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The quality of ¯uorescence X-ray absorption spectroscopy (XAS) data strongly

depends on the identi®cation and elimination of contributions suffering from

arti®cial deviations. To enhance detection of deviations, XAS data are converted

here to difference spectra and cumulative difference spectra. A variety of

statistical criteria and procedures are examined for their application in the

quality control of such data. The criterion best suited in this case is determined

and a strategy for the automatic elimination of artefacts is developed: deviation-

affected spectra are iteratively removed from the data pool. A threshold is

de®ned to avoid unnecessary reduction of the experimental data pool.

Exemplarily the procedure is applied for the quality control of BioXAS data.

Keywords: X-ray absorption spectroscopy (XAS); EXAFS; quality control; biological system;
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1. Introduction

X-ray absorption spectroscopy (XAS) provides an excellent

probe for electronic or geometric structure determination of

metal sites in biological molecules. Since current genomic

projects produce and isolate an increasing number of inter-

esting biological compounds, both natural and synthetical,

XAS begins to face the challenge of handling and analyzing

huge quantities of complex data (Ascone et al., 2003). Simul-

taneously an increasing interest in the small differences

between metal sites or different protein states requires a more

sophisticated analysis of the data. Hence, a careful and ef®-

cient quality control of the collected data becomes a vital step

for advanced high-throughput XAS projects.

For BioXAS experiments and other spectroscopic techni-

ques, several scans are accumulated and averaged for ®nal

data evaluation (Ranieri-Raggi et al., 2003). With each accu-

mulated spectrum the noise level of the averaged data

decreases and thus the information content can improve.

While slight statistical variations for each individual spectrum

are expected, there are in some cases non-statistical deviations

which negatively affect the quality of the ®nal data set. Thus,

quality control can be based on the elimination of individual

spectra suffering from signi®cant deviations from the average

of the remaining data pool. In this way, data quality is assured

by limiting the data quantity. Obviously, all deviant spectra

must be eliminated from the data pool. At the same time, as

many spectra as possible must be retained to maintain a good

signal-to-noise ratio. Therefore, balancing both quality and

quantity of the data is the key to ef®cient quality control.

Biological samples for XAS measurements are typically

available as solutions in low concentration resulting in a

comparatively high noise level for each individual scan.

Therefore a high number of accumulated scans is required.

Usually such samples are measured in ¯uorescence mode by

multi-element detectors (Ascone et al., 2003). For each of the

corresponding detector channels one spectrum is measured

per scan so the ®nal XAS data pool consists of an n � m

matrix of accumulated individual contributions (n: number of

scans; m: number of detector elements/channels).

While spectra of highly concentrated compounds feature a

low noise level that allows visible data screening, even for

experienced researchers BioXAS data quality is more dif®cult

to assess in the case of low metal concentrations. Objective

criteria for quality control of XAS data should help to replace

experience-based subjective criteria. For reliable quality

control the human in¯uence on the procedure has to be

minimized. This requires partial or, even better, full automa-

tion. Moreover, such a system can be linked directly to auto-

mated data-collection systems which are becoming available

at more and more BioXAS stations.

Diverse mathematical functions can be used for qualitative

detection and quantitative analysis of individual spectra

contributing to the data pool. Criteria should be chosen such

that they can easily be included in software routines of typical

XAS data-processing software and applications. This mini-

mizes the human in¯uence on the quality control and enables

even inexperienced users to use BioXAS methods.

If applied during the data-collection process as quality

monitoring, the quality control systems help to optimize the



required data quantity, resulting in a more ef®cient beam-time

usage. Moreover, a detailed online analysis and identi®cation

of the type of deviations can probably also help to identify

immediately the presence of potential artefacts, like sample

inhomogenities or spectrometer malfunctions. Appropriate

protocols based on such objective criteria might result in the

development of either automatic correction procedures or

guidelines for quality improvement.

In this publication, several statistical criteria for quality

control are compared. Additionally, mechanisms for the

differentiation between signi®cant deviations and acceptable

statistical variations are discussed, resulting in the ®rst func-

tional quality control procedure.

