ~ggð f Þ is then

non-zero only for f = m/a with m an integer. The effective condition

for perfect replication can actually be taken as D = pDR with p an

integer and DR = DT/2 because, for odd multiples of DR, the Fourier

component of order m of the amplitude distribution is multiplied by

(ÿ1)m. The resulting amplitude distribution, being just shifted by

a/2, is in practice undistinguishable from the original. We will call

DR = a2/� the replication distance.

In this paper, we discuss properties of the Fourier coefficients of

the intensity distribution in the Fresnel diffraction pattern of a

periodic object and use those properties to measure in a simple way

the degree of coherence on a bending-magnet beamline. We show,

by introducing the partial Talbot effect, that the variation with de-

focusing distance D of the higher Fourier coefficients of the intensity

would be periodic, with periods smaller than DR, for completely

coherent illumination. Their actual damped behaviour can thus

provide quantitative information about the beam coherence directly,

from a smaller range of defocusing distances than using the standard

Talbot effect.

The amplitude distribution just after the specimen, g(x), is simply

proportional to the amplitude transmission function of the sample if

the incident wave is plane. In the case of a cylindrical (or spherical)

incident wave, emitted from a point source at finite distance L from

the object, g(x) contains a non-periodic factor exp(i�x2/�L): a simple

change of variable in the Fresnel diffraction integral shows that self-

imaging is then produced at modified distances nLDR/(L ÿ nDR)

with n being an integer. More generally, the diffraction pattern which

would be observed at distance D from the sample in the case of

an infinitely distant source is actually produced at the distance D0 =

D/(1 ÿ D/L). We will base the descriptions on D, the defocusing

distance, rather than on D0, the actual specimen–detector distance.

2. The partial Talbot effect

The Fourier transform of the intensity distribution (intensity spec-

trum) ID(x) of a Fresnel diffraction pattern can be expressed, if the

incident beam is considered as a quasi-monochromatic ensemble of

mutually incoherent plane waves, by the formula (Guigay, 1978;

Cloetens, 1999)

~IIDð f Þ ¼ ð�Df Þ expðÿi��Df 2
Þ
R1
ÿ1

d� expðÿi2�� f Þ gð�Þ g�ð�þ �Df Þ;

ð1Þ

where (�Df ) is the spatial degree of coherence between two points

in the object plane a distance �Df apart. (�Df ) is unity for perfect

coherence and, by definition, whatever the coherence, for D = 0.

According to the Van Cittert–Zernike theorem (Born & Wolf, 1999),

(�Df ) is related to the normalized angular distribution S(�) of the

incident beam by a Fourier transformation
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ð�Df Þ ¼
R

d� expði2�Df�ÞSð�Þ ¼ ~SSðDf Þ: ð2Þ

If g(x) is a periodic function with period a, the intensity distribution

ID(x) at distance D is itself periodic in x, with the same period a, and

can be expanded into a Fourier series with coefficients ~II(D, m) (m

integer), which are, according to (1),

~IIðD;mÞ ¼ ð�Dm=aÞ exp ÿi��Dm2=a2
ÿ �

aÿ1

�
Ra
0

d� exp½ÿi2��m=a� gð�Þ g�ð�þm�D=aÞ: ð3Þ

The properties of these coefficients, as functions of the defocusing

distance D, are the subject of the present discussion.

Let us first consider the ideal case of perfectly coherent illumina-

tion, for which (�Dm/a) = 1. Then ~II(D, m) is clearly, apart from a

factor (ÿ1)m, a periodic function of D, with period DRm = a2/m�. For

D = pa2/�, all the Fourier coefficients are identical for all integral

values of p, to within the change in sign (ÿ1)m: this is the usual or

full Talbot effect. At distances D = p(a2/�m) = pDRm, only those

Fourier coefficients whose order is a multiple of m are unchanged for

different values of p, to within a change in sign (ÿ1)mp. We suggest

calling this partial preservation of the intensity spectrum the

partial Talbot effect.

