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A phase problem is discussed for high-resolution Fourier transform X-ray

spectroscopy where the phase of the interferogram is missing. A numerical

iterative method and an analytic logarithmic Hilbert transform method were

tested for recovery of the missing phase information from the modulus of the

interferogram. These methods were applied to measured data of the Si 14 6 0

back reflection and a calculated interferogram from an X-ray Fabry-Perot

interferometer. The iterative method experienced an ambiguity of reconstruc-

tion; however, the ambiguity was relatively small and may be acceptable. The

logarithmic Hilbert transform method gave a poorer reconstruction for the

measured data owing to a lower signal-to-noise ratio, whereas it recovered the

original spectrum from the calculated data without noise.
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1. Introduction

Recently an X-ray Michelson interferometer with a large path

difference of 6.1 mm was realised (Tamasaku et al., 2003).

Such an interferometer combined with the Fourier transform

technique would fill a resolution gap in X-ray spectroscopy

between high-resolution crystal monochromators and time

domain measurements (Gerdau et al., 1986). For example, the

highest-resolution crystal monochromator has an energy

resolution of �120 meV at 14.41 keV (Yabashi, Tamasaku et

al., 2001), whereas the time domain measurement covers

energy resolutions below �10 meV (Baron, 2000). At present,

the crystal perfection limits the resolution of the crystal

monochromator, while the response time limits that of the

time domain measurement. On the other hand, the energy

resolution of the Michelson interferometer is independent of

these limitations, but is determined simply by �=2xm, where �
is the wavelength and xm is the maximum path difference.

With xm = 100 mm, an energy resolution of 6.2 meV at

14.41 keV will be realised using Fourier transform X-ray

spectroscopy.

However, full determination of the spectrum requires an

interferogram sampled with an interval of less than �=2 over

xm, which consists of more than 2� 109 data points under the

above conditions. Furthermore, the path difference must be

controlled with a resolution finer than �=2. In practice the

phase of the interferogram cannot be measured and must be

recovered for reconstruction of the spectrum. Since a phase

problem has been one of the most common problems in the

optical measurements, there are many discussions about the

phase recovery. In connection with the one-dimensional phase

problem at present, many attempts were carried out both

theoretically and experimentally, for example, using a loga-

rithmic Hilbert transform (Bates, 1969; Burge et al., 1976), an

exponential filter (Kohler & Mandel, 1973), a combination of

the previous two methods (Wood et al., 1981) and a numerical

iteration (Fienup, 1978).

In this report we will discuss the phase problem of high-

resolution Fourier transform X-ray spectroscopy. We will

apply the iterative and the logarithmic Hilbert transform

methods to recover the missing phase and to reconstruct two

spectra, a simple and a complicated spectra. We will use

measured data of the Si 14 6 0 back reflection from a

Michelson interferometer as the simple spectrum and a

simulated spectrum from an X-ray Fabry-Perot interferometer

as the complicated spectrum.

2. Phase recovery

2.1. Phase problem

The Michelson interferometer divides the incoming beam

into two coherent beams, and combines them with a certain

path difference, x. The output intensity is written as

IðxÞ ¼
R1
�1

sð�kÞ 2þ 2 cos 2� k0 þ�kð Þx
� �

d�k; ð1Þ

where sð�kÞ is the spectral intensity at a wavenumber of

k0 þ�k, and �k is the deviation from the mean wavenumber,

k0. Here we assumed that the throughput of the two branches

of the Michelson interferometer is identical for simplicity. In

usual Fourier transform spectroscopy, the spectrum is repro-

duced from IðxÞ using (1).

