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A coherent X-ray scattering method for investigating the formation of the

contact region between two solid surfaces is presented. Diffraction of X-rays

from two crossed cylindrical quartz surfaces, coated with Cr and TiO2, revealed a

total contact area of 90� 10 mm. In the so-called Hertz model for two surfaces in

non-adhesive contact, this value is directly related to the displacement of the

surfaces and the applied external force. Values of 40 � 3 nm for the

displacement and 24 � 3 mN for the force are found. The method is also useful

for studying liquids in confinement.

Keywords: X-ray diffraction; Hertzian contact; confined fluids.

1. Introduction

During the last half-century a true revolution has occurred in

the science of friction, lubrication and wear, commonly known

as tribology. The interplay between the development of new

experimental techniques and new theoretical insights stimu-

lated a shift to a new field, called nanotribology, that aims at

understanding friction between two solid surfaces on the

molecular scale, both in the presence and absence of fluids. For

an overview of the experimental and theoretical progress

made in this field we refer to Müser et al. (2003). One very well

known tool is the surface force apparatus (SFA), that was

developed to study contact regions between surfaces. The sizes

of the contacts under investigation with this apparatus can

range from 10 to 100 mm. In the SFA the distance between two

curved molecularly smooth mica surfaces can be controlled to

sub-angstrom precision. The surfaces have a cylindrical shape

and are mounted with the axes crossed. The crossed cylinders

form a disc-like contact region. By use of a set of springs, shear

and normal forces between the surfaces can be measured.

Also, fluids in confinement between the mica surfaces have

been investigated with the SFA. The number of experimental

studies on confined fluids with the SFA is growing steadily

(Heuberger et al., 2001; Qiao & Christenson, 1999, 2001;

Becker & Mugele, 2003; Lin & Granick, 2003; Spikes &

Granick, 2003).

Here we report observations of X-ray diffraction from the

contact region of two crossed cylindrical surfaces. This

experiment is in the first place a reference for future X-ray

diffraction studies of confined molecular liquids, and in the

second place can be considered a method of measuring the

degree of coherency of the X-ray beam. Coherent X-ray

diffraction effects from many objects have been studied, from

pinholes and slits (Leitenberger et al., 2003, 2004; Panzner et

al., 2003; Livet et al., 2003) or from fibres (Kohn et al., 2000).

2. Experimental

The crossed-cylinder geometry is locally equivalent to a

sphere near a flat surface. Upon touching, a disc-like contact

zone is formed.

Quartz (SiO2) cylinders of radius 10.3 mm were coated with

a layer of Cr and a layer of TiO2 of thicknesses 25 nm and

500 nm, respectively. The layers serve for optical inter-

ferometry. TiO2 has a high absorption coefficient for X-rays,

which helps to observe diffraction effects. Multiple-beam

interferometry is a standard technique for measuring the

distance between the surfaces in an absolute way (Tolansky,

1970).

The quartz surfaces were bought from Mark Optics. The

surface roughness was smaller than 10 Å. First, the quartz

surfaces were cleaned extensively using acetone. Then they

were brought into a sputtering device where they were first

plasma-cleaned for 5 min in an Ar plasma, and then the Cr and

TiO2 layers were sputtered at low Ar pressure (10�4 Pa). The

r.m.s. roughness and the figure of error of the surfaces were

measured using an interference microscope and were 3 Å and

0.001�, respectively. Actually, this is the roughness and the

figure of error for the Cr layer, since TiO2 is transparent in the

optical spectrum. The surfaces were mounted in the SFA,

which was then transported to the beamline. Fig. 1 shows the

experimental set-up for the diffraction experiment, which was

carried out at the materials science wiggler beamline at the

Swiss Light Source (Patterson et al., 2005). The X-ray energy

was 12.4 keV. The flux at this energy is 9.0 � 109 photons s�1

mm�2 for a non-focused beam (spot size 9 mm � 100 mm).

The source divergence is 0.23 mrad vertically and 2.5 mrad

horizontally. The SFA was mounted on a five-axis surface

diffractometer (Newport). The surfaces of the SFA were

mounted such that the axis of the lower cylinder was parallel

to the X-ray beam. Aligning the cylinders in the X-ray beam



was not trivial, but by making use of the reflection from the

lower surface it could be performed to within 5 mdeg. The

upper surface was mounted on a double leaf spring and could

be positioned vertically using motors. After the alignment the

upper surface was brought into contact with the lower one (the

leaf springs prevent damage to the TiO2 layer). The CCD

camera, a 2048 pixel � 2048 pixel Hystar (magnifying taper

1:3, effective pixel size 4.36 mm), was mounted on the detector

arm at 1200 mm from the sample, implying a subtended angle

per pixel of 3.63 mrad.