2. Quality control

2.1. Types of deviations in spectra

Spectroscopic data are typically in¯uenced by a certain

noise level which causes statistical variations in the individual

data points. Besides these statistical variations (Fig. 1a), there

are several typical deviations which can affect recorded

spectra (see Figs. 1b±1e). The most common and least obvious

is the shift of a small group of data points resulting in a vertical

offset (Fig. 1b). Related but more serious deviations are jump

discontinuities or saltuses which emerge when, from a certain

energy onwards, the spectrum is shifted along the y axis

(Fig. 1c). Sudden arti®cial changes of the slope at a certain

energy are also common deviations (Fig. 1d). Additionally, the

spectrum may be convoluted by some kind of oscillating

function causing a periodic bending of the spectrum (Fig. 1e).

Obviously, in experimental data, combinations of the different

deviations might exist.

2.2. Experimental data pool

XAS data gathered by multi-channel detectors with m

detector elements are stored as m individual spectra contri-

butions per scan. It can be expected that deviations occur

either during a certain time frame and affect an entire scan or

manifest in all contributions of a speci®c channel if they are

caused by electronic effects or sample preparation/mounting

(e.g. inhomogeneous samples, icing, glitches).

Depending on the number of scans and detector channels, it

is sometimes useful to analyze speci®c subsets of the data pool

instead of single contributions. In turn, subsets based on n

scans and m channels can be analyzed instead of the n � m

individual contributions. Thereby the quality control proce-

dure is simpli®ed and potential scan- or channel-dependent

deviations become more obvious. For the complete quality

control procedure both scan- and channel-based subsets have

to be checked successively.

2.3. Difference spectra

Evaluation of the quality of measured spectra requires a

reference. Typically, theoretical references are unavailable

prior to the data collection. Therefore, they can be calculated

from the data pool containing all measured spectra. This

assumes that at least the majority of contributions are free

from artefacts. Then the reference for each subset is de®ned

by the average over all other normalized subsets. If the

difference between a non-deviating subset and its reference is

plotted, approximately a ¯at line is expected. Ideally, varia-

tions should only correspond to the actual noise level. Any

signi®cant discrepancy from the expected ¯at line indicates a

difference between subset and reference. This indicates that

the subset features non-statistical deviations and should

probably be excluded from the data pool.

2.4. Cumulative difference spectra

In many cases the noise level of the difference spectra is

very high. Hence, it might be dif®cult to detect possible

deviations. While the noise cancels out by averaging all

contributions, the hidden deviations remain and affect the

data quality negatively.

One way to detect such hidden deviations is to sum up the

data points of the difference spectrum D(i) successively,

A� j� �
Pj

i� 1

D�i�: �1�

In the absence of artefacts the resulting cumulative spectrum

A( j) is expected to result in a ¯at line, indicating that all

statistical variations cancel out. In the case of deviations the

differences are summed up and thereby become more evident.

Thus the introduction of cumulative difference spectra should

increase the signi®cance and facilitate the detection of

deviations.

To study this effect a statistical distribution for 99 data

points was simulated and the four aforementioned typical

deviations were introduced (see Fig. 1). The cumulative

difference spectra derived from these data illustrate the effect

(Fig. 2). If a spectrum exhibits only noise the procedure yields

a ¯at line (Fig. 2a), whereas the discrepancies in the other

spectra are ampli®ed (Figs. 2b±2e). This effect can be quan-

ti®ed by suitable statistical criteria (Table 1). The comparison

of standard deviations from linear regression (see below)

shows signi®cant differences for the analysis of difference and
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Figure 1
Examples of variations and deviations from a ¯at-line spectrum: (a)
statistical variations, (b) shift of group of data points, (c) jump
discontinuity, (d) change of slope, (e) oscillation.



cumulative difference spectra. While the exemplary shift of

seven data points increases the standard deviation of the

calculated spectrum (Fig. 1b) by merely 57%, the increase for

the cumulative spectrum (Fig. 2b) is 244%. This effect is even

more pronounced for the other types of artefacts, which

considerably simpli®es their detection.

