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An important step in X-ray absorption spectroscopy (XAS) analysis is the fitting

of a model to the experimental spectra, with a view to obtaining structural

parameters. It is important to estimate the errors on these parameters, and three

methods are used for this purpose. This article presents the conditions for

applying these methods. It is shown that the usual equation � ¼ 2H�1 is not

applicable for fitting in R space or on filtered XAS data; a formula is established

to treat these cases, and the equivalence between the usual formula and the

brute-force method is evidenced. Lastly, the problem of the nonlinearity of the

XAS models and a comparison with Monte Carlo methods are addressed.
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1. Introduction

The last step during the analysis of X-ray absorption spec-

troscopy (XAS or EXAFS) spectra is the fitting of a theore-

tical model to the experimental data. During this process,

values are proposed for the various parameters describing this

model, that is, the description of the local spatial environment

of the absorbing atom (nearest neighbour distances, numbers

and nature; thermal motions, through the use of the Debye–

Waller factor).

The question of how much we can trust the obtained values

then naturally arises. This question is, in fact, twofold; we may

wonder about the validity of the model or, assuming that the

model is correct, we may wonder about the precision of the

fitted values related to this model. Despite the fact that these

two aspects are somehow related, they lead to a different

analysis and hence can be studied separately. In this work, we

will only deal with the second problem: once a model is

selected, what information is available on the quality of the

estimation obtained after fitting? The fundamentals of the

statistical tools used to answer this question can be found

in several textbooks (e.g. Saporta, 1990; Neuilly, 1993;

Protassov, 1999).

From a statistical point of view, the answer to this problem is

contained in the variance–covariance matrix, �, of the vector

of all the fitted parameters; the square roots of the diagonal

terms of this matrix give the standard deviation of the para-

meters and the off-diagonal terms give the statistical correla-

tions between the parameters. Hence, the aim is to obtain this

matrix from the experimental data. Since this covariance

matrix depends not only on the experimental data but also on

the method applied to determine the parameter values, we will

first recall briefly the various methods encountered in X-ray

absorption analysis and will present the formalism used

throughout this article.

To obtain the covariance matrix, a few different methods

have been proposed by various authors in the field of the XAS.

Three of these methods are summarized in the report from the

Standards and Criteria Committee (2000): (i) use of the

analytical equation �� ¼ 2H�1, where H is the Hessian of the

fit (‘analytical method’), (ii) use of the isocontour levels of the

minimized quantity (the so-called ‘brute-force method’) and

(iii) use of the Monte Carlo methods. Another method is also

proposed, based on a Bayesian approach (Krappe & Rossner,

1999; Rossner & Krappe, 2001; Klementev, 2001); since this

method is built on completely different hypotheses, we will not

discuss it here.

All these methods rely on various assumptions, which may

or may not be verified during a common analysis of the

experimental data. To our knowledge, no study has been

undertaken about the validity of these assumptions for real

cases, and only very few studies have mentioned the

comparison of these methods to simplified (Filiponi, 1995) or

theoretical (Ghigna et al., 2001) cases. The aim of this work is

to analyse the assumptions involved in the application of the

different methods, and then to compare the various methods

(when applicable).

We will first detail all the assumptions on which the most

frequently used method relies (‘analytical method’) and we

will present extensions of this method to remove some of these



limitations. We will then deal with the brute-force method and

show that it relies on the same assumptions as the previous

one. Lastly, we will present and compare various Monte Carlo

methods. Details of the demonstrations are reported in

Appendices A–C.

2. Position of the problem

We want to obtain, from the experimental data, the values of q

parameters, denoted �1 to �q. These parameters form the q

components of a vector �. The experimental data form a set of

N values, y1 . . . yN , functions of a known quantity x. Hence,

one proposes for these values a model yi ¼ f ðxi; �1; . . . ; �qÞ.

Using vector notation, this model can be rewritten y ¼ f ðx; �Þ.
Hence, we need to ‘invert’ the function f so that we may write

� ¼ gðx; yÞ. The problem is to select a correct g function. In

general, its analytical form is unknown and it remains impli-

citly defined, as we will see later.

Practically, the measured values are not exact; a statistical

error adds to their true value (and, in some cases, a systematic

error; we will not discuss this here, since it is equivalent to the

case of an incorrect model, which we will discuss later). Hence,

each measured value yi is considered the realization of a

random variable Yi (in a similar way, xi is the realization of a

random variable Xi). Using vector notation, the experimental

vector y is a realization of the random vector Y, as x is a

realization of X.

Consequently, the set of parameters deduced from an

experiment, �, is itself a realization of the random vector �,

defined as � ¼ gðX;Y Þ. Knowledge of the precision of the

obtained values is then equivalent to knowledge of the

random vector �, and in particular of its covariance matrix

��. These properties are dependent on the properties of the

experimental vectors, X and Y (hence dependent on the

experimental conditions), and also on the properties of the g

function (hence dependent on the method used to obtain the

parameters).

When the measurements are repeated m times for each x

value, m random vectors, Y1; . . . ;Ym, can be defined, and the

relation between the fitted parameters and the experimental

data becomes � ¼ gðX;Y1; . . . ;YmÞ.

In most cases, the known quantity (x) is controlled by the

user and measured with great precision, and hence its asso-

ciated statistical uncertainty may be neglected. In that case,

the random vector X is completely defined by the experi-

mental values x.

The properties of the random vector Y are strongly

dependent on the nature of the experiment, and hence we will

deal with this aspect later, when applying this model to XAS

data analysis.

We then have to study the effect of the function g. As stated

previously, this function is not defined by an analytical

(explicit) formula. Two methods are mainly used to define g:

least squares (including many variants) and maximum likeli-

hood.

2.1. Least-squares methods

Least-squares methods are well known; we will just recall

here the principle and the matricial and analytical formula-

tions, with Yth the random vector of the N theoretical values

predicted by the model. The interested reader is referred to

statistical textbooks (for instance, Draper & Smith, 1981) for

more information on these methods.

The simplest least-squares method is based on the mini-

mization of the Euclidean distance between the experimental

vector and its model; the parameter values minimize the

quantity

�2
s ¼

t Y� Ythð Þ Y� Ythð Þ ¼
PN
i¼1

yi � f ðxi;�Þ
� �2

:

To include the experimental uncertainties, weighted (‘statis-

tical’) least-squares are introduced,

�2
w ¼

t Y� Ythð Þ S��1
Y Y� Ythð Þ ¼

PN
i¼1

yi � f ðxi;�Þ
� �

=s�i
� �2

;

where S��1
Y is the covariance matrix estimated from the

experiment; its diagonal terms are the squares of the experi-

mental standard deviations s�i . Note that the analytical formula

is correct only if the points are uncorrelated (that is, S��1
Y is

diagonal), but the matricial formulation does not require this

assumption.

Other weighting schemes may be used, giving the general-

ized least-square methods,

�2
g;w ¼

t Y� Ythð ÞW Y� Ythð Þ ¼
PN
i¼1

w2ðxiÞ yi � f ðxi;�Þ
� �2

;

where W ¼ ½wðxiÞwðxjÞ�i;j is a symmetric definite-positive

matrix. The analytical form given here is valid only for diag-

onal W matrices; if W is not diagonal, then the analytical

formulation becomes

�2
g;w ¼

PN
i¼1

PN
j¼1

yi � f ðxi;�Þ
� �

wðxiÞwðxjÞ yj � f ðxj;�Þ
� �

:

Simple least squares and weighted least squares are in fact

special cases of the generalized least-squares method, with,

respectively, W ¼ I and W ¼ S��1
Y . Hence, results can be

derived directly for the generalized form.

