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Ultrafast X-ray experiments at synchrotron sources hold tremendous promise

for measuring the atomistic dynamics of materials under a wide variety of

transient conditions. In particular, the marriage of synchrotron radiation and

ultrafast laser technology is opening up a new frontier of materials research.

Structural changes initiated by femtosecond laser pulses can be tracked in real

time using time-resolved X-ray diffraction on picosecond time scales or shorter.

Here, research at the Advanced Photon Source is described, illustrating the

opportunities for ultrafast diffraction with some recent work on the generation

of impulsive strain, coherent phonon generation and supersonic diffusion of

electron–hole plasmas. The flexibility of time-resolved Bragg and Laue

diffraction geometries are both utilized to illuminate the strain generation

and evolution process. Time-resolved X-ray science will become increasingly

important with the construction of linac-based ultrafast X-ray sources.
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1. Introduction

‘Picosecond ultrasonics’ is a new field whereby the generation/

detection of ultrafast acoustic pulses can be used to study the

physical properties of thin films and semiconductors. Precise

knowledge of the spatial and temporal dynamics of these laser-

generated pulses is required to accurately model the system in

question. In crystalline systems, transient coherent lattice

dynamics (i.e. strain and phonon propagation) are typically

studied using time-resolved optical scattering techniques

(Thomsen et al., 1984, 1986; Cho et al., 1990; Zeiger et al., 1992;

Hunsche et al., 1995; Garrett et al., 1996; Merlin, 1997; Hase et

al., 1996, 1998; DeCamp, Reis, Bucksbaum & Merlin, 2001;

Bartels et al., 1998; Mizoguchi et al., 1999). Thomsen et al.

(1986) present a model describing how strain is generated in

ultrafast laser-heated solids. Time-resolved optical scattering

experiments have demonstrated the general validity of this

model (Thomsen et al., 1984, 1986; Hao & Maris, 2000,

2001a,b) but only provide indirect structural information. The

atomic positions cannot be measured directly since the

wavelength of optical radiation is orders of magnitude larger

than the atomic spacing in a crystal.

X-ray scattering can provide precise information about

atomic positions. X-ray scattering can directly measure atomic

motion if the motion is slow compared with the natural time

scale of X-ray diffraction (X-ray extinction depth divided by

the speed of light, �1 fs). Recent technological advances in

femtosecond laser-based X-ray sources and third-generation

synchrotron sources have made studies in ultrafast time-

resolved diffraction possible (Rousse, Rischel & Gauther,

2001). The high spatial resolution of X-ray scattering, coupled

with ultrafast techniques, provides unprecedented insights

about solid-state dynamics and can directly test models of

coherent strain generation.

Experiments performed with low-frequency (<1 GHz)

coherent acoustic waves demonstrated the sensitivity of X-ray

diffraction to acoustic excitation (Hauer & Burns, 1975; Entin

et al., 1978; Zolotoyabko et al., 1993, 2002; Liss et al., 1997).

The first sub-nanosecond X-ray diffraction experiments used

laser-based X-ray sources to study the propagation dynamics

of laser-generated acoustic shockwaves (Wark et al., 1987,

1989; Wark, 1996). The amount of lattice distortion imparted

by the shockwave was determined by solving the X-ray wave

equation at different times and comparing the calculation with

the observed diffraction patterns. These groundbreaking

experiments demonstrated the ability of time-resolved X-ray

diffraction to detect and measure strong acoustic disturbances

in crystals.

Several studies of ultrafast solid-state dynamics using

time-resolved X-ray diffraction have utilized laser-based

X-ray sources (Chen et al., 1996; Helliwell & Rentzepis,

1997; Rischel et al., 1997; Rose-Petruck et al., 1999; Siders

et al., 1999; Cavalleri et al., 2000, 2001; Rousse, Rischel,

Fourmaux et al., 2001; Techert et al., 2001; Kishimura et al.,

2002; Sokolowski-Tinten et al., 2003). While the time-resolu-

tion of laser-based X-ray sources can be sub-picosecond, the



spatial and spectral characteristics of the X-rays from laser-

based sources limits their utility.

In contrast, third-generation synchrotron sources offer

extremely bright collimated X-ray beams (peak spectral bril-

liance of �108 photons (100 fs)�1 mrad�2 mm�2 (0.1%

bandwidth)�1 and offer greater tunability than laser-based

X-ray sources. The X-ray pulse duration is limited by the

electron bunches which generate the radiation. While the

electron bunch length is constrained by various technical

considerations to tens of picoseconds or longer (Wiedemann,

1993), X-ray streak cameras can extend the range of

synchrotron sources for many experiments to �1 ps resolu-

tion. Future linac-based X-ray sources will provide femto-

second X-ray pulses (Winick, 1995). The first such source, the

Sub-Picosecond Pulse Source (SPPS) (Service, 2002), has

recently been commissioned.

1.1. Time-resolved studies at synchrotrons

The early time-resolved X-ray diffraction experiments at

synchrotrons studied laser-induced crystalline melting (Larson

et al., 1982, 1983; Tischler et al., 1988). The time resolution of

these early experiments was not limited by the X-ray pulse,

but rather by the availability of intense sources of sub-nano-

second optical lasers. With the development of chirped pulse

amplification (CPA) (Strickland & Mourou, 1985), intense

sources of sub-picosecond optical pulses have become

commercially available making the time resolution of X-ray

scattering at synchrotrons limited only by the X-ray pulse

width, �50–100 ps.

Although 50 ps is relatively slow when compared with the

sub-picosecond laser pulse, one can still measure coherent

dynamics in crystalline systems (Reis et al., 2001; DeCamp,

Reis, Bucksbaum, Adams et al., 2001; DeCamp et al., 2003). A

number of advances have extended the effective time reso-

lution to �1 ps. Using a two-crystal cross-correlation tech-

nique, Larsson et al. (1998) measured a �1 ps structural

change using 80 ps X-ray pulses. Direct manipulation of the

synchrotron electron beam is also a potential source of fast

X-rays. Part of the electron bunch may be displaced by an

ultrafast laser. The displaced electron slice generates a sub-

picosecond X-ray pulse (Schoenlein et al., 1996; Uesaka et al.,

2000). Another method of detecting picosecond structural

changes in a long X-ray pulse is using an X-ray streak camera.

X-ray streak cameras can achieve a resolution of �1 ps

(Chang et al., 1996; Larsson et al., 1997; Liu et al., 2003).

Lindenberg et al. (2000, 2002) used an X-ray streak camera to

measure the frequency spectrum and coherence of an impul-

sively generated acoustic pulse. Here the study of acoustic

pulses is expanded to include a full spectrum analysis of the

generated acoustic pulse as well as the study of the long-term

(�ms) evolution of acoustic pulses in crystals. We also utilize

Laue geometry to study bulk strain propagation.