2.5. Iterative procedure

Ideal for the identi®cation of all deviant subsets in the data

pool is an iterative procedure. If the data pool contains a

subset with signi®cant deviations, the references of all other

subsets are affected. If the in¯uence of the deviant subset is

signi®cant enough, this may negatively affect the comparisons

between the other subsets and their references. But even in

this case the deviation from the reference is most pronounced

for the non-standard subset allowing its identi®cation without

doubt. After excluding this contribution from the data pool,

the quality control procedure is restarted. Now either all

remaining subsets are of similar quality or again the one with

the largest discrepancy can be identi®ed. This procedure is

repeated and subsets starting from the worst to the best are

removed until the desired quality level is reached.

2.6. Criteria

For the actual quality control process a suitable criterion or

a set of criteria is required. Based on the fact that for both the

difference and cumulative difference spectra ¯at lines with

only small variations from the noise are expected, several well

established criteria are readily available.

An ideal ¯at-line difference spectrum can be either inter-

preted as a group of data points which is spread statistically

around the expected zero value or as a constant function

[ f(x) = 0] which can be analyzed by means of linear regression.

Difference spectra are suited for the ®rst approach while for

cumulative difference spectra the second approach can be

applied.

Several criteria can be used for investigation of the differ-

ence spectra. For the data-point-based approach the largest

positive or negative deviation from the ideal ¯at line

(criterion 1) or the sum of all positive, negative (criterion 2) or

the complete set of deviations (criterion 3) can be employed.

Additionally, criterion 4 calculates the deviation of the set of

data points from its mean value. The kurtosis criterion

(criterion 5) provides insights into the shape of a data-point

distribution and therefore distortions from the ideal ¯at line

(Abramowitz & Stegun, 1972).

Instead of analyzing the expected ¯at line as a group of

independent data points, criteria from linear regression are

available for the cumulative difference spectra (Edwards,

1976). The overall quality of an approximated linear function

can be determined by the correlation coef®cient (criterion 6)

or the standard deviation (criterion 7). As the slope of the

linear function (criterion 8) is expected to be zero, its deter-

mination by linear regression is also suited.

All aforementioned criteria are tested for the purpose of

quality control. They are compared with the visual plots of the

difference spectra and the signi®cance of detected deviations

and variations is veri®ed for experimental data (see below).

The different criteria and their suitability for quality control

procedures are summarized in Table 2.

Of all criteria tested only the correlation coef®cient (6) does

not indicate real deviations reliably. For the identi®cation of

certain deviations the kurtosis (5) and slope (8) criteria are

sometimes useful and both can be used for supplemental

information if required. Sometimes additional results are

achieved through careful combination of criteria 1, 2 and 3. It

seems that these criteria allow a more detailed diagnosis of the

speci®c type of deviation. In future, a more complex analysis

of the difference spectra using all supplemental criteria might

help to identify the type of deviation, automatically allowing

immediate adaptation and improvement of the experimental

conditions.

The mean deviation (4) for difference spectra and the

standard deviation from linear regression (7) for cumulative

difference spectra are the best candidates for quality control.

Criterion 4 is successfully applied to most of the data sets

tested but in a few cases it identi®es spectra with a high noise

level instead of ones with signi®cant deviations. Even in these

cases the results from criterion 7 correspond to the visual

impression of the spectra (Fig. 3). The validity of the selection

of subsets based on criterion 7 could be proven for all tested

experimental data sets. While supplemental criteria allow a

more detailed investigation on the nature of the deviations,
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Table 1
Standard deviations of calculated variation- and deviation-affected ¯at-
line spectra and their respective cumulative difference spectra.

Calculated
¯at-line spectra
(Fig. 1)

Cumulative
difference spectra
(Fig. 2)

(a) Statistical variations 0.97 2.82
(b) Shift of group of data points 1.52 9.69
(c) Jump discontinuity 2.09 35.60
(d) Change of slope 3.61 59.94
(e) Oscillation 3.62 37.43

Figure 2
Cumulative difference spectra of variation- and deviation-affected ¯at-
line spectra: (a) statistical variations, (b) shift of group of data points, (c)
jump discontinuity, (d) change of slope, (e) oscillation.



criterion 7 is suf®cient for ®ltering out artefacts. Moreover, it is

even easier to handle than the aforementioned criteria.

Therefore we suggest the use of this criterion for quality

control of XAS data.