In all cases, the function g is defined as the function that

associates to the observed experimental values, y, the para-

meters vector, �, that minimizes �2. In general, the analytical

expression of g is not known.1

In the case of m repetitions of the measure, averages can be

used instead of the experimental values (and, for weighted

least squares, the estimated standard deviation of the average,

s�m;i ¼ s�i =m
1=2
i ).
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1 In fact, it may happen in some cases that this definition of � is not precise
enough, since many different sets can minimize �2. It is then necessary to add
information to this definition, such as ‘we use the global minimum’. We will not
discuss such cases here, since they do not change the result of the analysis, and
we will always assume that g is completely defined.



2.2. Maximum-likelihood method

The maximum-likelihood method is based on a completely

different idea; the assumption is that the observed experi-

mental values are the most likely to be observed. The searched

parameter set is then the one that gives the highest probability

of observing the measured experimental data.

This method gives the best estimations of the parameters

(that is, generally, the estimations of minimal variance, hence

of minimal standard deviation). In particular, when the

number of repeated measures, m, becomes high, the proper-

ties of the random vector � are optimal; it is asymptotically

Gaussian (‘normal’), unbiased and of minimal variance

(Saporta, 1990). However, when m is small, the properties

remain unknown.

Details of the derivation of the maximum-likelihood

formula, in the case of Gaussian experimental values, are

presented in Appendix A. The result is the function given

below, which is a special case of generalized least squares with

W ¼ ��1
Y ; this method will be called maximum-likelihood

least squares,

�2
ML ¼

t Y� Ythð Þ��1
Y Y� Ythð Þ

¼
PN
i¼1

yi � f ðxi;�Þ
� �

= �i=m
1=2
i

� �� �2
:

The hypotheses to apply this formula are:

(i) The experimental distribution is normal. This condition

is satisfied in X-ray spectroscopy (Curis & Bénazeth, 2001).

(ii) The experimental points are independent for the

analytical formulation. This statement is true only before

Fourier filtering.

(iii) The model is exact (there is no systematic error of any

kind). This hypothesis is only a first approximation in XAS

analysis.

(iv) The standard deviation does not depend on fitted

parameters. Rigorously, this statement is not true, since

absorption follows a Poisson law, for which standard deviation

and average are equal; practically, other sources of statistical

errors are more important and make this effect negligible.

If the experimental uncertainties were perfectly known, �i

and s�i (or �Y and S�Y) could be assimilated. In that case, we

recognize the weighted (‘statistical’) least-squares estimator

�2
w ¼ �

2
ML, and these two methods are then equivalent.

However, this point is seldom satisfied in practice.

2.3. Application to XAS analysis

In the case of XAS analysis, different kinds of fit are

developed, corresponding to various chosen definitions for x

and y: fit of a complete absorption spectrum (x ¼ E, y ¼ �); fit

of EXAFS oscillations, before or after filtering (x ¼ k, y ¼ �);

and fit of the Fourier transform [x ¼ R, y ¼ Fðkp�Þ]. To avoid

heavy formulation, we will present formulas only in the case of

EXAFS oscillations or in the general case with y and x, but the

computations and the results are valid for any other kind of fit.

As mentioned previously, we will assume high precision of

the x values. This assumption does not mean that these values

are exact, since various systematic effects can interfere with

their determination (uncertainty in the edge energy, E0, for

instance), but only that no statistical component exists in this

error. Hence, this assumption does not prevent the use of

parameters in the model to correct x values, as is done, for

instance, by introducing the �E0 parameter.

As shown by Curis & Bénazeth (2001), a Gaussian

(‘normal’) distribution can be assumed for the random vector

Y. Hence, it is completely defined by its expectation value and

its covariance matrix, �Y. Both are estimated either directly,

averaging m experimental spectra, or by the error propagation

model developed by Curis & Bénazeth (2000). Let us recall

that this covariance matrix is diagonal only for a spectrum

before Fourier transformation, an important point for the end

of this study.

2.3.1. Use of least squares. We use here a direct transpo-

sition of the formula presented above, taking into account the

fact that we are working on the averaged spectrum (for which

the standard deviation on the ith point is then s�i =m
1=2
i ); hence

we will present the formulas only for generalized least squares.

The most frequently used weighting scheme for generalized

least squares is a kp weighting, with p an integer (usually 1, 2 or

3), for the EXAFS oscillations; no special weighting is used for

other fits. The corresponding minimized quantities are

�2
g;p ¼

PN
i¼1

k
p
i �ðkiÞ � k

p
i f ðki; �1; . . . ; �qÞ

� �2
:

Note that, for p ¼ 0, simple least squares are obtained

(�2
g;0 ¼ �

2
s ). Moreover, there is an equivalence between

weighted least squares and �2
g;p if, and only if, a constant

value sm exists, so that s�m;i ¼ s�i =m
1=2
i ¼ k

p
i sm. This equivalence

can be achieved, for a given experiment, only for a single value

of p (most often, p ¼ 0) and if each point is recorded the same

number of times; however, examples of non-constant uncer-

tainties are well known (Vaarkamp, 1998), and in such cases

there is no relation between any of the �2
g;p and �2

s values.

2.3.2. Use of maximum likelihood. Rigorously, maximum

likelihood is not used in XAS analysis, because none of the

maximum-likelihood conditions are satisfied. However, in the

case of the fit of an unfiltered spectrum with constant error

bars, the only unsatisfied assumption is that there is no

systematic error. Hence, it is practically equivalent to simple

least squares, �2
s .

3. The bases and the limits of the ‘analytical’ method

For convenience, an analytical formula is widely used to obtain

the covariance matrix, �� ¼ 2H�1, where �� is the covar-

iance matrix of the fitted parameters vector and H is the

Hessian (second derivatives matrix) of the minimized value, �2
w

or �2
g;p in general; the parameters are implicitly supposed to

follow a normal distribution. However, the derivation of ��

can only be performed if the model is linear; hence, rigorously,

this method cannot be applied to XAS, where the models are

in most cases nonlinear.

Nevertheless, it is well known that this formula may give a

close approximation if the model is nearly linear [see, for the
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case of XAS, Filiponi (1995)]. We will discuss later under

which conditions this approximation may be used; however, an

important point must be stressed: even if the model is linear,

the �� ¼ 2H�1 formula cannot always be used. Hence, before

applying this method to XAS, these conditions must be

checked.

The derivation of the formula, presented in Appendix B,

allows us to give the limits for using the formula:

(i) Maximum-likelihood least squares (�2
ML) are used, which

require that the experimental covariance matrix is perfectly

determined.

(ii) There is no constraint, nor restraint, while fitting; each

parameter can reach any value. This is not the case in XAS,

since for physical reasons almost all parameters must be

positive. However, as far as this criterion is not introduced as a

constraint but only as a final check of the model, this condition

is satisfied.

(iii) The model is linear.