2. Strain generation

Impulsive excitation is the most direct method of generating a

coherent pulse. Short-pulse laser absorption in an opaque

material can generate a coherent acoustic pulse if the

absorption depth is long compared with the product of the

pulse duration and the speed of sound (i.e. the impulsive limit)

(Thomsen et al., 1986; Akhmanov & Gusev, 1992). If the

transverse size of the laser is large compared with the laser

absorption depth, then we can consider the resultant strain as

uniaxial and planar. This technique has opened a new field of

spectroscopy referred to as ‘picosecond ultrasonics’. The

temporal and spatial profile of the acoustic pulse can reveal

critical properties of semiconductors and thin films. The two

strain generation mechanisms that have been discussed in the

literature are thermo-elasticity and ultrafast carrier diffusion.

2.1. Thermo-elastic model

Thomsen et al. (1986) presented a simple thermo-elastic

model of strain, which describes the generation and propa-

gation of a laser-induced coherent strain pulse (hereafter

referred to as the Thomsen model). In optically opaque

crystals an ultrafast laser pulse can be absorbed, depositing a

significant amount of energy near the crystal surface. If the

electron–phonon relaxation time is extremely fast, this

absorption will generate a thermal gradient almost instanta-

neously. If the illuminated area is large compared with the

square of the optical absorption depth, �, the temperature

gradient will be quasi-uniaxial in the normal direction (z).

For stress along z, the only non-zero component of the

strain tensor is �33 = @u3=@z. The thermo-elastic equation of

motion is then

�
@2u3

@t2
¼
@�33

@z
; ð1Þ

where � is the density of the material and �33 is the component

of the stress tensor in the ẑz direction given by

�33 ¼ v2��33 � 3B��TðzÞ: ð2Þ

Here v is the longitudinal sound velocity, B is the bulk

modulus and � is the thermal expansion coefficient. The

harmonic response of the material is represented by the first

term. Assuming that the initial strain is zero and that the stress

at the crystal surface is zero, equation (1) can be solved

analytically (Thomsen et al., 1986),

�33ðz; tÞ ¼ ð1� RÞ
F�

�Cv

v2�

3B
expð�z=�Þ 1� 1

2 expð�vt=�Þ
� ��

� 1
2 expð�jz� vtj=�Þ sgn ðz� vtÞ

�
; ð3Þ

where R is the surface reflectivity, F is the incident optical

fluence and Cv is the specific heat per unit volume. Equation

(3) represents a lattice strain with two separate components: a

static thermal layer and a coherent acoustic pulse. This

partitioning of the lattice potential energy is evident in plots of

the strain as a function of crystal depth and time (see Fig. 1).

The Thomsen solution uses some physical approximations

that can break down on ultrafast time scales. For example, the

discontinuity in the center of the acoustic pulse is due to the

assumption of instantaneous generation of thermal stress.

Time-resolved X-ray diffraction experiments can test these
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approximations. A finite electron–phonon coupling time will

smooth this discontinuity. It has been measured to be �10 ps

in many semiconductors (Rose-Petruck et al., 1999; Chin et al.,

1999; Lindenberg et al., 2000).

In the Thomsen model, the acoustic pulse shape does not

distort with propagation. This assumption is valid only if the

acoustic frequencies are relatively small such that ! = vk,

where v is the sound speed. In general, the acoustic pulse

broadens due to group velocity dispersion by an amount

x�

cð�zÞ2
ð4Þ

where �z is the initial spatial extent of the acoustic pulse,

which in the Thomsen model is � 2�. Dispersion becomes

significant when the acoustic pulse travels at least a distance z

such that

x ¼ cð�zÞ
3=�: ð5Þ

For ultrafast acoustic pulses generated by impulsive laser

excitation of Ge [� ’ 0.85 � 10�11 cm3 s�1 (Hao & Maris,

2000)] the acoustic dispersion only becomes important after

many meters so we may safely neglect it.

2.2. Ultrafast carrier diffusion

During intense laser excitation, a large dense electron–hole

plasma is generated at a crystal surface (Young & van Driel,

1982). This dense plasma can diffuse into the material at

supersonic velocities, creating stress deep within the material.

The initial electron–hole plasma density depends on the

optical penetration depth. In the simplest case, the density

decreases exponentially away from the surface,

nðz; t ¼ 0Þ ¼ n0 expð�z=�Þ=�; ð6Þ

where n0 is the number of photons per unit area absorbed. We

assume that the time-dependence of this plasma is governed

by carrier diffusion and Auger recombination,

dn

dt
¼ Dp

d2n

dz2
� An3; ð7Þ

where Dp is the carrier diffusion constant and A is the Auger

recombination rate.

In the limit of fast carrier relaxation, the temperature

profile is proportional to n,

Tðz; t ¼ 0Þ ¼ nðz; t ¼ 0Þ
Ep � Eg

Cv

; ð8Þ

where Ep and Eg are the photon energy and the electronic

band gap, respectively, and Cv is the crystalline heat capacity.

The temperature evolution is governed by thermal and carrier

diffusion, and Auger recombination,

dT

dt
¼ Dt

d2T

dz2
þ An3

Eg

Cv

; ð9Þ

where Dt is the thermal diffusion constant.

We assume that the surface strain profile is driven by the

temperature gradient and the plasma density,

�eðz; tÞ ¼ �tTðz; tÞ þ �pnðz; tÞ; ð10Þ

where �e is the surface strain and �t and �p are the coupling

constants for the temperature and plasma components,

respectively. As the plasma diffusion can be much faster than

the sound velocity, the initial strain front can travel into the

crystal bulk at supersonic speeds producing a spatially broa-

dened acoustic pulse. In the case of Ge, the spatial broadening

of the acoustic pulse can be more than a factor of five when

compared with the thermo-elastic model (Cavalleri et al., 2000,

2001; DeCamp et al., 2003).

3. Calculating time-resolved X-ray diffraction patterns

The strain changes the phase-matching condition for X-ray

diffraction: k0 þG = k, where k0 is the incident wavevector, G

is a reciprocal lattice vector and k is the diffracted wavevector.

For a phonon wavevector of q, the diffraction peak develops

sidebands corresponding to the modified phase-matching

condition k0 þG� q = k�q. For a phonon wavevector parallel

to the reciprocal lattice vector, the sideband is centered at an

offset angle �� ’ q=G tan �B from the main X-ray diffraction

peak (where �B is the Bragg angle). In addition, the scattered

X-rays at a given offset will experience a small frequency shift

! = !0 �� owing to the absorption or emission of a phonon

of frequency � = qvs (stimulated Brillouin scattering), where

vs is the speed of sound. The sideband at a particular q will

oscillate at the corresponding frequency � owing to the

interference of X-rays of frequency !0 and !0 ��.

Simulations of the X-ray reflectivity for thick crystals (when

X-ray absorption is non-negligible) must use the dynamical

theory of X-ray diffraction (Zachariasen, 1945; Batterman &

Cole, 1964; Warren, 1990). In dynamical diffraction, the X-ray

wavefield is calculated by solving Maxwell’s equations in a

material with a periodic and complex dielectric constant.