This partial Talbot effect is closely related to the so-called

fractional Talbot diffraction, which deals with Fresnel diffraction by

periodic objects at distances equal to fractions of the Talbot distance

DT and which is used for some applications in visible-light optics

(Testorf & Ojeda-Castañeda, 1996; Zhou et al., 1998; Arrizon & Rojo-

Veláquez, 2001). At such distances, D = DT(p/q), where p and q are

relative prime integers, the amplitude distribution gD(x) at distance D

can be expressed from the values of the object function g(x0) for

x0 = x + la/q, with l an integer running from 0 to qÿ 1. This means that

the Fresnel diffraction integral is simplified into a sum of q terms, this

sum being actually reduced to q/2 terms if q is even. For instance, we

obtain gD(x) = g(x + a/2) for p/q = 1/2, and we obtain gD(x) =

[g(x) + ig(x + a/2)]/21=2 for p/q = 1/4 (Guigay, 1971; Arrizon & Ojeda-

Castañeda, 1992).

In the following, we will be concerned with the particular case of a

binary two-dimensional phase grating g(x, y) = h(x)h(y), where h(x)

is a periodic binary function of period a such that h(x) = exp(i�) for

0 < x < wa and h(x) = 1 for wa < x < a, with w < 1/2. It is then possible

to perform the integration of (2) generalized to the two-dimensional

case and find along the x-direction,

~IIðD;mÞ ¼ ðaD=DRmÞ expðÿi�wmÞ sinð�mD=DRmÞ

� ½sin � sinð�wmÞ � ðcos �ÿ 1Þ cosð�wmÞ�=�m; ð4Þ

with + for D < wDRm and ÿ for (1 ÿ w)DRm < D < DRm, and

~IIðD;mÞ ¼ ðaD=DRmÞ expðÿi�wmÞ sinð�wmÞ sin � sinð�mD=DRmÞ
�

þ ðcos �ÿ 1Þ cosð�mD=DRmÞ
�
=�m; ð5Þ

for wDRm < D < (1 ÿ w)DRm.

3. Application to coherence measurements

When the incident beam is not perfectly coherent, the periodicity as a

function of distance will be disrupted. The variation with D of the

Fourier coefficients of the Fresnel-diffracted intensity makes it

possible to quantitatively determine the coherence width in the

object plane, or the angular source size. Formula (3) written for D =

pDRm shows that

~IIð pDRm;mÞ ¼ ð paÞðÿ1Þmp ~IIð0;mÞ ¼ ~SSð pa=�Þðÿ1Þmp ~IIð0;mÞ: ð6Þ

Thus we obtain the degree of coherence (pa) from the ratio

r(0, p, m) of the Fourier coefficient of order m at the distances D =

pDRm and D = 0. By varying p, (x) can be sampled, with the period a

of the specimen. It may be noted that the use of higher harmonics

(m > 1) does not mean that the coherence function is sampled at

smaller intervals a/m, but it provides the important experimental

advantage to use distances that are m times smaller.

Obtaining (pa) by this approach is not possible with a pure phase

grating since ~II(0, m) = 0 for any m 6¼ 0 in this case. The most

straightforward way around the problem of this lack of contrast at

D = 0 is to use a mixed (amplitude and phase) grating instead of a

pure phase grating. However, we found another possibility:

measuring the derivative ~II 0(D, m) with respect to the distance D of

the Fourier coefficient of order m. It is readily seen that relation (6) is

valid for the derivatives too,

~II 0ð pDRm;mÞ ¼ ð paÞðÿ1Þmp ~II 0ð0;mÞ; ð7Þ

under the condition that ~II(0, m) = 0, which is precisely satisfied in the

case of a phase grating. Relation (7) is also approximately valid if

�(m/a)| 0( pa)~II(0)| << |( pa)~II 0(0)|.

The derivative ~II0(0, m) is generally not equal to zero, particularly in

the case of a phase grating; its value can be determined from images

recorded with a small increment in distance D. In this paper, we do

not make optimal use of this possibility, because we realised this after

the experiments and therefore our choice of experimental distances

did not incorporate this optimally. We can, however, test the validity

of this new approach, which substantially extends the possibilities of

the Talbot effect for coherence measurements, especially with phase

gratings.