The practical realization of the fitting procedure in all the

known software adds a limitation; the weighting matrix �Y is

expected to be diagonal, and hence the experimental points

must be independent. Such is not the case for Fourier-trans-

formed data or filtered spectra, but it can be assumed for

unfiltered spectra (Curis & Bénazeth, 2000). Other program-

ming details, such as the algorithm used to minimize the least

squares, do not change the conditions of use of the formula as

far as the second point (no constraint) is concerned.

The first point (perfect knowledge of the covariance matrix)

is not achieved, and the estimated matrix S��1
Y is used instead.

Therefore, in practice, the statistical least squares �2
w are

applied. Practically, this does not change the formula;

however, it changes the law of the � vector, since S��1
Y itself is

random. It can be shown that for a single parameter the exact

law used to build the confidence intervals is a Student law

(Saporta, 1990); however, considering the high number of

experimental points used in classical XAS spectra, this

Student law can be well approximated by a Gaussian law.

Hence, if �2
w is used, we can apply the �� ¼ 2H�1 formula.

3.1. Generalization of the ‘analytical’ method

If any least-squares method other than the statistical least-

squares method is used, the �� ¼ 2H�1 formula is wrong even

in the linear approximation.

For simple least squares (�2
s ¼ �

2
g;0), if the error bars are

constant and the experimental points independent, the

formula can easily be adapted to �� ¼ 2s�2H�1, where s� is

the standard deviation estimated from all the data points

(best estimation of the real standard deviation, �) (see

Appendix B).

For any other case (and especially the use of a kp weighting

scheme when fitting, or any Fourier transform fit), there is no

other way than using the complete formula obtained in

Appendix B,

�� ¼ 4ðH�1FWÞ�Y
t
ðH�1FWÞ:

3.2. Linear approximation of a nonlinear model

The most evident unsatisfied hypothesis in XAS analysis is

the linearity of the model. Indeed, the theoretical model of the

XAS oscillations is definitely not a linear function of the

structural parameters. Hence, to what extent can the previous

results give acceptable answers?

Roughly, the model linearization can solve the problem.

Close to the minimum, the model function f can be approxi-

mated by its first-order Taylor expansion flin. The new model

obtained in this way is then linear, and the previous results

may be applied.

Nevertheless, this simple approach is not enough. The

properties of the parameters vector � depend on the implicit

function g and not directly on the model function f . When

replacing the model function f by its linearized form flin, the

function g is also replaced by a new implicit function, glin.

However, there is no evidence that this new function glin

constitutes a good approximation of the real function g, even if

flin is a reasonable approximation of f . Hence, there is no

evidence that the results of the linear model are still applic-

able, in the most general case.

Practically, one may assume that glin is a good approxima-

tion of g if the minimized estimator and the model are

‘regular’ enough, having not too many local minima, initial

values for the parameters close to the real ones and quite

precise (small uncertainties) experimental values. However,

these conditions are not always satisfied.

Let us assume the linear approximation anyway. The results

for the linear model can then be applied, but for the linearized

model, as far as the other conditions stated previously are

verified. In particular, to apply the usual formula �� ¼ 2H�1,

the H matrix to use is the Hessian of the linearized model

(Hlin) and not the Hessian of the complete model (H0). These

two matrices are related,

Hlin ¼ H0 þ 2
XN

i¼1

"�i
@2f

@�b@�c

ðki; �
�
1 ; . . . ; ��qÞ

" #
1�b;c�q

;

where ��1 ; . . . ; ��q is the parameter set obtained after fitting,

and "�i ¼ yi � f ðki; �
�
1 ; . . . ; ��qÞ is the ith individual residual.

Practically, the second matrix is often negligible, since the

residuals are expected to be small and to present various signs

(if the model is correct), but the behaviour of the second

derivatives is more difficult to foresee. Note also that most of

the minimization algorithms involving the linearized matrix

(including the simple Levenberg–Marquardt method)

compute the linearized Hessian matrix instead of the complete

one (Press et al., 1993). Nevertheless, the implementation of

the linear result and, especially, of the Hessian matrix before

its inversion must account for this result.

4. The bases and the limits of the ‘brute force’ method

When the use of the previous method is questionable, some

authors propose the building of a contour map for the mini-

mized function, �2. Then, for a given parameter, the limits for

its confidence interval are obtained from the values increasing
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this minimized function by a certain amount [usually

��2=ðN � qÞ ¼ 1 for a so-called ‘1�’ confidence interval, with

the underlying idea of a 65% confidence interval with a

Gaussian distribution]. We will establish now that, in fact, this

method relies on the same hypotheses as the use of the

�� ¼ 2H�1 formula and hence presents the same limitations.

The confidence region is defined from the distribution

function of the parameters vector, f�. This region is centred on

the observed value of the vector and its boundaries are

defined by the equation f�ð�Þ = C, where C is a constant

determined by the confidence degree we want to obtain on the

region; the boundaries are isodensity surfaces. Hence, the

isocontours of �2 around the minimum – which are practically

computed – are related to the (statistical) confidence intervals

only if these isocontour lines are also isodensity lines. Let us

consider when this is the case, first for the linear model to

simplify the formulation.

For a linear model, the �2 function has a quadratic form. The

function represents a q-dimensional paraboloid, and its

Hessian does not depend on the point in this q-dimensional

space. Hence, the isocontours of �2 around the minimum are

defined by the equation t� F W tF � ¼ C; they are q-dimen-

sional ellipsoids (see Appendix C).

If the experimental distribution is Gaussian, the parameters

vector is a q-dimensional Gaussian vector. Hence, the

isodensity curves centred on the expectation value are also q-

dimensional ellipsoids, defined by the equation

ð1=2Þ t���1
� � ¼ C (where C is not necessarily the same

constant as above).

These two sets of equations will give identical regions if and

only if ��1
� ¼ F W tF ¼ H=2. In other words, this is the case

when �� ¼ 2H�1, which is true only if the conditions stated

above are satisfied. In other cases, the isocontours of the

minimum and the isodensity surfaces are ellipsoids with

different axes or scales; hence there is no relationship between

the confidence intervals and the intervals built on the

isocontour levels of the minimized function. Fig. 1 presents a

simple case of another weighting scheme for a two-parameter

linear model, showing the different orientation of the ellipses

obtained by the two schemes.

When the model is nonlinear, in general we cannot derive

the analytical equations defining the isodensity levels; there is

no reason to still observe ellipses, even if the isodensity levels

asymptotically tend to ellipses (since least squares are

asymptotically Gaussian), and the isocontours will not be

ellipses either [see, for instance, Bates & Watts (1988)].

However, it can be shown that, for maximum-likelihood least

squares, the isocontours and isodensity levels still have the

same shape and orientation (Bates & Watts, 1988), but there is

no simple way to associate confidence levels to these confi-

dence intervals. For other least squares, there is still no

connection between isocontour and isodensity regions.

In conclusion, for nonlinear least squares, the resulting

interval is not a confidence interval, since we cannot associate

to this interval a probability to contain the real value; worst,

for joint intervals the calculated interval may have a different

shape from the true confidence interval. Nevertheless,

building these isocontour lines can give hints about the

validity of the linear approximation; the more distorted they

are compared with true ellipsoids, the less valid is the linear

approximation (and the worse are the associated confidence

probabilities). If confidence intervals are not sought, this

method gives a rough value for the error bars, but if prob-

abilities, or more precise values of error bars, are required,

another method must be used.