In front of the sample, at 20 cm, two pairs of slits were

mounted (horizontal and vertical). After the sample, in front

of the detector, another pair of slits was available. The sagittal

and meridional focusing optics of the beamline were switched

off in order to produce the minimum vertical divergence. For

this energy the refractive index n of TiO2 is 1 � � � � =

1 � 5.538 � 10�6
� i�1.283 � 10�7, the absorption length

labs = �/(4��) = 62 mm and the critical angle for total reflection

�c = (2�)1/2 = 0.19�. The sample was tilted by an angle � = 0.12�,

still below �c . A clear reflection and part of the direct beam

were seen on the CCD camera. Where the two surfaces were

touching, the direct beam was obscured and the reflection had

a dark region. The pre-sample slits were set to select a hori-

zontal region of interest that was 500 mm wide. Both the

reflected and direct beams were then obscured by the detector

slits, and an exposure time of 10 min was necessary to obtain

the Fraunhofer diffraction pattern shown in Fig. 2(a). We also

attempted to observe diffraction at an incoming angle beyond

the critical angle (� = 0.4�), but no features were seen. Owing

to the longer path lengths through the multilayer, most of the

X-rays are absorbed.

3. Results

Fig. 2(a) shows the measured diffraction pattern from the

crossed cylinders in contact. The well resolved fringes in the

side lobes have a spacing which is inversely proportional to the

local gap width. As the gap widens at either side of the

touching point between the cylinders, the fringe spacing

becomes smaller. The central part of the pattern shows a

broad plateau, which we attribute to the formation of a

pressure contact, effectively widening the contact region. A

fringe pattern is also seen in the plateau, implying interference

of the X-rays travelling through the contact region. One could

speak of a ‘soft slit’, reflecting the height-dependent absorp-

tion at the curved edge of the upper cylinder. There is also a

second class of broader horizontal fringes in the side lobes,

with the same periodicity as the fringes in the central part. It is

unclear how these arise, but the similarity with the central part

suggests also a ‘soft-edge’ effect at the upper cylinder.

Fig. 2(b) shows a fit to the measured data. For the calcu-

lation of the fringe pattern in the side lobes, we propagate the

X-rays through a two-dimensional spherical-flat geometry (see

inset in Fig. 1). Further details about the propagation are

described in the following section. Fringe patterns for a series

of gap sizes in the range from 0 to 1.2 mm were obtained. The

refractive index on both sides of the gap was that of TiO2.

After reflection on the lower surface, the parallel beam will

become fan-like. This effect is seen on the detector as a

broadening of the diffraction pattern in the horizontal plane.

To first-order approximation, the horizontal position on the

detector at which a reflected ray arrives is given by the formula

y + L�i y/R, where L is the distance from the sample to the

detector, �i is the incoming angle, y is the distance from the
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Figure 2
Diffraction pattern from a crossed-cylinder configuration: (a) experi-
mental pattern and (b) calculated pattern using the wave-propagation
formula described in the text. y is the horizontal distance from the center
of the contact area, calculated from the corresponding detector position
with the formula mentioned in the text.

Figure 1
Alignment of the crossed cylinders in the X-ray beam. Slits define the
beam size. The incoming angle �i was set to 0.12�. On the detector we see
a range of outgoing angles �e. The inset shows the crossed cylinders
coated with Cr and TiO2.



center of the contact area, at which the incoming ray is

reflected, and R is the radius of curvature of the cylinder. The

abscissas of Figs. 2(a) and 2(b) refer to y, which is calculated

from the horizontal position on the detector using the above-

mentioned formula. To describe the form of the contact region

we assumed the validity of the Hertz model (see below). We

assumed a rotationally symmetric contact region in the hori-

zontal plane, and we found the best agreement for a diameter

of 90 � 10 mm, which was verified interferometrically using

visible light. The fringes in the side lobes are well reproduced

by the calculation, although, as noted above, the broader

horizontal fringes could not be explained. Instead, a sort of

‘secondary’ fringe pattern, with much smaller periodicity,

appears as the gap size becomes larger. These secondary

fringes are not seen in the measurement, perhaps owing to

limited angular resolution. In Fig. 3 we show the projected

interference pattern for the central data. This contains all the

information about the formation of the contact region. For a

discussion we refer to the final section.

We also mentioned that this method is useful for estimating

the coherence length of the X-ray beam. In the measured

fringe pattern in Fig. 2(a) a gap of width up to 1.2 mm is

resolved, which means that the vertical spatial coherence

length �v of the X-ray wavefront is at least this size. Of course,

this is not a very useful estimation when we know that the

vertical transversal coherence length �v should be in the range

25–100 mm. To have a better angular resolution, the distance

from the sample to the detector must be increased. A sample-

to-detector distance of 5000 mm and a pixel size of 4.36 mm

correspond to an angular resolution �� of 0.87 mrad, giving a

spatial resolution of �/�� ’ 115 mm, which is enough to

measure the coherence length accurately. We also want to

point out that it is possible to measure the horizontal coher-

ence length by mounting the SFA sideways, instead of upright

like we did here. A typical value for the horizontal coherence

length �h at this beamline is 3–10 mm.