In the case of a phase grating, another useful possibility is to use

the ratio

rðD0; p;mÞ ¼ j~IIðD0;mÞ=~IIðD0 þ pDRm;mÞj

¼ jð�D0m=aÞ=ð�D0m=aþ paÞj ð8Þ

of the Fourier coefficient of order m, at some non-zero distance D0

and at D0 + pDRm. Determining the variation of (x) from this ratio

requires an a priori assumption on the form of this function, or

equivalently on the angular intensity distribution S(�) of the X-ray

beam, as was performed by Cloetens et al. (1997) in the case m = 1,

p = 1, D0 = DR/2. If the incident beam is assumed to have a Gaussian

angular distribution described by S(�) = exp[ÿ(2� /W)2 ln 2], where W

is the FWHM angular source size of the X-ray beam, the degree of

coherence is, according to expression (2),

ðxÞ ¼ exp ÿð�Wx=�Þ2=4 ln 2
� �

¼ exp ÿðWx=0:530�Þ2
� �

: ð9Þ

From (8), we obtain

W2
¼ 4 ln 2=�2
ÿ �

ln rðD0; p;mÞ
� �

= ð pa=�Þ2 þ 2mpD0=�
� �

: ð10Þ

The transverse coherence width lt can be defined such that (lt) = 1/2

and is then equal to (2 ln2/�)�/W ’ 0.44�/W.

Further, under the assumption of Gaussian distributions and if the

degree of coherence (x) is known for a given value x, the angular

source size W may be obtained from

W ¼ 2ðln 2Þ1=2=�
� �

ð�=xÞ ln ÿ1
ðxÞ

� �� 	1=2

¼ 0:530ð�=xÞ ln ÿ1
ðxÞ

� �� 	1=2
: ð11Þ

The size of the source is obtained by multiplying the angular source

size W by the source-to-specimen distance L.
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4. Experimental approach, samples and results

The primary data in the present investigation consist of sets of images

of the periodic specimen, illuminated by hard (17.5 keV, � = 70.7 pm)

X-rays produced by the bending magnet of the optics beamline BM05

of the European Synchrotron Radiation Facility, monochromated by

a double perfect silicon monochromator using the 111 reflection in

symmetrical Bragg geometry, in the vertical plane. The experiments

were performed at a distance L = 55 m from the source with the

synchrotron ring operating in the uniform mode, at an electron

current of about 180 mA.

The images were recorded using an X-ray-sensitive converter,

coupled via a visible-light microscope-type optical set-up to a cooled

CCD FReLoN camera (Koch et al., 1998, 2000), set for an effective

pixel size of 0.7 mm.

The specimen–detector distance was systematically varied using an

accurate translation stage for distances D0 < 0.82 m, with the stage

moved away from the specimen for larger distances. ‘Dark’ images

(without X-ray beam) as well as images without the specimen were

also recorded to perform ‘flat-field’ corrections for inhomogeneity of

the beam, owing to the monochromator and windows upstream, and

detector response. The images were then submitted to a fast one- or

two-dimensional Fourier transform procedure, yielding the first

(orders m from 1 to 3) Fourier coefficients ~II(D, m) as a function of

propagation or defocusing distance D. In practice, only the modulus

of the Fourier coefficients will be considered.

The first object used was a one-dimensional optical grating replica

(Hilger & Watts Student Grating). It had an approximately sine-

shaped profile, with a period of 6.35 mm and a peak-to-peak height

modulation of 1.1 mm. The other phase object we used, an etched

pattern on silicon, was two-dimensional: it had a binary square

profile, with period along two perpendicular directions of 8.0 mm and

peak-to-valley height difference of 2.9 mm, corresponding to a phase

shift of 0.41 rad at a photon energy of 17.5 keV. The widths of the

regions with the two values of thickness were approximately equal. A

scanning electron microscopy image of this silicon grating is shown in

Fig. 1. We also used, as a mixed (phase and attenuation) grating, a

square gold grid for electron microscopy (Agar G2786A 2000 mesh

gold), with the bars 4 mm wide and 5.1 mm thick. The period along the

two directions parallel to the bars was 12.5 mm. The intensity

attenuation factor exp(ÿ�t) for the metal part was then 0.35 for

17.5 keV photons, with a phase shift of 7.35 � 2� rad.

Two-dimensional gratings with square phase, and possibly

attenuation, modulations give the possibility of exploring three

aspects. It becomes possible to gain simultaneously information on

the vertical and horizontal coherence widths, and hence source sizes.

Square modulation implies that there are several strong harmonics in

the Fourier expansion of the intensity, making it possible to draw

information from more than one Fourier coefficient. The presence of

attenuation could provide useful supplementary data in comparison

with phase-only situations.