After integration with �k, the output intensity is



IðxÞ ¼ Aþ 2j�ðxÞj cos 2�½k0xþ ’ðxÞ�; ð2Þ

where

�ðxÞ ¼ F�1
½sð�kÞ� ¼

R1
�1

sð�kÞ exp �2�i�kxð Þ d�k; ð3Þ

’ðxÞ ¼ arg½�ðxÞ�: ð4Þ

Here A is a constant, �ðxÞ is the inverse Fourier transform of

the spectrum, and ’ðxÞ is the phase of �ðxÞ. We note that �ðxÞ is
not the complex coherence factor given by F�1

½sðk0 þ�kÞ�:
�ðxÞ does not incorporate information of the absolute wave-

length. In the present case of high-resolution Fourier trans-

form X-ray spectroscopy, measurement of k0 is not important

because it is known with sufficient accuracy. The important

information to be determined is the shape of the spectrum,

sð�kÞ. We will refer to �ðxÞ as the ‘interferogram’ for

convenience.

For narrower band spectra, �ðxÞ is considered to be a slowly

varying function of x. The visibility of IðxÞ is given by

VðxÞ ¼
Imax � Imin

Imax þ Imin

¼
j�ðxÞj

A=2
; ð5Þ

where Imax and Imin are the maximum and the minimum of IðxÞ

within x� 1=2k0, respectively.

As discussed before, ’ðxÞ cannot be determined, because

the measuring system does not have an accuracy of 1=k0. The

first term in the cosine of (2) is out of control. Thus the

available information is j�ðxÞj. When the missing phase, ’ðxÞ,
is recovered, the original spectrum could be reconstructed by

Fourier transform, sð�kÞ = Ffj�ðxÞj exp½i’ðxÞ�g.

2.2. Iterative method

In the numerical iterative method (Fienup, 1978), Fourier

transform and inverse Fourier transform are performed

iteratively under suitable constraints to make the phase

converge. Each iteration consists of four steps:

(i) Calculate the nth spectrum using snð�kÞ = F½�n�1ðxÞ�.

(ii) Apply the spectrum space constraint: the spectrum is

non-negative inside the bandwidth and zero outside the

bandwidth.

(iii) Calculate the nth interferogram by �nðxÞ =F
�1
½snð�kÞ�.

(iv) Apply the interferogram space constraint: replace

j�nðxÞj with the measured j�ðxÞj, leaving the calculated phase,

’nðxÞ, i.e. �nðxÞ = j�ðxÞj exp½i’nðxÞ�.

Usually the iteration starts from a guessed initial spectrum,

s1ð�kÞ, which is made from a series of random numbers.

There is another constraint that snð�kÞ must be real, which

requires

�nð�xÞ ¼ �nð�xÞ
�: ð6Þ

When the interferogram of the sample is discussed, the spec-

trum space constraint of step (ii) becomes tighter such that

snð�kÞ< sIð�kÞ, where sIð�kÞ is the white-beam background

spectrum of the interferometer, i.e. the spectrum of back

reflection of the mirror crystal.

The iterative method is powerful and insensitive to noise;

however, it has a problem of uniqueness. The solution in the

one-dimensional phase problem is known to be multiple

(Fienup, 1978).

2.3. Logarithmic Hilbert transform method

Another method for phase recovery is an analytic method.

Consider the logarithm of the interferogram,

ln �ðxÞ ¼ ln j�ðxÞj þ i’ðxÞ: ð7Þ

The imaginary part is expressed by the real part using the

logarithmic Hilbert transform as

’ðxÞ ¼
2x

�
P

Z 1
0

ln j�ð�Þj

�2 � x2
d� þ

X
j

arg
x� zj

x� z�j

 !
� 2��0x;

ð8Þ

where P denotes the Cauchy principal value at � = x, zj is the

location of the jth zero of �ðzÞ in the complex upper half plane,

and �0 is a non-negative constant (Wolf, 1962). The shift of the

spectrum by the additional term, �0, is not important in the

present problem and can be neglected. If the location of the

zeros or absence of zeros was known in the complex upper half

plane, the spectrum could be calculated using the phase

determined by (8). Bates (1969) presented a procedure to

recover the possible distributions of zeros. However, to date,

there is no method of determining the location of zeros from

knowledge of j�ðxÞj.
One optimistic fact is that the effect of zeros far from the

measured region, �xm � x � xm on the real axis, is small and

might be negligible. So the number of zeros may be limited or,

in some cases, there is no zero which affects the spectrum.