3.1. Dynamical diffraction theory in the presence of strain

In a perfect unstrained crystal, two linearly independent

solutions to Maxwell’s equations satisfy the diffraction

materials research

J. Synchrotron Rad. (2005). 12, 177–192 Matthew F. DeCamp et al. � Ultrafast crystalline dynamics 179

Figure 1
Calculated strain profiles at four different time delays using the Thomsen
model.



condition. These two solutions (� and �) can be graphically

represented as a hyperboloid in reciprocal space, i.e. the

dispersion surface. These solutions are transverse X-ray

standing waves with the � (�) solution having its nodes

(antinodes) on the diffracting lattice planes. Since the X-ray

absorption is dominated by the photoelectric absorption, the �
solution can propagate through the crystal with little or no

attenuation, whereas the � wave is attenuated at twice the

average X-ray absorption depth. In the Laue geometry, the �
solution is referred to as anomalous transmission of X-rays or

the Borrmann effect. In the Bragg geometry, a single beam

emerges from the crystal whereas, in the Laue case, emerging

from the crystal are two diffracted beams: one in the direction

of the input beam (forward-diffracted or ‘0’ beam) and the

other in the direction determined by the vector sum kH =

k0 þGH (deflected-diffracted or ‘H’ beam). Here k0 (kH)

corresponds to the wavevector of the forward-diffracted

(deflected-diffracted) beam and GH is the reciprocal lattice

vector corresponding to the diffracting planes. These beams

are linear combinations of the two internal solutions, � and �.

Their intensities are given by

I0 ¼ jaE� expðik� � zÞ þ bE� expðik� � zÞj
2
/ jE0j

2; ð11Þ

IH ¼ jcE� expðik� � zÞ � dE� expðik� � zÞj
2
/ jEHj

2; ð12Þ

where I0 (IH) is the diffracted intensity of the forward

(deflected) beam, E�;� is the field amplitude inside the crystal,

k� and k� are the complex wavevector of the � and � solutions

(including absorption), respectively, and a; b; c; d are deter-

mined by the crystal orientation. The two modes � and � have

different phase velocities and oscillate in and out of phase with

each other as they propagate through the crystal. The wave-

length of the interference, � = jk� � k�j
�1, is known as the

Pendellösung length which is typically a few to tens of

micrometers.

In large crystals, the Pendellösung effect has been used to

image static crystalline defects. Defects located well beyond

the � wave absorption depth cause a repopulation of the

� solution at the expense of the � wave. The location and size

of the defect can be determined by measuring the change in

the intensity of the diffracted beams (Taupin, 1964; Authier et

al., 1996).

To incorporate strain, we consider the case where the

X-rays are near phase matched for diffraction from a single set

of planes, GH. Using an eikonal approximation for the field

amplitudes in the presence of static strain as given by Takagi

(1962, 1969) and independently by Taupin (1964), the electric

displacement amplitudes are given by two coupled differential

equations, valid for either the Bragg or Laue geometry,

ið�=	Þb0 � rD0ðrÞ ¼  0D0ðrÞ þ  HDHðrÞ; ð13Þ

ið�=	ÞbH � rDHðrÞ ¼  0DHðrÞ þ  HD0ðrÞ � �DHðrÞ; ð14Þ

where � is the X-ray wavelength in a vacuum, D0 and DH are

the electric displacement fields inside the crystal, � [=

�2ð� � �BÞ sin 2�B] is the offset from the Bragg condition,  0

and  H are the 0 and H Fourier coefficients of the crystal

electric susceptibility, respectively, and �0; and �H are the

wavevectors inside the crystal. The crystalline strain is taken

into account by modifying � to represent a crystal with a

slightly modified lattice spacing. In the Bragg (reflection)

geometry, equations (13) and (14) can be combined to form a

single first-order differential equation in the ratio of the field

amplitudes, x = DH=D0 (Wie et al., 1986). As the index of

refraction is almost unity, jxj2 is effectively the X-ray reflec-

tivity.

The Takagi–Taupin approximation requires that the spatial

strain gradient varies slowly compared with the spacing of the

diffracting planes (i.e. jqj � jGj), a condition that is well

satisfied for laser-generated strains. In addition, we assume

that the time derivatives of the field amplitudes are negligible

corresponding to the limits that the phonon frequency �! 0

(i.e. vs � c) and that the X-ray propagation time through the

crystal is small compared with the X-ray pulse duration (Wark

& He, 1994; Tomov et al., 1998). Solving these equations at

different time delays between the X-ray probe and the laser

pump, the time dependence is reintroduced. The strain

propagation is accounted for at each time delay.

4. Experimental set-up

The experiments were performed at the MHATT-CAT sector

7 insertion-device beamline at the Advanced Photon Source

(APS) at Argonne National Laboratory. The facility includes

an amplified ultrafast laser synchronized to the X-ray source

for time-resolved X-ray scattering experiments. Most of the

experiments are performed using the laser to repetitively

pump the sample of interest, whereas the X-rays are used to

probe the structure at a precisely controlled and variable

delay. In this manner, one can build up a picture of the

dynamics frame by frame. In such pump–probe techniques, the

temporal resolution is limited to the probe pulse duration

allowing for relatively slow detectors (1–10 ns response time)

to be used.

A schematic of the experimental set-up is shown in Fig. 2.

The X-rays from the synchrotron correspond to a series of

pulses synchronized to the circulating current in the stored

electron beam. On average, it takes an electron in the storage

ring exactly 1296 cycles of the 352 MHz accelerating RF

(buckets) to travel once around the 1.1 km ring. The stored

current consists of a number of electron bunches each of

�100 ps (FWHM) duration. Typically, just a few of the

1296 buckets are filled. The standard bunch pattern corre-

sponds to 23 single bunches spaced every 54 buckets

(�150 ns) followed by a 54 bucket gap.

4.1. X-ray optics

The X-rays are produced as the electrons pass through a

2.4 m, 3.3 cm-period permanent-magnet undulator. For time-

resolved experiments there are two standard modes of

operation: polychromatic (‘pink’ beam) or monochromatic

X-ray production. Pink-beam operations (which could be used

for time-resolved X-ray absorption spectroscopy, crystal-
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lography or protein crystallography) provide an average

photon current of up to 3 � 1015 photons s�1 in a �2%

bandwidth. For the experiments described here, the beamline

was configured for monochromatic X-ray production.

The X-rays are monochromated by a cryogenically cooled

Si(111) double-crystal monochromator �30 m from the

source. Typical operations are at 10 keV with an average flux

of 2 � 1013 photons s�1 at 100 mA stored beam within a

1.4 eV bandwidth (Dufresne et al., 2002). The sample is

mounted on a four-circle goniometer �55 m from the source.

Before the sample, the X-ray beam cross section is approxi-

mately 1 mm2. Typically slits placed <1 m from the sample are

used to both collimate and aperture the beam. For experi-

ments that require higher flux, both compound refractive

lenses (Dufresne et al., 2001; Arms et al., 2002) or a dynami-

cally bent Kirkpatrick–Baez mirror pair can be used for small

beam applications. Ionization chambers both before and after

the sample monitor the average X-ray current along the

beamline.