2.7. Threshold determination

Statistical criteria can quantify variations and deviations in

individual subsets. In any case, the aim of a quality control

procedure is to reject only spectra with artefacts from the

entire data set, while keeping the signal-to-noise ratio as high

as possible. This requires the introduction of a threshold to

estimate the overall quality of the data. Again criterion 7 is

suitable. Its mean and maximum value for all subsets

remaining in the pool can be used. Both values should

decrease for each valid step in which a subset with deviations

is eliminated. They have similar tendencies in this respect, but

the changes of the mean value are typically more reliable

indicators.

Upon removal of an individual contribution (or, if subsets

are used, either one of the n rows or m columns of the n � m

data matrix) both the mean and the maximum standard

deviation will improve either because of the elimination of

data exhibiting artefacts or due to statistical reasons. Even

after all deviation-affected subsets are eliminated from the

data pool there are still differences between the remaining

subsets and their references. If such statistical variations are

treated similar to signi®cant deviations and the corresponding

subsets are removed from the data pool, the procedure would

continue until only a single subset is left. In order to avoid

unnecessary restrictions of the data pool it is essential to

de®ne a threshold. This threshold has to differentiate between

deviations which must be eliminated and variations without

any signi®cant effect on the data quality.
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Figure 3
Example for a system [model compound Ni(btmg)SSiPh2] where criterion
4 erroneously identi®es the wrong spectrum while criterion 7 identi®es
the truly deviation-affected one. (a) The difference spectrum for channel
1 shows signi®cant non-statistical deviations. Channel 1 is successfully
indicated by criterion 7 as a potentially deviating channel. (b) The
difference spectrum for channel 13 shows only statistical variations.
Channel 13 is erroneously indicated by criterion 4 as a potentially
deviating channel.

Table 2
Summary of statistical criteria usable for quality control of spectroscopic data.

Criterion Description Results for the test cases

1. Largest positive/negative deviation
(difference spectra)

The largest positive or negative value for
the deviation of one data point is
determined.

These criteria indicate only a singular deviation. Although the
extreme deviation of a single data point often corresponds
to a larger deviation, in some cases it is statistically
irrelevant.

2. Summed positive/negative deviations
(difference spectra)

All positive or negative deviations of the
difference spectrum from the ¯at line are
summed up.

High values for each of both criteria often signify strong
deviations, especially if one of the criteria is signi®cantly
higher than the other (see criterion 3). If both values are
high but of similar order of magnitude, these criteria
sometimes simply indicate a high noise level.

3. Summed deviations
(difference spectra)

For this criterion all deviations of the
difference spectrum from the ¯at line are
summed up. For statistical variations a
value of approximately zero is expected.

In many cases this criterion correlates to the ef®cient criteria
and can be used with criterion 2 for a more detailed
interpretation of variations and deviations. Although a high
value of this criterion typically indicates deviations, a low
value may correspond to the distribution of deviations.

4. Mean deviation
(difference spectra)

This criterion calculates the overall absolute
deviation of all data points from their
mean value.

The mean deviation is a useful criterion for quality control of
spectra. Although it does not take into account the shape of
difference spectra, the results are often similar to
criterion 7.

5. Kurtosis
(difference spectra)

The kurtosis criterion is de®ned by the
shape of the data-point distribution.

Although the kurtosis criterion is based on the distribution of
data points, it is often dif®cult to use for the identi®cation
of deviations. Only in the case of an extremely high or
negative value does it signify a deviation.

6. Correlation coef®cient, linear regression
(cumulative difference spectra)

The correlation coef®cient determines the
quality of a linear approximation. A value
of �1 indicates a good approximation.

Typical XAS spectra differ too much from ideal linear
behavior. Frequently the correlation coef®cient does not
clearly indicate deviant spectra.

7. Standard deviation, linear regression
(cumulative difference spectra)

This criterion of linear regression calculates
the standard deviation of each y value
from the approximated linear function.

This criterion is often similar to the mean deviation but in
addition accounts for the shape of the spectrum. In the
investigation of several test systems this criterion gave the
best results.

8. Slope, linear regression
(cumulative difference spectra)

The slope is calculated by means of linear
regression. For a ¯at line a slope of zero is
expected.

While a large positive or negative slope is a good indicator for
signi®cant deviations, small values can also result from
statistical cancellations (e.g. oscillations).



To verify the threshold, each elimination step is veri®ed by

comparison of the spectra de®ned by the resulting data sets.