When the theoretical spectrum is known, information on the

zeros is available. For example, the interferogram of black-

body radiation is known to have no zeros in the complex upper

half plane (Kano & Wolf, 1962).

In the present case, we calculated j�ðzÞj numerically in the

complex plane from the theoretical spectrum of the Si 14 6 0

back reflection and the Fabry-Perot interferometer investi-

gated below. We found no zero in the region of interest for

both cases. Therefore the logarithmic Hilbert transform

method would be reliable for the present cases.

3. Simple spectrum

For the first example we discuss the white-beam background

spectrum of our Michelson interferometer without sample

(Fig. 1a). In this case the spectrum is merely the reflectivity

spectrum of the Si 14 6 0 back reflection used as the mirror.

Fig. 2 shows the normalized intensity correlation measured at

the RIKEN synchrotron radiation physics beamline

(BL19LXU) of SPring-8 (Yabashi, Mochizuki et al., 2001). The

normalized intensity correlation, C, relates to the modulus of

the interferogram, via j�ðxÞj / ½2ðC � 1Þ�1=2 (Tamasaku et al.,

2003). The path difference was scanned from x = 0 to xm =

1.575 mm in 0.025 mm steps (64 points). The wavenumber

(energy) resolution was 1=2xm = 317 m�1 (394 meV).
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From the measured j�ðxÞj, the autocorrelation function of

the spectrum was calculated by F½j�ðxÞj2�: The width of the

spectrum was estimated as the half width at the half-maximum

of the autocorrelation function, which was �k0 = 2500 m�1.

The width was in good agreement with the theoretical width,

2521 m�1.

3.1. Iterative method

We used �k0 for the �k-space constraint, i.e.

sðkÞ ¼ 0 if j�k j >�k0: ð9Þ

Fig. 3(a) shows the typical reconstructed spectrum after 100

iterations. The reconstructed spectrum was in good agreement

with the theoretically calculated spectrum of the Si 14 6 0 back

reflection, though there were many fine structures and nega-

tive parts on the tail of the spectrum.

We found that the reconstruction depended slightly on

the initial spectrum, s1ð�kÞ. The ambiguity of the recon-

struction was evaluated by the standard deviation of 500

independent reconstructions which was plotted with respect

to the averaged spectrum (Fig. 3a). The dependence of the

initial spectrum on the reconstructed spectrum was considered

to be reasonably small and may be acceptable. It should

be noted that the averaged spectrum cannot be the

solution of the phase problem because, in general,

jF
�1
f½sað�kÞ þ sbð�kÞ�=2gj 6¼ j�ðxÞj for sað�kÞ 6¼ sbð�kÞ

where jF�1
½sað�kÞ�j = jF�1

½sbð�kÞ�j = j�ðxÞj. The averaging

was just used to estimate the ambiguity of the reconstruction.

3.2. Logarithmic Hilbert transform method

The integral (8) needs values of j�ðxÞj up to x = þ1, which

requires extrapolation. We used constant extrapolation, i.e.

j�ðxÞj = j�ðxmÞj for x > xm. In fact this extrapolation does not

include any contribution, because the first term of the right-

hand side of (8) can be rewritten as

2x

�
P

Z 1
0

ln j�ð�Þj

�2 � x2
d� ¼

1

�

Z 1
0

d�
d2 ln j�ð�Þj

d�2

h
ð� � xÞ

� ln j� � xj � ð� þ xÞ lnð� þ xÞ
i
: ð10Þ
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Figure 2
Measured normalized intensity correlation of the Si 14 6 0 back
reflection. Vertical bars indicate the statistical error.

Figure 3
(a) Reconstructed spectrum using the iterative method (circles), the
averaged spectrum of 500 independent reconstructions with the standard
deviation (circles with vertical bars) and the theoretical spectrum of the
Si 14 6 0 back reflection (solid line). (b) Reconstructed spectrum using
the logarithmic Hilbert transform method (circles) and the theoretical
spectrum of the Si 14 6 0 back reflection (solid line).