Diffraction conditions of the monochromator do permit a

significant amount of third harmonic of the undulator to

propagate to the experiment (�10% of the fundamental). To

remove the third harmonic a grazing-incidence tungsten

mirror is used 24 m downstream of the monochromator. The

reflectivity of the tungsten mirror reduces the third harmonic

by a factor of 100 while giving the user the ability to coarsely

steer the X-ray beam.

4.2. Laser system

The laser system is based on chirped pulse amplification

(Strickland & Mourou, 1985; Backus et al., 1998). The laser

system is shown in the experimental set-up in Fig. 2. The front

end is a Kerr-lens mode-locked Ti:sapphire oscillator which

produces a train of 40 fs (FWHM) near-infrared (�800 nm)

pulses at a repetition rate of 88 MHz. The repetition rate is

locked to the fourth sub-harmonic of the APS accelerator

cavities such that the pulse train is synchronized with the

circulating electron beam and with the X-ray pulses from the

undulator. The oscillator pulses are chirped to approximately

20 ps (over the �30 nm bandwidth) and a single pulse is

selected for amplification by a Pockels’

cell at �1 kHz, timed to a single X-ray

bunch. The single laser pulse is ampli-

fied by approximately 60 dB to �1.2 mJ

in an eight-pass Ti:sapphire amplifier.

The chirped pulse may be used for time-

resolved experiments that require

maximal temporal overlap with the

X-ray pulse. For the experiments

described here, the amplified pulse was

subsequently compressed back to

�40 fs with a maximum pulse energy of

�0.7 mJ.

The laser pulse is directed onto the

sample of interest. The optical fluence is

controlled by using a waveplate–polar-

izer pair and a lens. Many experiments operate just below the

damage threshold. Active feedback on the oscillator cavity

length reduces the timing jitter between the laser and the

X-ray pulses to about 10–20 ps (r.m.s.). A recent upgrade has

reduced the jitter to �2 ps r.m.s. A combination of a digital

phase shifter in the reference RF and the digital delay of the

Pockels’ cell trigger controls the timing of the amplified laser

with 19 ps precision to any one of the X-ray pulses. Finer delay

is possible by optical methods. The time delay of the laser with

respect to a single X-ray bunch may be scanned over as much

as a �1 to 1 ms range (limited only by the repetition rate of

the laser) while maintaining picosecond precision and stability.

The 88 MHz repetition rate of the laser oscillator corresponds

to every fourth cycle in the storage ring. Therefore, in the

recently implemented 324 bunch mode of the APS, experi-

ments could utilize each X-ray bunch with the laser oscillator

beam.

4.3. Time-resolved detectors

4.3.1. APD. Ultrafast time-resolved diffraction measure-

ments require X-ray detectors that can differentiate between

individual X-ray bunches emitted by the synchrotron. A

silicon avalanche photodiode (APD) is used to temporally

isolate a single X-ray pulse (Baron, 1997). If the silicon is

thick, the quantum efficiency of the APD is close to unity,

while the rise time is fast enough to temporally resolve the

singlet spacing of the emitted X-ray bunches (3–5 ns, see

Fig. 3). The detector is then gated to measure the average

intensity of any given X-ray bunch.

4.3.2. Streak camera. X-ray picosecond streak cameras can

resolve dynamics that occur within a single X-ray pulse

(Chang et al., 1996; Larsson et al., 1997; Liu et al., 2003). The

time resolution of the streak camera used in the experiments

described here was �5 ps.

We have recently developed a compact picosecond streak

camera based on the design of Chang et al. (1996). Secondary

photoelectrons emitted from a CsI photocathode follow the

X-ray temporal profile and are accelerated and streaked by

meander-type (group velocity matched) transverse deflection

plates. The high-voltage pulse for the plates is generated using

materials research

J. Synchrotron Rad. (2005). 12, 177–192 Matthew F. DeCamp et al. � Ultrafast crystalline dynamics 181

Figure 2
Experimental set-up for pump–probe time-resolved X-ray diffraction.



a photoconductive switch triggered by a small fraction of the

amplified laser pulse. The camera is lightweight, such that it

can mount directly on the detector arm of the four-circle

goniometer, and it operates at the 1 kHz repetition rate of the

laser. The resolution of this camera is 2 ps over a dynamic

range of 100 ps (see Fig. 4).

5. Time-resolved Bragg diffraction

Time-resolved X-ray Bragg diffraction was used to measure

the amplitude and frequency spectra of the impulsively

generated phonons in InSb. InSb is an ideal crystal to begin

the study of acoustic phonon generation owing to its small

optical penetration depth (�100 nm) and relatively slow

sound speed (�3400 m s�1 in the 111 direction). A significant

fraction of the incident laser energy is absorbed in the crystal

causing an increase in the average surface temperature. At

modest laser fluences (�10 mJ cm�2) the laser does not cause

surface melting, though over many laser pulses surface scar-

ring is visible. This scarring did not affect the X-ray diffraction

patterns indicating that damage was only on the surface.

The rise in temperature owing to repetitive laser exposure

causes the average spacing of the crystal lattice to increase,

shifting the location of the diffraction peak (Fig. 5). We find

the lattice parameter has expanded by�0.26 mÅ. Assuming a

linear expansion coefficient of 4.7 � 10�6 K�1 (Lide, 1996),

the temperature increase is �15 K.

The strain is significantly larger at the moment following

laser excitation. Fig. 6 shows sidebands on either side of the

diffraction peak 100 ps after the laser pulse. In the kinematic

diffraction limit these could indicate that there are three

regions inside the crystal: unstrained, compression (positive

sidebands) and rarefaction (negative sidebands). Less than

1 ns after the laser excitation, the shape of the diffraction

pattern has almost returned to normal, though the diffraction

peak has shifted by �3 mdeg indicating that the initial strain

has either dissipated or propagated out of the detection region

leaving a residual heated layer at the surface. The significant
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Figure 4
Temporal response of the streak camera.

Figure 5
Rocking curve of the laser-heated (dashed) and the unstrained InSb
symmetric 111 reflection taken with an ionization chamber.

Figure 6
The diffraction patterns of the 111 InSb at time delays of �100 ps (thin
line) and 100 ps (thick line).

Figure 3
Temporal response of the APD.



angular shift indicates that the ‘static’ thermal layer at the

crystal surface has risen at least 60 K.

Individual rocking curves at different time delays reveal a

picture of the strain (Fig. 7). At zero time delay, sidebands are

apparent on the main Bragg peak. The positive sidebands only

remain for �400 ps whereas the negative sidebands exist for

�500 ps and show time-dependent oscillations. This implies

that the compression layer leads the rarefaction layer out of

the detection region. At each discrete angle a Fourier trans-

form of the time axis is performed (Fig. 7b). The peak position

of the Fourier transform changes linearly with diffraction

angle. Since the deviation from the Bragg condition is a

measurement of phonon momentum, the time-resolved X-ray

diffraction is a graphical representation of the acoustic

dispersion relation, ! = vk.