For the XAS data this veri®cation is carried out by the

comparison of the corresponding k3-weighted EXAFS spectra

as well as their Fourier transforms before and after each

elimination step. The elimination of a subset with deviations

should be indicated by differences between these spectra. In

contrast, there should be no change of the overall shape of the

EXAFS spectra or their corresponding Fourier transforms for

the elimination of data which are only affected by statistical

variations. Several different approaches using the mean and

the maximum value of criterion 7 are tested for the de®nition

of a suitable threshold.

If in a simple approach the mean or maximum value of

criterion 7 is plotted for each elimination step, usually a

decreasing asymptotic function with a certain limit determined

by the horizontal asymptote is obtained (Fig. 4a). Although a

threshold can be estimated when the curve approaches the

asymptote, the exact position of the asymptote depends on the

noise level of the data. Hence, no absolute value can be

de®ned for the limit without extrapolation from the function.

The second strategy, here called the static approach, uses the

ratio between the mean and the maximum value. If a subset

with signi®cant deviations is included in the data pool, the

mean value of criterion 7 should be signi®cantly lower than

the maximum value ± the value for a subset with potential

deviations ± resulting in a ratio of less than 1. When the

maximum value approximates the mean value and the

respective ratio approaches the limit of 1, a good overall data

quality should be reached. The plot of the ratio for each step

of the quality control procedure is a rising function (Fig. 4b).

Unfortunately there is often no characteristic feature for this

function on which the threshold can be based. In some cases

the threshold was already reached for a ratio of less than 0.5.

So with this approach there is the de®nite risk of eliminating

too many spectra to reach a ratio close to the theoretical limit

of 1. Therefore, the static approach should not be used for the

determination of the threshold.

In the dynamic approach the changes of the mean value of

the selected criterion are used for the threshold determina-

tion. This is done by calculating the ratio between the mean

value after and before the elimination step. For the elimina-

tion of a subset with deviations the value after the exclusion of

the data should be signi®cantly lower than before. The value

of the corresponding ratio is therefore between 0 and 1. If the

ratio for an iterative step is approximately 1, the elimination of

the respective subset does not improve the quality of the data

pool and is therefore not needed. Plotting the ratio for each

elimination step results in an asymptotic function with a

horizontal asymptote (y = 1) (Fig. 4c).

Although the plots for the simple and dynamic approach

allow a relatively easy determination of a reasonable

threshold, it is dif®cult to de®ne a numerical argument that is

required for automation.

For the data tested in the development of the quality

control procedure a numerical argument based on the slope of

the plot from the simple approach was found. If the absolute

value of the slope between two subsequent data points was

less than 0.1, the threshold was already reached and the

corresponding elimination of a subset deemed unnecessary.

The resulting plot for the slope approach (Fig. 4d) clearly

indicates that for the example the threshold is reached after

the elimination of the second channel.

Despite the fact that the slope approach worked well for the

quality control of the investigated EXAFS data, it probably

must be modi®ed for other systems considering the amount of

simultaneously examined spectra and the system-speci®c noise

level of the data. In any case, with the guidelines discussed

above, the threshold approaches can be easily adapted to

other systems.

3. Example: quality control of XAS channel spectra

The quality control procedure has been tested for data

obtained from different metalloproteins and model systems.

Exemplarily quality control is presented for the screening of

13 channel spectra (Fig. 5) from Zn K-edge XAS measure-

ments of a sample of Glia cells missing protein (GCM; Cohen

et al., 2002). Similar results were achieved for different

samples of the NiFe hydrogenase from Desulfovibrio vulgaris

MF and various nickel-containing model compounds (Lippold

et al., 2004).

3.1. Experimental

Measurements of the GCM sample were conducted at the

EMBL EXAFS beamline D2 (HASYLAB, Hamburg) at 20 K.