Figure 1
Schematic view of (a) the experimental set-up for the simple spectrum
measurement, and (b) the set-up used to calculate the complicated
spectrum. MI: Michelson interferometer; M: mirror; BS: beam splitter;
FP: Fabry-Perot interferometer.



The right-hand side of (10) may be convenient for numerical

calculations because it does not have any singularity like the

left-hand side.

The missing phase was recovered by neglecting the last two

terms of (8), because the absence of zeros near the region of

interest is expected from the numerical analysis discussed

above. The measured normalized intensity correlation, C, was

less than unity at 14 data points (Fig. 2), which were physically

meaningless. These data points were replaced by a small value

(C = 1.005), corresponding to the noise level of the

measurement.

Fig. 3(b) shows the reconstructed spectrum. The width and

the single asymmetric peak structure of the spectrum were

reconstructed properly. The overall reconstruction was poorer

than the iterative method because the numerical calculation

was considered to be sensitive to the signal-to-noise ratio.

The logarithmic Hilbert transform method had no ambi-

guity in principle, and had the advantage of uniqueness

compared with the iterative method. However, the extra-

polation needed for the actual experiment may cause a small

ambiguity. We had to try several different extrapolations since

we could not know the behavior of j�ðxÞj outside the

measured region. Fortunately we found that the effect of

extrapolation was small, because j�ðxÞj was measured up to

sufficiently large x.

4. Complicated spectrum

For the complicated spectrum, we used a calculated spectrum

from a Fabry-Perot interferometer (Shvyd’ko, 2004) with a

blade thickness of 0.2 mm, a gap of 0.5 mm and the Si 14 6 0

back reflection. The spectrum was calculated as RMTFP, where

RM is the reflectivity spectrum of the mirror (Si 14 6 0 back

reflection) and TFP is the transmissivity spectrum of the Fabry-

Perot interferometer (see Fig. 1b). The calculated modulus of

the interferogram is shown in Fig. 4. The maximum pathlength

was set to xm = 6.08 mm, corresponding to that of the present

Michelson interferometer. The wavenumber (energy) resolu-

tion was 1=2xm = 82 m�1 (102 meV). The number of points was

set to 256.

Some information on the spectrum was deduced from

j�ðxÞj. First, the spectrum should have several peaks. From the

fact that the peaks of j�ðxÞj were separated by �x = 1.26 mm,

the separation of the peaks of the spectrum was deduced

to be 1=�x = 804 m�1 (Fig. 5). The spectral width of each

peak relates to decay of the envelope of j�ðxÞj, and may be

estimated.

4.1. Iterative method

The white-beam background spectrum of the inter-

ferometer (the spectrum of the 14 6 0 back reflection) was

used for the �k-space constraint instead of the width of the

autocorrelation of the spectrum, resulting in better conver-

gence.

Fig. 5(a) shows a typical reconstruction after 20000 itera-

tions. Most features of the spectrum, the width and the

number of the peaks, and the height of the peaks, were

reconstructed well. However, it was difficult to determine

which of the three peaks around the origin was highest.
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Figure 4
Calculated modulus of the interferogram, j�ðxÞj, for the complicated
spectrum, RMTFP.

Figure 5
(a) Reconstructed spectrum using the iterative method (solid line) and
the original spectrum (dotted line), RMTFP. The averaged spectrum of 500
independent reconstructions with the standard deviation (circles with
vertical bars) is shifted by 0.2 for clarity. (b) Reconstructed spectrum
using the logarithmic Hilbert transform method (solid line) and the
original spectrum (dotted line), RMTFP.



The ambiguity of the reconstruction was evaluated in the

same manner for the simple spectrum. For complicated

spectra, such as the spectrum of the Fabry-Perot inter-

ferometer, the ambiguity of the origin was serious because the

sharp structure of the spectrum was smeared out after aver-

aging. To avoid such ambiguity, we aligned each reconstructed

spectrum with respect to a reference spectrum, which was

chosen arbitrarily from the reconstructed spectra. Each

alignment was carried out by calculating a cross-correlation

function between the reference and each reconstructed spec-

trum. Using this procedure the standard deviation of 500

independent reconstructions was estimated (Fig. 5a). The

error bars were reasonably small, except for the main peaks

around the origin.