The images for the one-dimensional phase grating with sine-

shaped corrugation, 6.35 mm period, are similar to the results from

the same grating measured by Cloetens et al. (1997) on ID19, a

beamline at the ESRF where the beam has larger coherence widths.

The higher harmonics are very weak in this case, because the phase

modulation is small and the thickness variation is essentially sinu-

soidal. Using the approach based on the full Talbot effect, the hori-

zontal FWHM of the source intensity distribution, obtained with the

one-dimensional phase grating, with its lines vertical, is 269 (8) mm.

The same measurement performed with the grating turned by 90�

yields, for the vertical FWHM, a value of 79 (8) mm. The corre-

sponding angular source sizes are WH = 4.90 mrad and WV =

1.40 mrad.

Fig. 2 shows the images obtained at D ’ 0, D = DR/2, D = DR =

0.90 m and D = 3DR/2 for the two-dimensional square phase grating,

with periods in perpendicular directions of 8.0 mm. The appearance,

disappearance and reappearance of contrast is obvious, as is the

decrease in maximum contrast with increasing D, a consequence of

the finite coherence width of the beam, and therefore of the non-zero

size of the source. The decrease in contrast is seen to be more severe

in the horizontal direction, pointing qualitatively to the anisotropy of

the source. This is quantitatively shown in Fig. 3, where the variation

with D of the absolute values of the first, second and third Fourier

coefficients of the intensity are shown. Fig. 3 shows, along with the

research papers

478 Jean-Pierre Guigay et al. � Partial Talbot effect J. Synchrotron Rad. (2004). 11, 476–482

Figure 1
Scanning electron micrograph of silicon structures generated by electron-
beam lithography and reactive ion etching used as a two-dimensional phase
grating.

Figure 2
Images of a two-dimensional phase grating with period of 8.0 mm, with
approximately equal widths for the thicker and the thinner regions, at
defocusing distances of (a) D = 8 mm, (b) D = DR/2, (c) D = DR and (d) D =
3DR/2. Throughout this paper, the photon energy used is 17.5 keV,
corresponding to wavelength � = 70.7 pm; hence DR = 905 mm.



experimental points, curves calculated using values of 79 mm for the

vertical and 269 mm for the horizontal source sizes. It is seen that

some of the measured points are near a maximum of the third Fourier

coefficient, and not near a zero. These points cannot give the slope

directly. Consequently, for the slope method, we had to introduce a

correction assuming a sinusoidal variation for the third coefficient as

a function of D, as expected from equation (4) for this phase grating.

Fig. 4 presents images of a mixed phase and amplitude object, the

gold grid for transmission electron microscopy, obtained at D = 5 mm,

D = 547 mm and D = DR = 2.2 m. Fig. 5 shows the first and second

Fourier coefficients of the images of the

grid. Here, in spite of the fact that it is a

mixed grating, the third harmonic of the

intensity is very small for D ’ 0, because

the bar width is close to one-third of the

period.

The coherence properties can also be

obtained through the partial Talbot effect,

using either the square-profile phase grating

or the mixed object (gold grid for trans-

mission electron microscopy). As discussed

above, the quantity obtained directly using

expressions (6) or (7) is the degree of

coherence between points that are a

distance x = pa apart, either in the vertical

direction, V(x), or in the horizontal direc-

tion, H(x). The corresponding angular

source sizes WV and WH are calculated

using (11). The experimental results are

summarized in Table 1. The column titled

‘Approach’ indicates whether the data are

obtained from the ratio r(0, p, m) of the

Fourier coefficients at D = 0 and D = pDRm

[‘r(0, p, m)’; expression (6)], from the ratio

of their slopes at D = 0 and D = pDRm

[‘slopes’; expression (7)], or from the ratio

of the Fourier coefficients at D = D0 and

D = D0 + pDRm [‘r(D0, p, m)’; expression

(10)]. The measurements in Table 1 are

condensed in Fig. 6 to profiles of the degree

of coherence as a function of distance both

in the vertical and horizontal directions.

The dots correspond to the discrete

measurements, whereas the full lines

correspond to fits weighted according to the

error bars of the experimental data points.

In the horizontal direction a Gaussian fit as

given by expression (9) is used with an

angular source size WH = 4.98 (6) mrad. In

the vertical direction, however, a signifi-

cantly better fit could be obtained in the

experimental range (x � 8 mm) with a

Gaussian profile as given by (9) multiplied

by a constant x!0 between 0 and 1. The

best fit is obtained in this case for WV =

1.44 (3) mrad and x!0 = 0.924 (25).