For data preparation and normalization the EXPROG soft-

ware package (Nolting & Hermes, 1992) was used. The dead-

time-corrected spectra were grouped into subsets according to

the respective detector channels and for each channel the

spectra of all suitable scans were averaged. The resulting 13

channel spectra were used for program-assisted quality
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Figure 4
Data plots for different threshold approaches: (a) simple approach (mean
value of criterion 7), (b) static approach (ratio of mean and maximum
deviation of criterion 7), (c) dynamic approach (ratio of mean value of
criterion 7 before and after the elimination step), (d) slope approach
(slope between two data points of the simple approach).



control with the evaluation software CHAOS (channel

analyzing and omitting system; Meyer, 2002; Lippold, 2003)

based on spreadsheet calculations (StarCalc 6.0). Statistical

criteria were automatically calculated and difference and

cumulative difference spectra were plotted for comparison

purposes. All aforementioned criteria were checked simulta-

neously and related to the plots of the difference spectra. The

sequence in which individual channel spectra were identi®ed

as potential deviant spectra by the different criteria is

presented in Table 3. The comparison with the visual inspec-

tion sequence provides a clear indication of the suitability of

the criteria.

3.2. Iterative quality control

The quality control of XAS data from GCM is based on the

standard deviation from linear regression (criterion 7) and

veri®ed by comparisons of the k3-weighted EXAFS spectra

and the corresponding Fourier transforms.

The ®rst step of the iterative procedure for the contribu-

tions of the 13 channels is fairly straightforward. The devia-

tions in the difference spectrum for channel 1 are clearly

visible and most of the tested criteria indicate this channel as a

possible deviant subset (Fig. 6a).

After the elimination of the data from channel 1 a signi®-

cant improvement in the mean (62%) and maximum (70%)

value of the standard deviation is achieved. The slope

approach for the threshold determination is consistent with

the elimination of this subset (0.52 > 0.1). The comparison of

the k3-weighted EXAFS spectra and their corresponding FT

spectra shows signi®cant changes when channel 1 is excluded

from the data pool (Figs. 7a and 8a). This effect is most

pronounced for the left shoulder of the main FT peak where

an additional feature emerges. Therefore, channel 1 features

signi®cant deviations and must be eliminated from the data

pool.

After the exclusion of channel 1 the next step of the

iterative quality control procedure indicates channel 3 as a

possible candidate for exclusion Again, this is illustrated by

the difference spectrum (Fig. 6b). Besides its obvious bending

there is a sharp feature at 10612 eV. If channel 3 is excluded

from the data pool a signi®cant but smaller improvement for

the quality control criterion (57% for the mean value, 80% for

the maximum value) results.

Comparison of the resulting EXAFS and Fourier transform

spectra with and without channel 3 indicates small differences

(Figs. 7b and 8b). Although the effects on the Fourier trans-

form are less pronounced, there are signi®cant differences for

the k3-weighted EXAFS spectrum in the region of k > 15. If

the whole data range is used, channel 3 should therefore be

excluded. This decision is supported by the threshold deter-

mination as the difference of the mean standard deviations

amounts to 0.18 (>0.1).

The next iterative step identi®es the contribution of channel

13 as a possible deviant spectrum. In contrast to the previous

difference spectra its variations seem to be statistical (Fig. 6c).

If channel 13 is removed from the data pool there is only a
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Figure 6
Comparison of the difference spectra for the quality control procedure
of GCM. The spectra with the most signi®cant deviations for each of the
®rst three elimination steps are shown (a: channel 1; b: channel 3;
c: channel 13).

Figure 5
Comparison of the normalized raw spectra of GCM from each channel of
the 13-element detector of the EMBL EXAFS beamline D2 (HASYLAB,
Hamburg). To improve visibility only the ®ne structure above the
absorption edge is shown.

Table 3
Course of the iterative elimination of channel spectra for GCM based on
different criteria.

Visible screening was only possible for two detector channels. Three of the
remaining 11 elements exhibit similar small acceptable deviations. They are
given in numerical order (2/12/13).