Data taken with the symmetric 004 reflection in single-

crystal Ge show qualitatively similar features to the InSb data

(Fig. 8), including the immediate generation of sidebands on

either side of the rocking curve and the existence of a ‘static’

heated layer. Upon closer inspection there are two distinct

differences between the InSb and the Ge cases. The most

apparent difference is the global increase in diffraction

intensity at positive time delays owing to the intrinsically small

X-ray diffraction linewidth of the Ge reflection. The X-ray

reflectivity rises when the Ge crystal is distorted owing to the

increased width of the rocking curve. The second difference is

the lack of time-dependent modulations on either side of the

diffraction peak in Ge. This is due to the faster sound speed

(�4800 m s�1) and the larger Bragg angle which makes the

time-dependent oscillations faster than the X-ray pulse width.

5.1. Comparison: experiment versus theory

Dynamical diffraction theory is used to model the diffrac-

tion patterns. Quantitative comparisons between the data and

the strain generation models presented above are possible. To

accurately represent the data, ‘real world’ constraints (i.e.

X-ray bandwidth of 1.4 eV and 100 ps pulse width) are

included in the calculation (see Fig. 9). If the strain is deter-

mined by the Thomsen model, the general structure of the

InSb and Ge data are well represented by the simulations. In

the case of InSb, the time-dependent oscillations, as well as the

lifetime of the sidebands, are correctly predicted. In the case

of Ge, the increase in diffraction efficiency (i.e. the number of

scattered photons at a specific diffraction angle) and the

existence of an interference fringe crossing the diffraction

peak is correctly predicted.

Although these general features are reproduced, there are

distinct differences between the Thomsen strain model and

the experiments. In the case of InSb, the calculation does not

correctly reproduce the relative amplitudes of the generated

sidebands. Changing the relative partitioning of the acoustic

pulse and the static strained layer accurately reproduces the

data (Reis et al., 2001). The strain in the Ge case also requires

significant modification. The compression sideband is visible

long after the prediction of the Thomsen model has decayed.

It has been suggested that ultrafast carrier diffusion modified

the depth where the strain is generated in Ge (Cavalleri et al.,

2001). The carrier diffusion initially produced a strain up to

1 mm in depth, five times the optical penetration depth. A

diffraction calculation assuming carrier diffusion is shown in

Fig. 10. The time scale and magnitudes are well represented by

the carrier diffusion model.

5.2. Acoustic pulse evolution

Time-resolved diffraction experiments using strong Bragg

reflections are limited to the study of strains within the X-ray

extinction depth. For allowed Bragg reflections, this length

scale is typically �1 mm. A quasi-forbidden reflection,

however, can probe depths as large as the incoherent X-ray

absorption depth, which can be orders of magnitude greater

than the X-ray extinction depth of the strong Bragg reflection

(Reis et al., 2001). Although this is an attractive solution, the

diffraction efficiency of a quasi-forbidden reflection is very

small making precise measurements of the strain very difficult.

Acoustic reflections can extend the number of detection times

inside the crystal by allowing the acoustic strain to re-enter the

detection region several times. In this way, strong X-ray Bragg

diffraction can then be used to study acoustic pulse evolution

over long times.

If the crystal surfaces are highly polished, the impedance

mismatch at a crystal/air interface will allow a reflection of an

acoustic pulse. At the reflection, the acoustic pulse will

experience a 	 phase shift since the impedance of the air at the

crystal surface is approximately 1 (Woolsey & Wark, 1997;

Hao & Maris, 2000), so that at the time of acoustic collision the

peak surface strain is double the amplitude of the acoustic

pulse.

An acoustic pulse is generated in a 280 mm-thick piece of

single-crystal (001) Ge, with both faces polished to optical

quality (Fig. 11). At regular intervals (�110 ns) the X-ray

diffraction intensity increases dramatically for a short period

of time (�3 ns) while a relatively slow time-dependent

background decays with a time constant of �150 ns. The

characteristic periodic increase in diffraction efficiency is due

to the acoustic pulse re-entering the X-ray detection region

after reflecting off the back of the crystal. The slowly decaying

background is due to thermal diffusion relaxing the surface

strain. The angular dependence of the diffraction revivals can

be measured to determine the shape of the acoustic pulse over

long periods of time. Fig. 12 shows the time-resolved X-ray

diffraction measurement of the first and tenth returns of the

acoustic pulse. The first revival corresponds to the acoustic

pulse travelling �550 mm while the tenth revival corresponds

to an acoustic pulse travelling �5.55 mm.

To simulate the data, it is assumed that the acoustic pulse

has a spatial extent of 2 mm, consistent with carrier diffusion.

It is assumed that during the first revival the static heated layer

has decreased in amplitude by a factor of four, while the tenth

revival does not have a heated layer. The peak strain was

varied so that the simulation would fit the data accurately.

The first revival is consistent with a symmetric strain pulse

(Fig. 13). The compression sideband increased owing to the
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Figure 9
(a) Time-resolved Bragg diffraction of InSb using the Thomsen model of
strain incorporating ‘real world’ constraints. Adapted from Reis et al.
(2001). (b) ‘Real world’ simulation of time-resolved Bragg diffraction
using the 400 reflection in Ge.

Figure 10
Simulation of the time-resolved strain in Ge assuming the strain was
generated by ultrafast carrier diffusion. The beats at �3200 ps and
�6500 ps are due to numerical artifacts.

Figure 7
(a) Time-resolved Bragg diffraction curves of the symmetric 111
reflection in laser-strained InSb. Adapted from Reis et al. (2001). (b)
Fourier transform of the time-resolved Bragg diffraction. The dashed line
is the calculated dispersion relation for the longitudinal sound speed for
InSb.

Figure 8
Time-resolved Bragg diffraction curves of the symmetric 400 reflection in
laser-strained Ge.



doubling of the strain at the crystal surface, while the

rarefaction sideband diminished owing to the self-interference

of the acoustic pulse. The interference fringe takes 0.5 ns to

cross the entire diffraction peak which is consistent with a

2 mm acoustic pulse. Later reflections, however, do not appear

to follow the 2 mm acoustic pulse. The large momentum

components have disappeared leaving only the low-frequency

components of the acoustic pulse while the interference fringe

crosses the entire diffraction peak in about 3 ns, implying that

the acoustic pulse has spatially broadened by over 10 mm.

Group velocity dispersion should be negligible here. The

cause of the observed dispersion is not yet known, although

there are a few possible explanations. First, the crystal faces

may not be perfectly polished giving the crystal surface

variations of the order of the acoustic wavelength. Owing to

wave diffraction effects, the high-frequency components of the

acoustic pulse will diffract much faster than the low frequen-

cies leading to an effective spatial broadening. The second

possible reason is a non-linear frequency attenuation within

the crystal.

6. Time-resolved X-ray transmission

Although X-ray Bragg diffraction is an effective tool for

studying time-dependent strains, the small extinction depth of

the diffracting X-rays does not allow the continuous moni-

toring of a propagating strain in thick crystals. The Laue

geometry can circumvent this problem since the X-rays will

now diffract throughout the bulk of the crystal.