5. Discussion

For the one-dimensional phase grating, we

have recorded images at D = DR/2 and D =

3DR/2 (with the grating lines along the

vertical and the horizontal directions separately), so that we could

only apply the approach based on the Gaussian model for the source

profile to determine WV and WH. Actually, it is unfortunate that we

have omitted to record a set of images close to D = 0 and around D =

DR for this grating, in order to use also the slope method.

With the two-dimensional binary phase grating, the most reliable

results are certainly those corresponding to m = 1 (second line of

Table 1) for which no correction was necessary. The third Fourier

coefficient oscillates much faster: this shows up both in the calculated

curve and in (4). We have only two points of the ~II(D, 3) curves as a
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Figure 4
Images of the two-dimensional mixed (amplitude and phase) object, a gold grid for transmission electron
microscopy with period a = 12.5 mm for defocusing distances (a) D = 5 mm, (b) D = 547 mm and (c) D =
2.2 m = DR.

Figure 3
Variation with D of the fundamental (m = 1), the second (m = 2) and the third harmonic (m = 3) of the
variation along the (a), (c), (e) horizontal and (b), (d), ( f ) vertical directions, for the two-dimensional phase
grating with period 8 mm. The circles correspond to the experiments, whereas the solid lines correspond to
simulations. Best fits were obtained assuming a ratio w of the binary grating equal to 0.465. The simulations
include a correction factor taking into account the decrease of the detector sensitivity when the spatial
frequency under consideration is increased. This correction factor was adjusted such that the simulation
agrees with the experimental data point with the highest value. The remaining discrepancies between the
simulations and measurements may be attributed partly to imperfections in the modeling of the grating.



function of D near D = 0 (at D = 8 mm and D = 50 mm), and two on

either side (D = 252 mm and D = 354 mm) of the partial Talbot

position DR3 = 300 mm. As a result of the scarcity of data, related, as

mentioned above, to the fact that the experiments were performed

before the possibilities were fully understood, there is a clear

discrepancy between the values of V(x = 8 mm) quoted in the second

and third lines of Table 1. It can be noted that, for this grating with

similar profiles along two perpendicular directions, the vertical and

horizontal Fourier coefficients should be almost the same for small

values of D, because the attenuation factor should still be close to

unity in both cases. This condition is not as well satisfied by our results

for m = 3 as for m = 1. We attribute this discrepancy to a deterioration

of the spatial resolution in the horizontal

direction due to vibrations, the effect of

which is more pronounced for the higher

harmonics. For the simulated solid lines of

Fig. 3, we therefore used different values of

the effective detector transfer function in

the horizontal and vertical direction.

It is interesting to observe that we find in

expression (4) the same D-dependent factor

sin(��Df 2) we obtain for a phase object

g(x) = exp[i’(x)] such that |’(x)| << 1, or,

more precisely, such that |�’| = |’(x) ÿ

’(x + �Dm/a)| << 1, which allows the ‘weak

phase approximation’ exp[i�’(x)] ’ 1 +

i�’(x) (Guigay, 1977). If the duty cycle of

the binary phase grating is exactly equal to

1/2 [this means w = 1/2 in formula (4)], the

period of ~II(D, m) is DRm/m instead of DRm.

This property, which is indeed almost veri-

fied on the calculated curves in Fig. 3, would

not be satisfied in the case of a phase grating

with an arbitrary phase profile; for this

reason, we did not use it in the present

work.

The measurements using the mixed

grating, a gold electron microscopy grid,

also lack data in the vicinity of the partial

Talbot distance corresponding to the second

Fourier coefficient, which has better inten-

sity than the coefficient of order three and which could have been

appropriate to measure in an alternative way the degree of coherence

for x = 12.5 mm. The results for this mixed object are nevertheless

consistent with those obtained with the other gratings. The possibility

of using the image in D = 0 is the main incentive for working with a

mixed grating (a pure amplitude grating is not practical for hard

X-rays). The variations of the intensity Fourier coefficients are

governed for D ’ 0 and for D ’ DRm by a term proportional to

sin(�mD/DRm) and a term proportional to cos(�mD/DRm), the latter

being absent in the case of a phase grating. The sin(�mD/DRm) term

is responsible for the rapid variations of ~II(D, m) shown in Fig. 5. The

extrapolation necessary to estimate ~II(D = 0, m), since it is not

possible to record an image for D = 0, is an obvious factor of

uncertainty. Furthermore, the estimation of ~II(D = DRm, m) is sensi-

tive to the uncertainty (about 1 mm) in the exact Talbot position.