5. The bases and the limits of the ‘Monte Carlo’ method

The two previous sections showed that neither method gives

the expected answer as far as nonlinear models are involved,

as is the case in XAS. The third method, the Monte Carlo

method, will remove this limitation of using only linear

models. This method, although rarely used, has already been

presented by several authors (Filiponi, 1995; Ellis, 1995;

Ghigna et al., 2001). However, except in the last case, we found

no detailed analysis of the results or of the Monte Carlo model

choice. Ghigna et al. (2001) present the simple case of theo-

retical spectra fitted by a theoretical model and do not take

into account the case of real experimental data.

We discuss here the various Monte Carlo methods that can

be used, their strengths and weaknesses, and the information

that can be extracted from a Monte Carlo simulation.

5.1. Principle of the Monte Carlo methods

In the methods presented in the first part of this article, we

only obtain a single realization of the random vector of the

fitted parameters, �: the set of parameters obtained after

fitting the model to the experimental data. The properties of

this vector can be determined only through analytical

methods, but these can be used only in the linear case.

Nevertheless, we can imagine obtaining these properties

through statistical tools, which are much more generic but

which have the disadvantages of being non-exact and of

needing a large number of realizations of the studied vector to
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Figure 1
Example of isocontour (dashed) and isodensity (continuous) levels for a
generalized linear least-squares model (see Appendix C). Curves have
been rescaled to evidence the different orientation of the joint confidence
regions.



obtain significant results. Hence, to apply these tools, we need

many fit results.

The Monte Carlo method is developed to obtain this

collection of fit results without having to repeat the same

experiment many times; pseudo-experimental spectra are

generated by a computer and then fitted by exactly the same

model to obtain a new realization of the random vector �. If

we generate M spectra, we will obtain M sets of parameters, �1

to �M. From these realizations, the application of the usual

statistical tools will allow us to estimate the expectation, the

covariance matrix or even the distribution function of �. The

estimation of the expectation will give the ‘true’ value of the

parameter; the diagonal of the estimated covariance matrix

will give the error bar on this parameter; the off-diagonal

terms of this matrix will give the correlations between the

parameters; and the distribution function will allow us to

assign an estimated probability to the confidence interval we

want to define for the parameter.

To apply the Monte Carlo method, we must generate

‘experimental’ spectra. To achieve this aim, two questions

must be answered: firstly, how will these spectra be generated,

and, secondly, how many spectra do we need to generate? We

will now study these two questions.

5.2. Which Monte Carlo method?

We can imagine several ways to generate pseudo-experi-

mental spectra, which will lead to different variants of the

Monte Carlo method. All these methods can be used for

different purposes. Basically all the methods can be split into

two classes, but they are all based on the generation of random

values, which requires the knowledge of their distribution law.

5.2.1. Monte Carlo in experimental space. This class of

Monte Carlo methods is founded on the generation of pseudo-

experimental values. The most direct approach is to generate

random values directly for the experimental vector Y.

If nothing is known about that law, a possible method is to

mix the values coming from a set of experimental spectra to

create a new spectrum (for instance, point 1 comes from

spectrum 1, point 2 from spectrum 3 etc.). This method is

called the bootstrap method (Saporta, 1990), and its only

working hypothesis is that the experimental data points are

independent (hence it cannot be applied to Fourier transforms

or filtered spectra). However, this method has the disadvan-

tage of overestimating the error bars on the parameters,

because the fit is realized on a single experimental spectrum

and not on the average. Hence, if m spectra were recorded, we

expect an order of about m1=2 between this method and the

others. For this reason, and since we have information on the

experimental distribution in XAS, we did not consider this

variant.

Conversely, if everything is known about the law of Y, the

method is very powerful; this is the approach used by Ghigna

et al. (2001). However, in this case we in fact fit a theoretical

model on a theoretical spectrum with theoretical error bars;

this approach is useful for theoretical comparisons between

different methods but is useless in daily analysis.

Intermediate variants assume that the family of laws for Y is

known theoretically but its parameters are experimentally

determined. Two cases are of interest in XAS, since it is known

that the experimental distribution is Gaussian (Curis &

Bénazeth, 2001), and thus completely determined by the

knowledge of its expectation and covariance matrix:

(i) The expectation of Y is known (it is a theoretical model),

and the covariance matrix is the experimental covariance

matrix. This case assumes that the model is correct, and hence

it is well suited to studying questions concerning the quality of

a model, which is not the subject of this article. However, we

will see later that in the case of an incorrect model the

deviation from linearity is much stronger. Since, in real cases,

the model cannot be perfect because of various systematic

errors, this deviation may be important but would be

neglected by this method. Hence, it is not well suited to

studying the uncertainties on the fitted parameters, and we will

not consider it further in this article.

(ii) The expectation of Y is the averaged experimental

spectrum, and the covariance matrix is the experimental

covariance matrix. This case can work even if the model is not

perfect but, as we will see later, this approach is not suited to

studying the quality of the model. We will consider only this

method in this article.

A completely different approach to generate values of Y

was proposed by Press et al. (1993): it consists in the use of the

law of � to generate values of �, from which (using the model)

a spectrum is modelled, then noise is added. This method

requires knowledge of the distribution of �, which is one of

the questions we ask in this article, and hence is not suitable

here and will not be considered.

5.2.2. Monte Carlo in parameter space. If the law of Y is

not known or if the computations become too time-consuming

(since each generated spectrum requires a minimization), an

alternative method is to explore the parameter space by

generating random values of the parameters and computing �2

for each set, without minimization. Various methods are

available to achieve this aim: (i) direct generation of para-

meters using their distribution law, as carried out above; (ii)

the Markov–Metropolis Monte Carlo method (Filiponi, 1995),

which defines a constrained random walk in the parameter

space that converges toward the minimum; and (iii) the

reverse Monte Carlo method (Gurman & McGreevy, 1990),

which generates directly atomic positions in the structural

model. Note that the last two methods are, in fact, mini-

mization methods and that a set of parameter values is a side

product.

These three methods share the same limitations. Firstly,

they require a distribution law for generating the values, but

this distribution is not known. This shortfall does not matter

when the study is limited to minimization but may lead to

incorrect results if one wants to consider the diverse values

obtained all along the minimization path, seen as a repre-

sentative set of the parameter values. Secondly, all these

methods study the behaviour of �2 as a function of the para-

meters and hence give information on the �2 isocontour

regions. However, these methods do not consider the fact that
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�2 changes for each different experimental set; in other words,

these methods do not consider the effect of statistical

randomness on the function g. Hence, they do not give any

information on the isodensity regions when they are not the

same as the isocontour regions; these methods have the same

limitation as the ‘brute force’ method.

Because of these two limitations, these methods are not

suitable for the present study and will not be considered

further.

5.2.3. Properties of the selected Monte Carlo method.

Because the fits are applied on the averaged spectrum, an

average spectrum should be generated each time, using the

error on the average, �i=m
1=2
i . However, since the error itself is

determined from the experiment, the error is also random; if

this randomness is neglected, the uncertainties of the para-

meters are underestimated.

The correct way to handle this problem would be the use of

a three-step procedure, using the known law for an estimated

covariance matrix to first generate errors, then apply these

errors to generate mi values and then average them. However,

this process would be very time-consuming. Since the number

of repetitions is small in XAS (each spectrum is recorded

around three or four times, in general), we adopted a quicker

way; we use the experimental error bars to generate averaged

spectra, hence introducing an m
1=2
i factor, which should

compensate for the uncertainty in the error bars or at worst

should overestimate errors (since we are then roughly

equivalent to the bootstrap method, from this point of view).