4. Wave propagation

There are several approaches for calculating the wave

propagation through a thick phase object. Widely used, for

example, is the numerical solution of the two-dimensional

Helmholtz equation for objects with a general refractive index

profile n in the plane of propagation. We apply wave optics

and some appropriate approximations to obtain an analytical

expression for the Fraunhofer diffraction pattern. The

diffracted amplitude in the far field is

 ð�i; �eÞ ¼ C
R1
��

dx exp i’ðx; �i; �eÞ
� �

exp ikð�i þ �eÞx
� �

� exp i’ðx; �i;��eÞ
� �

exp ikð�i � �eÞx
� �

� exp i’ðx;��i; �eÞ
� �

exp ikð��i þ �eÞx
� �

þ exp i’ðx;��i;��eÞ
� �

exp �ikð�i þ �eÞx
� �

: ð1Þ

This is the Helmholtz–Kirchoff integral for Fraunhofer

diffraction. The phase and amplitude of the incoming wave-

front are distorted by the object, here the crossed cylinders,

and the Fourier transform of the distorted field gives the far-

field diffraction pattern. Looking at Fig. 4, it becomes clear

that the four terms take into account the pre- and post-

reflections at the lower surface. We consider the case of total

reflection at the lower cylinder. The phase ’ðx; �i; �eÞ depends

on the optical path length through the upper surface. From the

symmetry of the crossed-cylinder geometry it is clear that

inverting the path of the rays must result in a mirror plane (in

Fig. 4 the plane A, parallel to the XY plane). The optical path

length l þ l 0 (see Fig. 4) can be derived using simple geometry

(we neglect refraction),

l ¼ tpþ pqþ qr;

tp ¼ R2
� ðR� x0Þ

2 cos2 �i

� �1=2
;

pq ¼ ðR� x0Þ sin �i;

qr ¼ b= cos �i;

x0 ¼ qv ¼ xþ �þ b tan �i:

ð2Þ

l 0 can be derived analogously: �i has only to be replaced by �e .

To first-order approximation, ’ðx; �i; �eÞ then becomes
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Figure 3
The average of the central part of Fig. 2: experimental data (solid line); fit
for a Hertzian contact with a diameter of 90 mm (dashed line).

Figure 4
Model for deriving the mathematical expression for the phase ’, equation
(3). The Hertz model describes the contact region for a displacement �
and a contact radius d. A supplementary parameter b was included to
explain the central plateau in the diffraction pattern of Fig. 2(a).



’ðx; �i; �eÞ ¼ k�n l þ l0ð Þ

¼ k�n 2Rðxþ �þ b�iÞ þ R2�2
i

� �1=2
þR�i þ b

n

þ 2Rðxþ �þ b�eÞ þ R2�2
e

� �1=2
þR�e þ b

o
; ð3Þ

where �n is the difference in the refractive index between air

and TiO2 and k = 2�/�. The angles �i and �e are the incoming

and outgoing angles, respectively, b is the radius of the plateau

in the central part, x is the vertical coordinate, originating at

the lower surface, � is the displacement of the surfaces and R is

the radius of the upper surface. A remark on the validity of

equation (3) should be made: neglecting refraction is only

valid when �� �c. As sin � = tp=R, this leads, to first-order

approximation, to the condition x0 � ð�2
c � �

2
i ÞR=2. For an

incoming angle �i = 0.12� and a critical angle �c = 0.19� for

TiO2, we find x0 � 34 nm. Therefore in our approximation we

do not take into account the refraction from the first 34 nm of

the upper surface.

5. Discussion and conclusion

The central part of Fig. 2(a) contains information on the

formation of the contact region. For the fitting in Fig. 3, we

have already mentioned the Hertz model. This is the simplest

model for an elastically deformable sphere on a rigid surface

(see Fig. 4). For a treatment of the Hertz theory, see Israe-

lachvili (1991). The following equations for the contact radius

and the central displacement can be derived,

contact radius : d3 ¼ RF=K; ð4Þ

displacement : � ¼ F=Kd: ð5Þ

R is the radius of the sphere, K is the elastic modulus of the

sphere and the surface and F is the external load. Searching

for the best resemblance with the experimental data, we find

that a plateau of width 2b = 32 � 6 mm, where the upper

surface is flattened, should be taken into account in the

simulation. Further, for a displacement � of 40� 3 nm the fit in

Fig. 3 was obtained. Using (4) and (5) we find a contact radius

d of 29 � 2 mm and a total contact area (2a = 2d + 2b) of 90 �

10 mm. For the case R = 10.3 mm and K = 10.4 GPa for TiO2,

the Hertz theory gives an external force of 24 � 3 mN

[equation (5)]. The deviations give an upper and lower

boundary value for which acceptable agreement is obtained.

We conclude that the Hertz model confirms the observed

value for the contact diameter of approximately 90 mm.

However, this parameter can more easily be determined using

microscopy. More interesting is that the displacement para-

meter � is a direct fit parameter. Fig. 3 shows how X-rays

penetrate the contact region. We attribute the differences

between theory and experiment to the figure of error of the

cylinder surfaces, which was not taken into account in our

model. Despite this shortcoming, we believe this scattering

technique is sensitive enough to make reasonable estimates of

the geometry of any kind of contact between two surfaces.

Extensions to more complicated models that take into account

adhesion are possible. Instead of an analytical expression for

the diffraction, an advanced numerical approach would then

be more favorable as a model for the wave propagation.

The authors would like to acknowledge M. Horisberger for

sputtering the quartz surfaces.
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