Therefore, a very accurate calibration of the distance D is necessary

to measure the ratio of ~II(D = 0, m) for D = 0 and for D = DRm in the

case of a mixed grating. As shown in Fig. 5, it is more convenient to

measure the slopes, as this can be done with a phase grating.

Actually, we are led to the conclusion that using a pure phase

grating and the slope approach will be more suitable than using a

mixed grating. We need the values of a function ~II(D) or of its deri-

vative ~II 0(D) for certain values of D. It is obviously better if these

functions are stationary (almost constant) in the regions of interest.

This is realised for ~II 0(D) in the case of a phase grating with a

symmetric phase profile. Moreover, in the case of hard X-rays, phase

gratings are more easily available than absorption gratings.

The horizontal and vertical profiles of the degree of coherence

shown in Fig. 6 have, as expected, a Gaussian shape. The source sizes

found, 274 (3) mm and 79 (2) mm, respectively, in the horizontal and

vertical direction agree well with the source sizes expected from the

machine parameters (300 mm � 10% and 87 mm � 10%, respec-

tively). In the vertical direction, the Gaussian fit gives x!0 = 0.924
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Figure 5
Variation with D of the fundamental ~II(D, 1) and third ~II(D, 3) Fourier coefficients of the intensity from the
two-dimensional mixed object, in the vertical direction, in the vicinity of (a), (c) D = 0 and of (b), (d) D =
DR = 2.2 m. The solid lines correspond to linear fits of the measured data.

Figure 6
Measurements of the degree of coherence as a function of distance in the
vertical (circular data points) and horizontal (square data points) direction.
The full lines are weighted fits of the experimental data points. In the
horizontal direction a Gaussian fit with an angular source size WH =
4.98 (6) mrad is used. In the vertical direction, a Gaussian profile with angular
source size WV = 1.44 (3) mrad was multiplied with a constant x!0 =
0.924 (25).



instead of 1. This result may be interpreted by considering that the

angular distribution of the beam can be modelled as a weighted sum

of two Gaussian functions instead of a single one. One of them,

actually corresponding to 7.6% of the total beam intensity, would be

so broad that the corresponding coherence width in the object plane

would be much smaller than 8 mm, which is the smallest distance x in

our measurements of the degree of coherence (x); thus it would

have no effect on our measurements, but would contribute for smaller

values of x, thus leading to the hypothetical dotted part of V(x) in

Fig. 6. This ‘incoherent’ part must be related to one or several optical

elements of the beamline (Be windows inhomogeneities, mono-

chromator vibrations etc.) and cannot be attributed to the electron

beam in the storage ring acting as the source. The fact that the

correction is needed only in the vertical direction points to an

imperfection in the monochromator system with vertical diffraction

geometry. This finding illustrates the need for methods that precisely

characterize the coherence function of the beam, for instance by

repeating the present experiments based on the Talbot effect with

gratings of smaller periods.

6. Conclusion

The coherence of a synchrotron radiation beam, in the hard X-ray

part of the spectrum, can be conveniently measured by using images

obtained at various distances D from a periodic specimen. The partial

Talbot effect, based on the use of higher-order (m > 1) Fourier

coefficients ~II(D, m) of the intensity distribution, is shown and is

experimentally confirmed to be useful for the measurement of the

degree of coherence (x) of a synchrotron radiation beam. It can be

more convenient than the usual Talbot effect, because the latter

entails the use of larger specimen–detector distances. The Fourier

coefficients ~II(D, m), plotted as a function of the defocusing distance

D, provide, through their gradual decrease, a sampling of the mutual

coherence function with period a equal to that of the specimen. The

zeros in these ~II(D, m) are sharp in the case of a periodic phase object,

and the absence of contrast, in this case, at D = 0 can be obviated by a

shift of attention to the derivative of ~II(D, m) with respect to D. The

coherence properties are directly determined from the ratio of

Fourier coefficients, without any need for computer simulations. The

other straightforward approach to obtain contrast at D = 0, viz. the

use of a mixed object involving an amplitude variation too, is more

complicated because the amplitude part leads to a variation with D

that is functionally different from the phase contribution.