X-ray transmission is typically limited to very thin crystals

(<10 mm) or very large X-ray energies (>20 keV). Although

thick crystals can be probed with high-energy X-ray photons,

the generation and detection of these photons makes time-

resolved experiments difficult (APDs and photocathodes are

not efficient detectors of >20 keV photons). Nevertheless,

coherent acoustic phonons with MHz frequencies have been

studied using 30 keV X-rays in the Laue geometry (Liss et al.,

1997).

Crystallographers have studied lattice dislocations and

crystal defects in crystals that are much deeper than the

incoherent absorption depth using X-ray anomalous trans-

mission (Authier et al., 1996). Time-resolved studies using the

Borrmann effect have been extremely limited (Le Roux et al.,

1975, 1976). This section reports data on novel time-resolved

experiments using X-ray anomalous transmission.

Two diffraction geometries are discussed: the symmetric

Laue geometry where the reciprocal lattice vector is perpen-

dicular to the crystalline surface normal, and the asymmetric

Laue geometry. In the symmetric Laue geometry, the laser-

generated strain is perpendicular to the reciprocal lattice

vector. This geometry allows the study of transverse strains

and/or higher-order phonon coupling to X-ray diffraction.

Asymmetric Laue diffraction is more sensitive since the

generated strain has a component along the reciprocal lattice

vector.

6.1. Time-resolved diffraction in the symmetric Laue
geometry

For experiments performed in the symmetric Laue

geometry, a (001) Ge single crystal is oriented to diffract

10 keV X-rays from the symmetric 220 diffraction plane. At

large laser fluences (>5 mJ cm�2) the generated thermal

gradient distorts the crystal causing the X-ray anomalous

transmission to be diminished in �100 ns (Fig. 14). As the

crystal reaches a thermal equilibrium, the strain is relieved and

the anomalous transmission recovers. However, if the laser
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Figure 12
Time-resolved diffraction at an acoustic reflection: (a) first revival, (b)
tenth revival.

Figure 13
Simulation of an acoustic pulse reflection from a Bragg reflection surface.
(a) Static heated layer included to represent the first revival; (b) static
layer not included to represent the tenth revival.

Figure 11
Diffracted X-ray intensity as a function of time delay.



pulse melts the material (fluences >50 mJ cm�2), repetitive

laser heating (�106 laser shots) permanently strains the

crystal through imperfections in the recrystallization process.

After several shots, the induced static strain permanently

reduces the X-ray transmission.

Borrmann’s original experiments demonstrated the loss of

X-ray anomalous transmission as a crystal experiences a

thermal gradient (Borrmann & Hildebrandt, 1956). It was

demonstrated in a thick calcite crystal that a thermal gradient

of only 0.2 K cm�1 is sufficient to destroy the anomalous

transmission. The thermal gradient generates a static stress

such that the X-ray waveguide is destroyed, causing complete

absorption.

As the laser fluence is reduced, the smaller temperature

gradient allows the observation of long-term changes in the

X-ray transmission. Fig. 15(a) shows the diffracted intensity of

the forward and deflected beams as a function of time delay

(incident fluence �1 mJ cm�2). Immediately after the

absorption of the laser pulse, the intensities of the two

diffracted beams begin to oscillate. As the time delay

increases, the intensities of the forward and diffracted beams

oscillate out of phase with a period of �1.7 ns. The amplitude

of oscillations decreases with a decay constant of�10 ns. Time

delays greater than 27 ns display a revival of the time-

dependent oscillations. The oscillations grow in amplitude

with the same time constant and period that was observed at

earlier time delays. However, the observed modulations in the

diffracted beams now oscillate in phase. At a time delay of

�55 ns the amplitude reaches a maximum. This time delay

corresponds to the traversal time of the acoustic pulse through

the 280 mm-thick crystal. Similar features occur when the

acoustic pulse starts at the input face of the crystal (Fig. 15b).

Here the phase of the two diffracted beams changes. At times

close to zero time delay the beams oscillate in phase while at

delays of �55 ns the beams oscillate out of phase. Dynamical

diffraction theory can explain these features.

The observed period of oscillation equals the ratio of the

Pendellösung period to the longitudinal sound speed of Ge.

Localized static strains or crystal defects can redistribute

populations between � and �, changing the relative amplitude

of the forward and deflected beams (Authier et al., 1996). If

the spatial dimension of the acoustic pulse is much less than a

Pendellösung length, this situation can be described as two

crystals separated by a very thin strained interface moving at

the speed of sound.

We assume that the strained interface acts as a rotation of

the �� basis by an angle � (DeCamp, Reis, Bucksbaum,

Adams et al., 2001),

cos � � sin �
sin � cos �

� �
�
�

� �
: ð15Þ

After the X-rays interact with the strained region, the trans-

mitted X-ray fields evolve according to dynamical diffraction.

Fig. 16 shows the result of this calculation assuming that the

acoustic disturbance moves from the output face antiparallel

to the X-ray Poynting vector. The amount of rotation is

proportional to the strain. Here we use a value of 	/40 rad.

When the acoustic pulse is close to the output face, the

X-rays that interact with the strained layer are completely

dominated by the � solution since the � solution has long since
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Figure 14
Time-resolved anomalous transmission after intense laser excitation.

Figure 15
(a) X-ray transmission for the 220 symmetric reflection in 001 Ge as a
function of time delay. (b) Time-resolved diffraction of the symmetric 220
reflection, front side excitation. The upper (lower) curve in each panel
corresponds to the deflected (forward) diffracted beam.



been absorbed. In the presence of the acoustic pulse the �
solution can be repopulated. As the acoustic pulse propagates

through the crystal, the effective crystal thickness behind the

strained region changes over time. The diffracted intensities

beat against each other as a function of time (DeCamp, Reis,

Bucksbaum, Adams et al., 2001; DeCamp et al., 2003).

If the acoustic disturbance is located closer to the input side,

however, both the � and � solutions are populated approxi-

mately equally prior to the interaction with the strained layer.

The strained layer will simply remix the solutions causing the

amount of population in each solution to change as a function

of depth. Since there is a large undisturbed crystal following

the strained layer, the � solution will be absorbed quickly

leaving only the � solution. Since � is the only solution to

survive, the beams will be modulated equally.

Although the simple rotation of basis appears to correctly

predict the observed modulations, the exact mechanism of the

transfer is not immediately obvious since in the symmetric

Laue geometry the phonon wavevector (q) is perpendicular to

the reciprocal lattice vector. However, in practice, it is very

difficult to obtain crystals that are cut perfectly. In this case the

crystal was miscut by �3 mrad allowing the strain to be

detectable by the X-ray diffraction. Assuming modest strains,

a 	/40 basis rotation is easily attainable.

6.2. Time-resolved asymmetric Laue geometry

The previous two diffraction geometries demonstrated the

ability of time-resolved X-ray diffraction to study strain

propagation. X-ray diffraction in the Bragg and Laue

geometries are complementary. X-ray Bragg diffraction can

provide a precise study of strain, but the X-ray probe depth is

limited to the X-ray extinction depth (or the X-ray absorption

depth). Symmetric X-ray Laue geometry can detect crystalline

strain very deep within crystals but, owing to the direction of

the reciprocal lattice vector, symmetric Laue geometry is

unable to precisely measure a laser-induced strain. Asym-

metric Laue geometry can overcome these limitations.