Another problem is the fact that the expectation is not

perfectly known; to the real expectation �true, an error term is

added and the expectation becomes �true þ �. Hence, when

generating a new spectrum, its values are yi ¼ �i;true þ �i þ �
0
i

(where �i is fixed and �0i varies from one generated spectrum to

another), and we minimize in fact

�2
s ¼

PN
i¼1

�trueðkiÞ þ �i þ �
0
i � f ðki; �1; . . . ; �qÞ

� �2
:

The presence of the extra �i term produces two effects. Firstly,

since the model is now slightly different, the obtained para-

meters are slightly biased, i.e. their expectation is slightly

different from the true one. However, since the nonlinearity of

the model itself implies that a bias exists (even in the linear-

ized form of the model), we can assume this effect to be

negligible.

Secondly, we can write

�2
s ¼ �

2 þ
PN
i¼1

�2
i � 2

PN
i¼1

�i"i;

where �2 is the true residual (exactly corresponding to

that minimized for the experimental spectrum) and "i =

yi � f ðki; �1; . . . ; �qÞ is the individual residual. Hence, the

minimized residual is biased compared with the true one; since

the last term remains small, the Monte Carlo residual is always

higher than the true one. Consequently, the study of the

distribution of the residual cannot be achieved by this method,

and so it is not possible to discuss the quality of the model

from the value of the residual.

5.2.4. How many spectra must we generate?. After

selecting the method, we need to determine how many spectra

must be generated and fitted in order to obtain a good esti-

mation of the � random vector properties.

The lowest value is obtained from the properties of the

expectation estimation by the arithmetic average; the preci-

sion is around �=M1=2, where M is the number of generated

spectra. More precisely, if we assume a Gaussian (‘normal’)

distribution for the parameter, the interval that has a 99%

likelihood of containing the expectation is L ¼ 4:66�=M1=2

wide, assuming that � is perfectly known (Dagnelie, 1973). If

we want to obtain for L and � values of the same magnitude,

we need at least 22 spectra (and 2200 if we want an interval

width around �=10). In reality, � is not known and the

distribution is not Gaussian, and hence this value is a lower

bound. If we want to estimate correctly the correlation terms,

we need even more values. Hence, we suggest a minimum of

100 spectra.

The more numerous the spectra we generate, the more

precise are the estimated values; this is a basic principle of

statistics. Nevertheless, several reasons (including time) give

an upper-level bound for the number of spectra.

On the one hand, it is not very useful to give a precision

much higher than �, the uncertainty in the studied parameter,

which is a consequence of the experiment. The previous result

shows then that it is not useful to generate more than about

1000 spectra, except in special cases when a careful study of

the distribution law of the parameters is undertaken.

On the other hand, the estimates given by the Monte Carlo

approach are biased, because of the method itself (see above)

but also – and mainly – because of the nonlinearity of the

model. This bias remains small, as will be exemplified later and

as shown by Ghigna et al. (2001), but its existence implies that

it is useless to give very precise values for the parameter

expectations, since these expectations are not exactly the

‘true’ values of the parameters.

Note that replacing the complete model by a linearized

model, as is assumed in the classical approaches (see x3.2), also

introduces a bias for the parameters.

In conclusion, for a routine analysis, around 100 spectra are

enough; if one is interested in the distribution of the para-

meters values, it is better to generate around 1000 spectra.

6. Results of the Monte Carlo method: theoretical
spectra

Ghigna et al. (2001) studied the Monte Carlo simulation

results for the case of a model fitted on a theoretical spectrum

with added noise. In that paper the existence of the bias was

studied but no comparison was made with the use of the

�� ¼ 2H�1 formula. In this section we will study these two

points; two examples will be presented.

All the computations presented were carried out using the

LASE software (Curis, 2001). This software, freely available

from http://xlase.free.fr, includes tools for the analysis of fit
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results by both the Monte Carlo method and the ‘covariance-

matrix’ method (linear approximation of the model). All the

fits were realized with the maximum-likelihood estimator

(which is, here, the real maximum likelihood since errors are

perfectly known). Because we are also studying the distribu-

tion, we generated 1000 spectra for the Monte Carlo simula-

tion.

Theoretical spectra were created, for simple structural

models, starting from phases and amplitudes computed with

the FEFF software (http://leonardo.phys.washington.edu/feff).

Gaussian noise was added to these spectra.

6.1. Single-layer model: model for aqueous Zn2+

This model is among the most simple we can imagine; it

consists of a single layer of backscattering atoms, with six O

atoms placed at the apexes of a regular octahedron, of which

the centre is occupied by the zinc cation. The distance between

the Zn and O atoms is 1.95 Å; we selected a Debye–Waller

factor of 5� 10�3 Å2. The variables fitted were the first-shell

distance (with an initial value of 2 Å) and the Debye–Waller

factor (with an initial value of 0.01 Å2). We used an error

constant with k, with a magnitude of 0.01 Å. This error term is

quite important; we selected it to magnify the eventual

differences between the Monte Carlo and linear approxima-

tion methods.

The results are presented in Table 1. For such a simple

model there is no significant difference between the results

obtained by the two methods, especially when keeping in mind

the difficulty of precisely estimating the correlation terms

(especially in the linear case); for this quantity, only the order

of magnitude is significant.

Besides the numerical values, the distribution laws obtained

for each parameter by the Monte Carlo method are all

Gaussian [they all pass through the Kolmogorov test for

normality (Lilliefors, 1967), at the 1% confidence level]. This

result confirms the validity of the linear approximation, which

has a Gaussian distribution.

6.2. Multi-shell model: model of solid cisplatin

The second example involves a more complex model,

including four scattering paths (three single-scattering and one

multiple-scattering paths). This models allows a good repro-

duction of the platinum LIII-edge XAS for solid cisplatin,

½PtðNH3Þ2Cl2�. The errors used for this model were experi-

mentally deduced from spectra recorded at LURE (Orsay,

France), on the D21 beamline. Fitted variables were, for each

shell, its path length and its Debye–Waller factor; a global

edge-energy correction, �E0, was added.

The results obtained by the two methods are presented in

Table 2. The two methods give some very similar values for the

parameters and for their error bars. The results are somehow

different for the correlation terms, but, as before, this result

may be simply a consequence of the difficulty of obtaining

precise values for these quantities.

However, the analysis of the parameter value distributions

shows that the linear approximation reaches its limits of

validity; whereas it predicts a Gaussian distribution for all the

fitted parameters, the use of the Kolmogorov test shows that,

at the 5% confidence level, two parameters do not follow a

Gaussian distribution: �E0 and the length of the multiple-

scattering path, Rdiag. Nevertheless, since the values estimated

for the parameters and their error bars are correct with the

linear method, this difference is not so important, except if

precise confidence intervals are needed.

7. Results of the Monte Carlo method: experimental
spectra

The previous results show that, in the ideal case of a correct

model, no significant difference appears between the results

obtained by the Monte Carlo method and those obtained by

the linear approximation – except for the determination of

confidence intervals in some complex cases. Hence, as far as
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Table 1
Results for a simple model ZnO6 by the classical method and the Monte
Carlo simulation.