The present experiments show that the Talbot method can provide

quantitative information over a wide range of spatial coherence. It is

a convenient alternative to the double-slit experiments (Chang et al.,

2000; Paterson et al., 2001; Leitenberger et al., 2001). Basically, the

Talbot method takes advantage of the fact that Fresnel diffraction

phenomena are greatly simplified in the case of periodic objects. The

information obtained is concentrated on the coherence function (x)

for specific values of x which are integral multiples of the grating

period. This is obviously favorable in terms of the signal-to-noise

ratio. Furthermore, the results do not depend on the shape of the

grating unit-function and they are not influenced by the detector

transfer function, since we compare the components with the same

spatial frequency in different images. This advantage is clearly illu-

strated by the difficulties encountered when we compare measure-

ments with simulations, as shown in Fig. 3.

Other Fresnel diffraction phenomena, also based on simple

experimental set-ups, have been applied to estimating the spatial

coherence of a monochromated hard X-ray beam, for instance the

visibility of the diffraction fringes from a slit (Lang et al., 1987), an

edge (Cloetens et al.,1996) or a fiber (Kohn et al., 1999). The fiber

method is certainly more practical for qualitative rather than for

quantitative information, because it is then necessary to numerically

fit the experimental patterns to calculations with variable coherence

characteristics, a procedure which is obviously not so well defined as

compared with using a simple formula such as (6) in the Talbot

method. This last remark is also valid for recent coherence

measurements (Lin et al., 2003) using a specially designed phase mask

(URA-uniform redundant array).

The Talbot method has obvious advantages of simplicity, for

coherence measurements, over more sophisticated arrangements

such as a Fresnel-mirror interferometry system (Fezzaa et al., 1997)

and the method based on the visibility of equal-thickness fringes in

dynamical Bragg diffraction (Tamasaku & Ishikawa, 2001). For small

angular source sizes, the Talbot method should be more accurate than

more elaborate experiments involving scanning the source with a

multiple reflection monochromator with very narrow acceptance

angle (Hart & Siddons, 1982). It is also much simpler than the
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Table 1
Summary of the experimental results.

The first column indicates which of the three gratings was used. The second column gives the approach used. The next columns indicate the order m of the Fourier
coefficient used, and the multiple p of the partial Talbot distance DRm = a2/m� that was taken as the specimen-to-detector distance. The results are expressed either
through the value of (x = pa), the degree of coherence for points a distance x apart in the relevant direction (V for vertical, H for horizontal), or as WV and WH,
the angular source sizes of the X-ray beam in these directions. While (x) is expected to decrease with increasing |x|, the values obtained in all measurements for
the angular source size in the vertical and horizontal directions should be consistent.

Grating Approach m p x (mm) V(x) WV (mrad) H WH (mrad)

1D phase grating,
a = 6.35 mm

r(D0, p, m) with
D0 = DR/2 = 275 mm

1 1 1.40 (14) 4.90 (13)

2D binary phase grating,
a = 8.0 mm

Slopes 1 1 8 0.860 (26) 1.81 (18) 0.34 (2) 4.87 (13)
Slopes 3 1 8 0.78 (8) 2.31 (51) 0.36 (4) 4.74 (26)
Slopes 3 2 16 0.61 (6) 1.65 (17)
Slopes 3 3 24 0.415 (24) 1.34 (14)

2D binary phase grating,
a = 8.0 mm

r(D0, p, m) with
D0 = DR/2 = 450 mm

1 1 1.52 (15) 4.91 (13)

r(D0, p, m) with
D0 = 150 mm

3 1 1.34 (14) 4.81 (15)

2D gold mixed grating,
a = 12.5 mm

r(0, p, m) 1 1 12.5 0.70 (5) 1.79 (18) 0.064 (6) 4.98 (9)

r(0, p, m) 2 2 25 0.35 (3) 1.54 (6)
Slopes 1 1 12.5 0.73 (6) 1.68 (22) 0.058 (7) 5.06 (11)
Slopes 3 3 37.5 0.12 (1) 1.44 (2)



coherence experiments based on intensity interferometry (Kunimune

et al., 1997; Gluskin et al., 1999; Yabashi et al., 2001).
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