Unlike the symmetric Laue geometry, an asymmetric Laue

reflection is one where the reciprocal lattice vector is not

perpendicular to the surface normal. Therefore, a laser-

generated strain has a component along the reciprocal lattice

vector, making the strain easily detectable. The Borrmann

effect in the asymmetric Laue geometry is a useful probe for

strain pulses propagating through very thick crystals.

In the symmetric geometry, the laser-generated acoustic

pulse travels parallel to the surface normal, not the Poynting

vector of the diffracting X-rays. To compensate for this

potential difficulty, the optical pulse illuminates a relatively

large surface area. This provides a large spatial profile to the

propagating acoustic pulse and thus the spatial walk off

between the acoustic pulse and the X-ray probe is negligible.

For these experiments, a Ge 001 crystal is oriented to

diffract from the 20�22 diffraction plane. The asymmetry angle is

45� for this reflection, midway between a symmetric Bragg

reflection and a symmetric Laue reflection. An ultrafast

optical pulse generates an acoustic disturbance on either face

of the crystal.

Like the symmetric data, under intense laser excitation the

diffraction efficiency of the asymmetric reflection goes to zero

for an extended period of time. Unlike the symmetric

geometry, as the laser fluence is reduced the diffraction effi-

ciency of the forward beam does not recover. In Fig. 17 the

peak diffraction intensity of both the forward and deflected

beams of the Ge crystal is shown as a function of time delay. In

this case the acoustic pulse was initially generated on the

output face of the crystal.

Immediately after the laser absorption (fluence

�5 mJ cm�2), the intensity of the two diffracted beams

changes rapidly. The forward beam decreases while the

deflected beam increases by the same amount, indicating a

coherent transfer of energy. Up to 75% of the X-rays are
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Figure 17
The peak diffraction efficiency of the asymmetric 20�22 Laue reflection as a
function of laser/X-ray time delay. The thick (thin) line corresponds to
the forward (deflected) diffracted beam.

Figure 16
A simulation of the two-crystal model. The upper curve corresponds to
the deflected-diffracted beam while the lower curve corresponds to the
forward-diffracted beam.



coherently transferred between beams. The time dependence

of this phenomenon is comparable with the X-ray pulse width

indicating that the switching mechanism is at least as fast as

the 100 ps X-ray pulse width.

The population transfer for diffraction from the �2202

diffraction plane (asymmetry �45�) is the mirror image of the

20�22 case. The diffracted intensity of the forward beam now

decreases while the deflected beam increases. Again, the time

scale for transfer appears to be limited by the X-ray pulse

width.

The fast phenomenon does not appear to have an angular

dependence. This may be due to the wavevector selectivity of

the Borrmann effect. In the strained region, like the Bragg

case, sidebands on the diffraction peak are generated. The

modified Laue condition cannot be satisfied, however, because

of the wavevector selectivity of the Borrmann effect. So unlike

the Bragg case where sidebands are easily observed, in the

Borrmann geometry only those wavevectors which satisfy the

Laue condition propagate through the crystal.

Following the rapid population transfer, oscillations in the

diffracted intensity are visible. As in the symmetric Laue case,

these are Pendellösung oscillations owing to redistribution of

the �� basis. This is further verified by changing the energy of

the incident X-rays. The change in the Pendellösung period is

proportional to the crystalline structure factor, which is

strongly dependent on the X-ray energy. In Fig. 18 the time-

resolved diffraction efficiency is plotted as the incident X-ray

energy approaches the Ge K edge (11.10 keV). Although the

X-ray energy changes by less than 30 eV (0.3%), the

Pendellösung period changes by �16%. This is due to the

imaginary part of the crystal structure factor changing radi-

cally as the X-ray energy approaches an absorption edge.

Further changes in the incident optical fluence cause the

amplitude of fast X-ray switch and the Pendellösung oscilla-

tions to change drastically. Fig. 19 demonstrates the relation-

ship. At relatively low fluences (<8 mJ cm�2) the switch

amplitude is proportional to the incident optical intensity.

Simultaneously, the relative phase of the Pendellösung oscil-

lation is anti-correlated with the switch amplitude.

The generation of an acoustic pulse on the input face of the

crystal displays similar features. As in the symmetric case,

when the acoustic pulse is generated on the input face both

diffracted beams initially behave identically. Again this is due

to the large unperturbed region beyond the strained crystal

layer.

6.3. What is the fast mechanism?

The length scale of diffraction in the thick crystal limit is

given by the Pendellösung depth. The fast coherent transfer of

energy, however, does not appear to correspond to an acoustic

pulse traversing the Pendellösung depth and thus is an un-

expected physical phenomenon. To properly diagnose the fast

mechanism, an X-ray streak camera is used to detect pico-

second changes in the diffracted X-ray intensity. Owing to

experimental constraints, the streak camera was only able to

sample the forward-diffracted beam. Using the 20�22 reflection,

the time dependence of the X-ray switch is measured for Ge

single crystals.

When the laser pulse arrives, an immediate transfer of

energy is apparent in the transmitted beam (Fig. 20). Within

60 ps of illuminating the sample, 75% of the transmitted X-ray

intensity is switched. The fall time of this process appears to be

�40 ps which, if we assume that the disturbance moves at the

sound speed, represents a depth of �200 nm or 4% of a

Pendellösung depth. Diffracting from the opposite asymmetry,

the rising edge of the population transfer can be measured.

The rising edge appears to take place in a time consistent with

the falling edge.

If the fast switch can be described with dynamical diffrac-

tion, the switching mechanism must be related to the

Pendellösung depth. For this to occur, the driving mechanism

of the fast switch must be one or more of the following; the

Pendellösung period changes dynamically with the laser-

materials research

188 Matthew F. DeCamp et al. � Ultrafast crystalline dynamics J. Synchrotron Rad. (2005). 12, 177–192

Figure 18
Time-resolved Pendellösung oscillations as the incident photon energy
approaches the Ge absorption edge (11.10 keV).

Figure 19
Deflected-diffracted intensity for an incident laser fluence of 35 (solid
line), 7 (dashed line) and 2 (dot-dashed line) mJ cm�2. Inset: X-ray switch
efficiency and the retrieved phase of the Pendellösung oscillations as a
function of optical fluence. Adapted from DeCamp et al. (2003).



induced strain, a shockwave is generated, or the strain depth is

significantly different from the generally accepted values.

Since the structure factor is related to the density of the

material, it is conceivable that the strain could dynamically

change the Pendellösung period. However, to generate the

necessary change in the Pendellösung period, the strains

required are much too large to be a practical consideration.

Although a supersonic shockwave appears to be an attractive

solution, time-resolved Bragg diffraction does not show any

evidence for an acoustic pulse travelling at supersonic velo-

cities. The only remaining plausible explanation is an extended

strain depth.