The lower part of the correlation matrix corresponds to the results of the
linear approximation, the upper part to the results of the Monte Carlo
simulation. Debye–Waller factors are scaled by 103.

Value Correlation

Variable Linear Monte Carlo R �2
DW

R (Å) 1.9500 � 0.0012 1.9500 � 0.0012 1 �0.15
�2

DW (Å2) 5.00 � 0.37 4.99 � 0.39 �0.14 1

Table 2
Results for a cisplatin model by the classical method and the Monte Carlo (MC) simulation.

The lower part of the correlation matrix corresponds to the results of the linear approximation, the upper part of the Monte Carlo simulation. Distances are in Å.
Debye–Waller factors are scaled by 103 and expressed in Å2. �E0 is in eV.

Variable Value (linear) �E0 RN �2
N RCl �2

Cl RPt �2
Pt Rdiag �2

diag Value (MC)

�E0 8 � 10�5
� 0.061 1 �0.88 0.10 �0.81 �0.42 0.36 0.07 �0.73 �0.29 0.01 � 0.08

RN 2.0000 � 0.0016 �0.88 1 0.01 0.57 0.56 �0.29 �0.04 0.66 0.13 1.9998 � 0.0016
�2

N 3.3000 � 0.1636 0.41 �0.06 1 �0.40 �0.01 �0.15 �0.04 �0.12 0.02 3.302 � 0.150
RCl 2.3300 � 0.0011 �0.81 0.56 �0.64 1 0.20 �0.25 �0.07 0.57 0.20 2.3299 � 0.0010
�2

Cl 3.4000 � 0.0929 �0.16 0.38 �0.02 �0.04 1 �0.15 �0.06 0.31 0.06 3.395 � 0.098
RPt 3.3800 � 0.0057 0.46 �0.39 0.03 �0.32 �0.06 1 �0.09 0.12 �0.21 3.3802 � 0.0055
�2

Pt 13.300 � 0.9063 0.08 �0.02 �0.01 �0.08 �0.01 �0.04 1 �0.04 0.38 13.30 � 0.8984
Rdiag 4.3300 � 0.0023 �0.68 0.61 �0.31 0.54 0.13 0.07 �0.02 1 0.02 4.3297 � 0.0025
�2

diag 14.000 � 0.3775 �0.24 0.16 �0.11 0.19 �0.05 �0.22 0.42 0.13 1 14.105 � 0.3762



the estimator used for the minimization is the maximum-

likelihood estimator (that is, as far as the formula �� ¼ 2H�1

is exact for a linear model), the linear approximation can be

applied.

Nevertheless, under a real analysis, we never work with a

correct model, because of the approximation in the theory

itself and because of the systematic errors. In particular, we

must use a small number of scattering paths to reproduce the

experiment, to limit the number of fitted parameters, and to

avoid instability problems during the fit procedure related to

the influence of numerous and small contributions that tend to

cancel each other. In other words, we must forget some paths

in this model building, and hence this model is basically

incorrect. We can then wonder if the linear approximation is

still applicable.

A second problem, which is somehow a consequence of the

previous one, is the fact that in some cases the maximum-

likelihood estimator (weighted least squares) does not

produce an acceptable model, whereas generalized least

squares with a kp weighting gives an acceptable one; this fact

is, in some way, a consequence of neglecting terms, because the

kp weighting lowers the importance of the low-k values, where

the paths are the more numerous. In this case, the �� ¼ 2H�1

formula is definitely not applicable and only the Monte Carlo

method is valid (as for fits on spectra with non-independent

points – fits on Fourier transforms, for instance), since we do

not know any software that implements the complete formula

given in x3.1

7.1. Fit with weighted least squares

We studied the experimental spectra of an aqueous Zn2þ

solution (0.5 M zinc chloride, recorded on beamline D21,

LURE, Orsay, France) at the Zn K-edge, with the structural

model presented previously fitted on the total XAS oscilla-

tions. This model is known to be incomplete, since multiple-

scattering paths are known to contribute to this spectrum

(Kuzmin et al., 1997). However, the aim here is to compare

results obtained from the Monte Carlo method and from the

linear method, and not to obtain precise values for fitted

parameters; hence it is a good example for this study.

Numerical results for this case are presented in Table 3. The

conclusions are the same as for the theoretical study; the linear

approximation and the Monte Carlo method lead to the same

results for the parameters and their errors; the distribution

laws study indicates a normal distribution (at

the 1% confidence level, with the Kolmo-

gorov test), which is in agreement with a

linear approximation.

7.2. Fit with generalized least squares

Since the linear approximation cannot

give valid results, there is no need to make a

comparison between the two techniques.

However, when weighted least squares does

not give a good result, that fact suggests

interference between various paths which,

individually, are not very important; hence it becomes very

difficult to obtain convergence towards the true values. We will

show here how a careful ‘in depth’ use of the Monte Carlo

results may help, in this case, to select between paths that are

significant and paths that are not.

We will use the example of the solid cis-diammine-1,1-

cyclobutanedicarboxoplatinum(II) {‘carboplatin’; ½PtðNH3Þ2-

ðOOCÞ2C4H6�} Pt LIII-edge model. The spectra were recorded

at LURE, on the D44 beamline. Details of the model are

presented elsewhere (Curis et al., 2001); we will present here

only the final result. This model includes four scattering paths

(three single-scattering paths and one multiple-scattering

path). The fit was performed with a k2 weighting, which

corresponds to the use of the �2
g;2 estimator; this method gives

a good reproduction of the experimental EXAFS and of its

Fourier transform (Fig. 2a). Monte Carlo simulation was

performed with experimental error bars, and a set of 1000

spectra was generated.

The results for the Monte Carlo method are presented in

Table 4; for comparison, we also give the results obtained by

the linear approximation with weighted least squares (�2
w

estimator). For clarity, correlation terms are not reported.

The first comment to be made about these values is that, for

the third path, the uncertainty obtained by the linear model

for the path length is unacceptable. With the other estimator,

this uncertainty is much smaller and, while still important, is

acceptable. The same effect is observed for the Debye–Waller

value.

For other parameters, uncertainties are smaller with the

linear model. This is understandable, since the linear model is

quite close to the maximum-likelihood method, and hence will

give the estimators with the smallest variance.
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Table 3
Comparison of results from analytical and Monte Carlo methods for a fit
on experimental Zn spectra.

Distances (R) are in Å, Debye–Waller factors (�2
DW) in Å2, and the edge-

energy correction (�E0) in eV. For the correlation matrix, the upper-diagonal
part presents the Monte Carlo results and the lower-diagonal part the
analytical results.

Value Correlation

Variable Linear Monte Carlo �E0 R �2
DW

�E0 2.84 � 0.04 2.84 � 0.03 1 �0.38 �0.21
R 2.056 � 0.005 2.059 � 0.004 �0.37 1 �0.003
�2

DW 14.49 � 0.07 14.49 � 0.08 �0.22 �0.003 1

Table 4
Results for a solid carboplatin model: paths and values with the linear model and the Monte
Carlo model.

�E0 was also fitted, giving �2.97 (12) eV with the linear model and �2.3 (2) eV with the Monte
Carlo method. Distances are in Å. Debye–Waller factors are scaled by 103 and are in Å2. Monte
Carlo values are closer to the known structure and more physical.