Criterion Sequence of eliminated channel spectra

Visible screening 1, 3, 2/12/13
Largest positive deviation (1) 1, 3, 2, 4, 10, 8, 11, 12, 9, 7, 6, 13
Largest negative deviation (1) 1, 3, 2, 4, 6, 12, 13, 10, 11, 5, 7, 9
Summed positive deviations (2) 1, 3, 2, 12, 4, 11, 10, 8, 5, 9, 7, 6
Summed negative deviations (2) 1, 3, 2, 12, 13, 6, 4, 10, 9, 7, 5, 8
Summed deviations (3) 1, 2, 11, 12, 4, 8, 5, 7, 10, 9, 6, 13
Mean deviation (4) 1, 3, 2, 12, 13, 4, 10, 6, 9, 8, 11, 5
Kurtosis (5) 2, 6, 12, 13, 7, 5, 4, 9, 8, 1, 11, 3
Correlation coef®cient, linear

regression (6)
2, 3, 12, 4, 5, 8, 13, 11, 7, 9, 10, 6

Standard deviation, linear
regression (7)

1, 3, 13, 12, 2, 11, 10, 6, 9, 4, 5, 8

Slope, linear regression (8) 1, 12, 2, 4, 5, 8, 11, 7, 9, 10, 13, 6



slight improvement of the standard deviation (10% for the

mean value, 17% for the maximum value). In this case the

differences between the k3-weighted EXAFS spectra and their

respective Fourier transforms appear to consist purely of

statistical variations (Figs. 7c and 8c). The effects on the

Fourier transform are negligible for the whole spectrum.

The calculated value for the slope approach amounts to 0.01

and is signi®cantly lower than the limit of 0.1. Thus this data

elimination step is unnecessary as there is no improvement to

the quality of the data pool.

Consequently, the channel spectrum 13 appears to be valid

and the threshold is reached after elimination of two channel

spectra. As the data from channel 13 feature the strongest

variations of the remaining spectra it can be assumed that

contributions from all other channels can be included as well

in the ®nal data set. Hence, only the spectra of channels 1 and

3 have to be excluded.

Although the threshold is apparently reached, the proce-

dure is reiterated for veri®cation purposes until only three

channel spectra remain. With each step no signi®cant effect on

the EXAFS and FT spectra is observed (despite the increase

of the noise level). This veri®es the quality control procedure

as well as the threshold. The plots of the criteria for threshold

determination de®ned by the simple, static, dynamic and slope

approach are shown in Fig. 4.

For the exemplary quality control of XAS channel spectra

of GCM both criterion 7 and the slope approach to threshold

determination are successful in identifying deviating spectra.

Similar results were achieved for data from other biological

samples and model compounds.

4. Conclusion

In this contribution several criteria and iterative procedures

for the quality control of XAS spectra were tested and applied

to BioXAS data. By the introduction of difference spectra

between the data subsets and the remaining data pool and by

transformation into cumulative difference spectra, deviations

can be identi®ed using a simple criterion from linear regres-

sion. For online feedback to the data acquisition this system

can in principle be supplemented by other criteria to gain

information on the type of deviation. The identi®cation of

deviant spectra can be successfully veri®ed using k3-weighted

EXAFS spectra and their corresponding Fourier transforms.

To avoid unnecessary reduction of the data pool a threshold

for the elimination of spectra is introduced. While the

approach to quality control presented here was successfully

applied to the EXAFS data used for the development of the

quality control procedure, modi®cations might be necessary to

account for other speci®c systems. As different approaches are

discussed, adaptation for other data sets should be easy.

The resulting quality control procedure CHAOS using

spreadsheet algorithms was successfully applied to spectra

from the EMBL EXAFS beamline D2 (DESY, Hamburg) as a

test system.

Because of the simplicity of the different steps of the

procedure, the resulting quality control system can easily be

adapted and used for the quality control of XAS data from

different sources. Thus the quality control system presented in

this publication allows for the ®rst time the automated quality

control of BioXAS data and XAS data from other dilute

samples.
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Figure 7
Comparison of the k3-weighted EXAFS spectra for the quality control
procedure of channel spectra from XAS measurements of GCM. EXAFS
spectra including the potentially erroneous channels (grey line) and the
difference between the spectra including and excluding the potentially
erroneous channels (black line) are plotted for the elimination steps of
the ®rst three channels (a: channel 1; b: channel 3; c: channel 13).

Figure 8
CComparison of the Fourier transform spectra for the quality control
procedure of channel spectra from XAS measurements of GCM. Fourier
transform spectra including the potentially erroneous channel (upper
part) and the difference between the spectra including and excluding
the potentially erroneous channel (lower part) for the elimination steps of
the ®rst three channels and the corresponding difference plot are shown
(a: channel 1; b: channel 3; c: channel 13).
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