4.2. Logarithmic Hilbert transform method

The reconstruction by the logarithmic Hilbert transform

method was satisfactory (Fig. 5b). The reconstructed spectrum

showed the same number of peaks, and the correct asymmetry

owing to dynamical absorption. We tried several polynomials

for the extrapolation, j�ðxÞj / x�m (m 	 0); however, we

observed negligible difference in the reconstructed spectra.

5. Discussion

Both the iterative and the logarithmic Hilbert transform

methods showed satisfying reconstruction for two kinds of

spectra. When j�ðxÞj is measured with sufficient signal-to-

noise ratio, the logarithmic Hilbert transform method was

more determinate than the iterative method as seen in the

calculated spectrum of the Fabry-Perot interferometer. On the

other hand, the iterative method was useful for noisy data.

However, we consider that the use of the two completely

independent methods is necessary for reliability of recon-

struction. This is because the origin of the ambiguity of the

iterative method is completely different from that of the

logarithmic Hilbert transform methods. Agreement of the two

independent methods enhances the reliability of the recon-

struction. A combination of the two methods may be useful,

especially for asymmetric spectra. The reconstructed spectrum

by the logarithmic Hilbert transform method can be used for

the spectrum space constraint of the iterative method.

The problem of the logarithmic Hilbert transform method is

the fact that the absence of zeros of j�ðzÞj on the complex

upper half plane is not guaranteed in general. Bates’ proce-

dure (Bates, 1969) is helpful for searching the possible loca-

tions of zeros. However, it seems straightforward to

understand the physical meaning of zeros of j�ðzÞj in the

complex upper half for application of the logarithmic Hilbert

transform to the present problem. Although the nature of

zeros is still not understood well, it has been believed to have a

physical significance (Wolf, 1962). Investigation of spectra of

the diffractive process should provide complementary infor-

mation to that of the optical spectra for a full understanding of

the zeros of j�ðzÞj.
We consider that the maximum entropy method (MEM)

may be a potential supplementary technique. The technique

cannot be applied to the phase problem; however, it is useful

to refine the reconstructed spectrum by the iterative method.

We applied MEM to the interferogram {j�ðxÞj exp½i’ðxÞ�} of

the Si 14 6 0 back reflection reconstructed by the iterative

method. Most fine structure arising from the noise of the

measurement became smoother, and the negative parts of the

spectrum were removed. This is because MEM reproduces the

spectrum with the simplest structure from the given inter-

ferogram, and treats non-negative values. Other possibilities

of MEM are the super-resolution (Kawata et al., 1983) and the

phase refinement (Ikeda et al., 1998).

A quite different approach to the present problem may be

converting the problem to a two-dimensional phase problem,

which may be solved using the iterative method. Such an

approach was successful for measurements of ultrashort laser

pulses (Trebino et al., 1997).

We are grateful to Dr Y. Nishino for helpful discussions.
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Krumbügel, M. A. & Richman, B. A. (1997). Rev. Sci. Instrum. 68,
3277–3295.

Yabashi, M., Mochizuki, T., Yamazaki, H., Goto, S., Ohashi, H.,
Takeshita, K., Ohata, T., Matsushita, T., Tamasaku, K., Tanaka, Y.
& Ishikawa, T. (2001). Nucl. Instrum. Methods Phys. Res. A, 467–
468, 678–681.

Yabashi, M., Tamasaku, K., Kikuta, S. & Ishikawa, T. (2001). Rev. Sci.
Instrum. 72, 4080–4083.

Wolf, E. (1962). Proc. Phys. Soc. 80, 1269–1272.
Wood, J. W., Fiddy, M. A. & Burge, R. E. (1981). Opt. Lett. 6, 514–516.

research papers

700 Kenji Tamasaku et al. � Fourier transform X-ray spectroscopy J. Synchrotron Rad. (2005). 12, 696–700