Path R, linear
R, Monte
Carlo R, cryst. �2, linear

�2, Monte
Carlo

1: Pt N/O Pt 2.0258 � 0.0007 2.028 � 0.002 2.025 1.87 � 0.05 2.00 � 0.14
2: Pt CCOOH Pt 2.6599 � 0.0382 2.94 � 0.06 2.882 52.7 � 5.78 20 � 60
3: Pt C1 Pt 2.7175 � 2.3938 3.16 � 0.14 3.019 500 � 300 80 � 18
4: Pt N Pt O Pt 4.0321 � 0.0035 4.067 � 0.006 4.050 0.50 � 0.42 2.5 � 1.4



The second comment concerns the values obtained for the

third-path parameters and for �2
DW;2. Why do we obtain such

high uncertainties? Analysis of the 1000 values obtained for

these parameters, after the Monte Carlo simulation, shows

that, in fact, about half of the fits give physically absurd values

for these parameters, suggesting that the paths involved are

negligible (�2
DW ¼ 0:5 Å2). This result may arise from two

factors; either the model is false or the importance of these

paths is low, and hence, because of the

statistical noise, it is difficult to evidence

them.

To select between these two explanations,

we realized a model without the third scat-

tering path. This model is acceptable but

does not reproduce the 2.5 Å features of the

Fourier transform as well as the first model

(Fig. 2b, and especially inset); analysis of the

Monte Carlo method results show the same

problem of high uncertainties for the para-

meters of the remaining path (Table 5; for comparison, results

for the linear model are given; the high uncertainty for �2
DW;2

suggests rejection of the model as unphysical). However,

analysis of the Monte Carlo results for that problematic path

evidences an interesting property (Fig. 3): the joint distribu-

tion for the couple ðR2; �
2
DW;2Þ is bimodal. Furthermore, the

two modes of this distribution correspond to the values

obtained for parameters from paths 2 and 3 in the ‘complete’

model, close to the crystallographic values.

These results suggest an explanation: each single-scattering

path on the C atoms gives a small contribution to the signal

and, because only the distance is slightly modified between

these two paths, their contributions are quite similar. Because

of the added noise, when the Monte Carlo spectra are

generated it becomes difficult to distinguish between the two

contributions. Hence, while fitting the partial model, some fits

give the first path contribution, while others give the second,

and therefore we obtain the bimodal distribution. While fitting

the complete model, sometimes both paths are recognized, but

sometimes only one is and the other becomes negligible by the

forcing of its Debye–Waller factor to unacceptably high

values; this phenomenon leads to very high uncertainties.

These results hence allow us to conclude that both paths

must be present in the model, and hence the complete model is

valid; however, because of the statistical noise, it is not

possible to obtain the correct values for the Debye–Waller

factors. This result can be obtained from a Monte Carlo study
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Table 5
Results for a solid carboplatin model: paths and values with the linear model and the Monte
Carlo model.

�E0 was also fitted, giving �2.97 (7) eV with the linear model and �2.2 (2) eV with the Monte
Carlo method. Distances are in Å. Debye–Waller factors are scaled by 103 and are in Å2.

Path R, linear
R, Monte
Carlo R, cryst. �2, linear

�2, Monte
Carlo

1: Pt N/O Pt 2.0258 � 0.0007 2.028 � 0.002 2.025 1.87 � 0.05 2.00 � 0.14
2: Pt CCOOH Pt 2.6507 � 0.0072 2.97 � 0.04 2.882 52.7 � 4.73 18 � 7
4: Pt N Pt O Pt 4.0321 � 0.0025 4.065 � 0.006 4.050 0.50 � 0.41 3.1 � 1.4

Figure 3
Joint distribution of the ðR; �2Þ values for the Pt CCOOH Pt path. There are
clearly two modes in this distribution.

Figure 2
Model of the solid carboplatin EXAFS spectrum (Fourier transform:
module and imaginary part). Continuous lines: experiment; squares:
model. (a) Complete model; (b) three-shell model. An inset showing the
region where the two models differ is given for each model.



alone, which shows the effect of noise on the fit; the linear

model just signals that a problem exists.

8. Conclusion

In this study, we recalled the different limitations of three of

the methods applied for the estimation of the error bars on the

fitted parameters in EXAFS analysis. We also showed that the

classical formula �� ¼ 2H�1 and the ‘brute force’ method

rely on the same hypotheses. If one of these hypotheses is not

satisfied, the use of the formula is meaningless. In particular,

this formula is useless when fitting a Fourier transform or a

filtered spectrum (points are not independent) or when using a

kp weighting scheme (it is not the maximum-likelihood esti-

mator). However, the Monte Carlo method can give results

that are statistically meaningful in all cases.

Our work indicates the best way to use this method; the

most appropriate variant is the use of the experimental

average and error bars to generate the spectra; for a typical

analysis it is enough to generate around 100 spectra.

When maximum-likelihood least squares are used, one must

address the question of the linear approximation validity. The

results in this study suggest that, as long as the model is not too

distant from reality, it is acceptable to apply the linear

approximation, except maybe in the case of quite complex

models, especially if one wants to derive true confidence

intervals.

The last example also showed that the Monte Carlo method

can provide more information than the linear method, when

the results are carefully analysed, for the case of complex

models. Hence, even when the linear approximation can be

used, it may be interesting to perform a Monte Carlo analysis.

The main drawback of the method is the time it takes to

obtain a result. For simple models, with recent increases in

computer power, the process is quite rapid (for the Zn models

it takes about half an hour on a 900 MHz computer for 1000

spectra); for complex models, it is much longer (about one

night in the worst case we studied, on the same computer for

1000 spectra). However, this method may reveal interesting

features and the linear model may sometimes reach its limit of

validity.

Hence, our advise would be to perform a Monte Carlo

analysis when possible, or whenever there is a doubt about the

results of a linear model; the linear model should be reserved

for quick estimation of error bars, without statistical meaning

or in very simple cases, and only when the conditions

mentioned here are met.

APPENDIX A
Derivation of the maximum-likelihood formula

The principle of the derivation of this formula is well known

[see, for instance, Saporta (1990) or Press et al. (1993)];

however, it is classically derived on non-repeated measures.

Therefore, we present here the derivation in the case of

repeated measures (not always with the same number of

repetitions), in order to obtain the formula in the more

general case. We will also emphasize at which derivation step

each of the above-mentioned hypotheses occurs; these

hypotheses will be written in bold face in this appendix.