The generation of acoustic strains at depths much larger

than the optical penetration depth could be explained by the

supersonic expansion of a dense electron–hole plasma. This

plasma evolves on the time scale of diffusion, which, if the

plasma were dense enough, could explain the fast transfer of

X-ray energy. Again it should be noted that, although the

electron–hole plasma diffusion is supersonic, the generated

acoustic pulse evolves at sonic velocities with an extended

spatial profile. The time-resolved Bragg diffraction in Ge

appears to support the existence of the electron–hole diffusion

generating a very deep strain. However, the limited penetra-

tion depth of Bragg diffraction only probes the near-surface

region. By utilizing the time-resolved Laue diffraction it is

possible to determine the strain-generation mechanism.

Simulating the diffraction patterns by numerically inte-

grating the X-ray wave equations provides the mechanism of

the strain generation. If one assumes that the strain generation

is determined by the thermo-elastic model with an extended

penetration depth (�1 mm), the fast effect can be modelled;

however, the observed phase shift of the Pendellösung oscil-

lations is anti-correlated with the switch amplitude. Using the

carrier diffusion model of strain generation, the behavior of

switch amplitude and Pendellösung phase shift is correctly

predicted (DeCamp et al., 2003).

6.4. Acoustic reflections

As the acoustic pulse approaches the opposite crystal face

of the crystal, a ‘Borrmann revival’ is observed. As the

transmission returns, Pendellösung oscillations in the

diffracted intensity are seen. Like the symmetric case, as the

acoustic pulse approaches the input face, the oscillations in the

two beams are in phase (Fig. 21). As the acoustic pulse collides

with the input face of the crystal, the intensity of the forward

beam is about 2.5 times that of the static crystal case, i.e.

greater than the sum of the two diffracted beams of an

unstrained crystal.

This dramatic increase in the diffraction efficiency can be

explained by the two-crystal model. In the static-crystal case

the sum of the output intensities can be no larger than one half

of the original input intensity owing to the strong absorption

of the � solution. In the ideal situation the intensity increase of

one beam owing to the rotation of the �� basis on the output

face of the crystal is only a factor of two. However, if the basis

rotation occurs on the input face, the entire initial � popula-

tion can be transferred to the � solution, increasing the output

of one beam by up to a factor of four. If the acoustic pulse

originates from the front side of the crystal, the observed

Pendellösung oscillations during the revival are now out of

phase and the sum of the two diffracted beams is �50% that

of the unstrained crystal case, consistent with the two-crystal

model.

6.5. Acoustic collisions

Although the X-rays diffract through the entire bulk of the

crystal, the observational power of the asymmetric Laue

reflection is limited by the absorption depth of the � solution.

For example, in Ge at an X-ray energy of 10 keV, this

limitation prevents the direct observation of the strain pulse at

depths deeper than �25 mm. The repopulation of the �
solution deep within the bulk of the crystal can circumvent this

problem. In static crystals, buried interfaces or lattice dis-

locations can repopulate the � solution after many absorption
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Figure 21
X-ray transmission as a function of acoustic pulse time delay. The acoustic
pulse is approaching the input face of the Ge crystal. The thick (thin) line
corresponds to the forward (deflected) diffracted beam. Adapted from
DeCamp, Reis, Bucksbaum, Adams et al. (2001).

Figure 20
X-ray streak camera data of the transmission efficiency of the asymmetric
20�22 reflection in Ge. Adapted from DeCamp et al. (2003).



depths (Authier et al., 1996). Launching a second acoustic

pulse, counter-propagating with the first, can produce a tran-

sient interface allowing the observation of a transient strain

deep within the crystal bulk.

In Fig. 22, two counter-propagating acoustic pulses are

generated simultaneously from opposite faces. As expected,

immediately after the initial lattice expansion an ultrafast

energy transfer has taken place which decays quickly as the

acoustic pulses travel into the center of the crystal. At a time

delay of �27.5 ns a Borrmann revival is seen. This time delay

corresponds to the acoustic pulses travelling half way through

the crystal bulk (DeCamp, Reis, Bucksbaum, Adams et al.,

2001).

Like before, the Borrmann revival has oscillations asso-

ciated with the increase in X-ray transmission; however, in this

case the oscillation period is half that of the single acoustic

pulse excitation. The reason for the frequency doubling is

because, unlike the quasi-two-crystal situation generated by

the single acoustic pulse, two acoustic pulses will make a quasi-

three-crystal situation. Because the acoustic pulses are

counter propagating, the three crystals can be thought of as a

single thin crystal contracting (expanding) at twice the speed

of sound, sandwiched between two thick crystals expanding

(contracting) at the speed of sound. The rapidly changing thin

crystal causes the Pendellösung oscillations to oscillate at

twice the frequency.

7. Conclusion

The combination of ultrafast lasers and pulsed X-ray beams

from third-generation synchrotron facilities has opened up

new opportunities for studying the dynamics of materials at

picosecond time scales. We have described our results from a

dedicated time-resolved diffraction facility at sector 7 of the

Advanced Photon Source, Argonne National Laboratory, at

which some of the first measurements on transient strain

dynamics have been performed. Pump (laser)–probe (X-ray)

methods are especially useful for such measurements. The

temporal resolution is generally limited by the bunch length

(�100 ps) when using gated avalanche photodiode detectors.

However, X-ray streak cameras can probe much faster time

scales, into the sub-picosecond range. We have demonstrated

the coherent control of X-ray beams using impulsively

generated phonons, and have shown that this mechanism can

be used to slice X-ray pulses. We have also demonstrated a

time-resolved version of the Borrmann

effect in the asymmetric Laue geometry.

We have shown that time-resolved

dynamical X-ray diffraction based on

this approach is an ideal probe for strain

pulses propagating through very thick

crystals. Lastly, we used this technique

to study the supersonic diffusion of

laser-excited electron–hole plasmas in

germanium crystals. As these techni-

ques become more refined, studies of

complex dynamics in systems such as

biomolecules, polymers and liquids should become possible.

Recent experiments have begun to use time-resolved X-ray

diffraction for the study of protein function (Schotte et al.,

2003, 2004) and localized optical phonon oscillations (Soko-

lowski-Tinten et al., 2003). Ultrafast time-resolved diffraction

measurements at today’s third-generation X-ray sources will

chart the way towards the development of the new linac-based

ultrafast X-ray sources which are planned to come on-line at

the end of the decade. The Linear Coherent Light Source

(LCLS) will produce sub-picosecond X-ray pulses of extreme

brightness. A forerunner of LCLS, the Sub-Picosecond Photon

Source (SPPS) has just become operational at SLAC/SSRL as

an ultrafast X-ray source, offering unprecedented access to the

ultrafast hard X-ray regime. These ‘fourth-generation’ facil-

ities will propel time-resolved X-ray studies into yet new

regimes of brightness, short pulse length and coherence to

enable many studies that are not possible today. Among these

exciting prospects for the future are single-shot measurements

on excited state molecular systems and tracking the atomistic

motion in structural phase transitions and soft-mode materials

such as ferroelectrics.
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