Let us consider measures for N different values of the x

variable, with subscript i. For each of these values, we have mi

different measures (yi values), with subscript j. Most often, mi

is the same for each point (i.e does not depend on i), but some

authors propose experimental protocols in which only a few

experimental points are repeated, to estimate the experi-

mental uncertainties (Filiponi, 1995). Each experimental

measure is then doubly subscripted: Yi;j. We want to maximize

the probability of simultaneously observing all these values,

that is the quantity V (‘likelihood’), defined as

V
QN
i¼1

Qmi

j¼1

dyi;j ¼ p
TN
i¼1

Tmi

j¼1

Yi;j 2 yi;j; yi;j þ dyi;j

� � !
:

Since 0<V < 1 (it is a probability) and the logarithm is an

increasing function, maximizing V is equivalent to maximizing

ln V, and hence equivalent to minimizing � ln V; this last form

is commonly used for convenience. Let us now assume that

experimental points are (statistically) independent. One may

then write

� ln V �
PN
i¼1

Pmi

j¼1

ln dyi;j ¼ �
PN
i¼1

Pmi

j¼1

ln p Yi;j 2 yi;j; yi;j þ dyi;j

� �� �
¼ �

PN
i¼1

Pmi

j¼1

ln pi;j �
PN
i¼1

Pmi

j¼1

ln dyi;j;

where pi;j is a measure of the probability that Yi;j takes the

value yi;j. To determine this probability, it is necessary to know

the properties of the experimental vector Y. Let us assume a

normal distribution with parameters �g;i and �g;i; then

pi;j ¼
1

�g;ið2�Þ
1=2

exp �
yi;j � �g;i

� �2

2�2
g;i

" #
:

Let us now assume that �g;i ¼ f ðxi; �1; . . . ; �qÞ; in other words,

that the model is correct. One can then write the maximum-

likelihood estimator as

� ln V ¼ ðln 2�=2Þ
PN
i¼1

mi þ
PN
i¼1

mi ln �g;i

þ ð1=2Þ
PN
i¼1

Pmi

j¼1

yi;j � f ðxi; �1; . . . ; �qÞ
� �

=�g;i

� �2
:

The first term is constant; it does not interfere with the

minimization, and we will not recall it later. Hence, with the

usual definition of the expectation and variance estimators

(average value and mean-square deviation), the last term can

be rewritten to evidence the average spectrum. We then

obtain, calling V 0 the likelihood without the constant term,
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� ln V 0 ¼
PN
i¼1

mi ln �g;i þ ðmi � 1Þs�2i =�
2
g;i

� �

þ
XN

i¼1

yi � f ðxi; �1; . . . ; �qÞ

�g;i=ðmiÞ
1=2

" #2

:

The first term depends only on the variance of the normal law

and on its experimental estimation. If we assume that the

standard deviation does not depend on the fitted parameters,

this term is constant and can be neglected, and we can

consider only the last term.

APPENDIX B
Derivation of the covariance-matrix method formulas

Textbooks present the derivation of this well known formula

only for the linear ‘statistical’ least-squares case [see, for

instance, Press et al. (1993)] and do not state all the hypoth-

eses. We will present here the derivation in the most general

case of generalized least squares (since simple least squares,

statistical least squares and maximum-likelihood least squares

are special cases with, respectively, W ¼ I, W ¼ S��1 and

W ¼ ��1); hypotheses will be in bold face when introduced.

If the model f is linear for the parameters, one can always

write f ðxi; �1; . . . ; �qÞ ¼ �1 f1ðxiÞ þ � � � þ �q fqðxiÞ, where the q

functions f1; . . . ; fq are the basis functions of the model.

Hence, with vector notation, we have Yth ¼
tF �, where F is a

q� N matrix that contains the values of the basis functions for

each of the xi points. Hence, the least-square estimators can be

rewritten, with matrix notation, as a quadratic form,

�2 ¼ tðY� tF�ÞWðY� tF�Þ:

If there is no constraint, the minimum of the quadratic form is

obtained when its first derivative cancels, which occurs when

the following equation is satisfied,

F W Y ¼ F W tF �:

This system is linear; it has a unique solution. Noticing that the

second derivative of this quadratic form is H ¼ 2F W tF, this

solution is

� ¼ 2H�1 F W Y ¼ gðYÞ:

This expression gives the analytical definition of the function

g, which can then be studied. Since g is linear, the relation

between the covariance matrix �� of � and the covariance

matrix �Y of Y is straightforward,

�� ¼ 4ðH�1F WÞ�Y
tðH�1F WÞ ¼ 4H�1F W �Y

tW tF tH�1:

In general, it is not possible to simplify this formula. However,

if one uses maximum-likelihood least squares, we have

W ¼ ��1
Y and the previous expression then simplifies and

gives the classical result, �� ¼ 2H�1.

If simple least squares are used (W ¼ I), experimental

points are independent and the error is constant, a second

simple case arises: �Y ¼ �
2I. After simplification, we then

obtain �� ¼ 2�2H�1.

In any of these cases, since g is linear and Y is Gaussian, the

parameters vector � is itself Gaussian as far as the H�1FW

term is perfectly known. This is not the case if W, for instance,

is deduced from experiment, especially in the case W ¼ S��1.

APPENDIX C
Obtaining isocontour and isodensity curves

We will consider only the linear case, with the notations and

results introduced in Appendix B.

C1. Isocontour curves

Isocontour curves are defined by the equation �2 ¼ C,

where C is an arbitrary constant; since we are interested in

isocontours of �2 around the minimum, �min, the quadratic

form can be rewritten

�2
ð��Þ ¼ t

½Y� tFð�min þ ��Þ�W ½Y�
tFð�min þ ��Þ�:

By developing this equation, and noting that
t½Y� tFð�minÞ�W ½Y�

tFð�minÞ� is constant and that all terms

equal their transpose (they are numbers), the definition

equation then becomes

C ¼ �2
ð��Þ ¼ t�� F W tF �� þ 2 t�min F W tF �� � 2 tY W tF ��:

Now, if we replace �min by its expression (see Appendix B),

and note that W and F W tF are symmetric, we can see that the

last two terms are equal. Finally, the isocontour curves are

defined by the equation

C ¼ �2
ð��Þ ¼ t�� F W tF ��:

C2. Isodensity curves

The parameters vector � is Gaussian, with expectation �min

and covariance matrix ��. Since this matrix is non-singular,

the distribution function (density of probability) of � is then

f�ð�Þ ¼ ð2�Þ
q
j��j

� �1=2
exp �t����1

� ��=2
� �

:

Since the pre-exponential factor is constant, we obtain

f�ð�Þ ¼ C, which defines the boundaries of confidence regions

on �min, if the term in the exponential is constant. Hence

t����1
� �� ¼ C:

C3. Example

We will consider for illustration a two-parameter linear

model: a two-shell model for the first peak of the cisplatin Pt

LIII-edge spectrum, with only the number of N, N1, and of Cl,

N2, atoms fitted via k2-weighted least squares but with error

bars that are constant with k; hence, we are out of the

maximum-likelihood model. Since we are only interested in

comparing the shapes of the regions obtained by the two

formulas, the precise value of the constant C is of no interest.

The values for the F matrix were chosen from FEFF-

computed theoretical spectra for cisplatin; points were
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assumed to be independent and to have a constant error of

0.01. Note that the shape of the region does not depend on the

experimental data values (only its location).

Both t����1
� �� ¼ C and C ¼ �2ð��Þ = t�� F W tF �� =

t��H��=2 will lead to ellipses in the ðN1;N2Þ plane, differing in

orientation. The orientation is defined by the eigenvectors of

the matrix (which give the main axes of the ellipses).

We first give the two covariance matrices, obtained from the

exact formula and from the inversion of the Hessian,

�� ¼
0:0475 �0:0508

�0:0508 0:0791

� �

and

2�2H�1 ¼
0:0017 �0:0010

�0:0010 0:0019

� �
:

As can be seen, the use of the classical formula when

unadapted can strongly underestimate the uncertainties. Fig. 1

gives the ellipses obtained for each of these ‘covariance’

matrices; the different orientations of the main axes between

the true confidence region and the region obtained by the

brute-force method are clearly observed.

The authors thank Bruno Blanchet for his help in mathe-

matical developments and Alain Michalowicz for discussions

about statistics and XAS.
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