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An analysis is presented of how to optimize the experimental beamline

configuration for achieving the best possible signal-to-noise ratio (SNR) in

X-ray photon correlation spectroscopy experiments using area detectors. It is

shown that there exists an optimum detector distance; namely, the highest SNR

is achieved by matching the angular pixel size with the angular source size.

Binning several pixels together can increase the SNR by permitting to match the

shape of a detector pixel to the shape of the source. It is also shown that

collimating slits several times wider than the effective transverse coherence

length are optimal; further, it is demonstrated that the energy dependence of the

SNR is dictated by the energy dependence of detector efficiency and source

brilliance. Ultimately the effects of focusing and low longitudinal coherence are

discussed.
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1. Introduction

X-ray photon correlation spectroscopy is an emerging new

method that can now be used at high-brilliance synchrotron

beamlines for characterizing the dynamics of slowly moving

condensed matter (Falus et al., 2005; Sutton et al., 1991; Brauer

et al., 1995; Dierker et al., 1995; Thurn-Albrecht et al., 1996;

Mochrie et al., 1997; Tsui & Mochrie, 1998; Thurn-Albrecht et

al., 1999; Price et al., 1999; Lurio et al., 2000; Lumma, Lurio,

Sandy et al., 2000; Lumma et al., 2001; Seydel et al., 2001; Livet

et al., 2001; Dufresne et al., 2002; Sikharulidze et al., 2002; Kim

et al., 2003; Madsen et al., 2003). Typically, to carry out X-ray

photon correlation spectroscopy (XPCS) experiments, the

X-ray beam from a high-brilliance X-ray source is mono-

chromated and apertured to a size approximately equal to the

transverse coherence length of the source. This creates a

partially coherent X-ray beam, which illuminates a sample of

interest. Density fluctuations within the sample cause scat-

tering, giving rise to a time-varying X-ray speckle pattern,

which is captured moment-by-moment by a detector. The two-

time correlation of the intensities in each pixel yields the

intensity auto-correlation function, g2, which shows the char-

acteristic relaxation times of the sample. Specifically, g2 is

related to the sample’s intermediate scattering function (ISF),

S(Q, t), via

g2 ¼ 1þ A½SðQ; tÞ�2: ð1Þ

where A is the optical contrast, which depends on the para-

meters of the experimental set-up. At present, XPCS is a

signal-limited technique and therefore it is important to

optimize as far as possible the signal-to-noise ratio (SNR).

Minimizing sample damage also calls for the most efficient use

of X-rays. Moreover, there are presently several major

proposals to construct new very high brilliance X-ray sources:

(NSLS2 Brookhaven, ERL Cornell, MIT-Bates XFEL, LCLS

Stanford). High-brilliance experiments, of which XPCS is one

important example, provide the scientific rationale for these

machines. It is essential to understand the ingredients that

allow one to optimize the XPCS SNR in order to make

informed decisions concerning the layout and design of

beamlines that might be destined for XPCS experiments. In

this paper we elaborate calculations (Lumma, Lurio, Mochrie

& Sutton, 2000) of the anticipated SNR in XPCS experiments

in order to answer the following questions: what is the

optimum aperture before the sample for a given source size?

Is there an optimum sample-to-detector distance for given

CCD pixel dimensions and given number of pixels? Is it

possible to improve the SNR by binning together the intensity

in spatially separated pixels, and if so how many? How does

the SNR change with X-ray energy?

2. Signal-to-noise ratio

We consider a synchrotron beamline that consists of a partially

coherent source, a sample, adjustable collimating slits close to

the sample, and an area detector (CCD). Throughout this

paper we will use the numerical values relevant to beamline

8-ID at the Advanced Photon Source (APS), where our XPCS

experiments have been carried out, and also to a hypothetical

XPCS beamline at the proposed NSLS-II synchrotron at
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Brookhaven National Laboratory. In the case of 8-ID the

beam-defining slits are located 65 m from the source and the

sample is 1.3 m further downstream of the slits. As long as the

sample is in the near field of the slits (in this case if the slits are

bigger than 15 mm) there is a negligible difference between the

slits size and the beam width at the sample. We denote the

horizontal and vertical source size as �x and �z, respectively.

At 8-ID we take �x = 220 mm and �z = 15 mm, while at NSLS-II

we use �x = 54.5 mm and �z = 3.9 mm. These are the standard

deviations of an assumed Gaussian profile for the source

intensity, so that the full width at half-maximum of the source

intensity is (8 ln2)1/2� ’ 2.35�. At 8-ID the source-to-sample

distance is R0 = 65 m. For a hypothetical beamline at NSLS-II,

we assume R0 = 32 m, simply scaling the source-to-sample

distance by the size of the ring. The angular source sizes are

defined as �z = (8ln2)1/2�z/R0, �x = (8ln2)1/2�x/R0. The trans-

verse coherence length (Sandy et al., 1999) is defined as

�x ¼
�R0

2��x

¼
ð8 ln 2Þ1=2

2�

�

�x

; ð2Þ

where � = 0.185 nm is the X-ray wavelength. The CCD

detector consists of pixels of linear size Ux by Uz, and we

define the angular size of pixels as !x = Ux /Rdet and !z =

Uz /Rdet, where Rdet is the slit-to-detector distance. Using these

parameters it may be shown (Lumma, Lurio, Mochrie &

Sutton, 2000; Sandy et al., 1999) that we can introduce the

effective transverse coherence length in the horizontal direc-

tion as

�x ¼
�x

1þ U2
x R0 2ð Þ= 8 ln 2 �2

x R2
det

� �� �1=2

¼
ð8 ln 2Þ1=2 �

2�

1

!2
x þ �

2
xð Þ

1=2
: ð3Þ

Analogously defined is �z, which is the effective coherence

length in the z-direction. The effective coherence lengths fold

the non-zero detector resolution into the source size

(Abernathy et al., 1998). The longitudinal coherence length is

given by

� ’ � E=�Eð Þ: ð4Þ

For the germanium [111] monochromator currently used at

8-ID, the relative bandwidth is almost energy independent

with E/�E ’ 3 � 103. In a small-angle-scattering geometry,

the longitudinal coherence length will only effect the speckle

contrast when it becomes comparable with the maximum

pathlength difference in the sample, �, which is given by

� ¼ 2 sin cos cos ’Lx þ 2 sin cos sin ’Lz

þ 2 sin2  W; ð5Þ

where Lx , Lz and W are the dimensions of the scattering

volume in the horizontal, vertical and along-the-beam direc-

tions, respectively,  is the scattering angle and ’ is the

azimuthal angle from the horizontal scattering plane. The

contrast is reduced by a finite longitudinal coherence length by

a factor of approximately

exp � �j j=�ð Þ: ð6Þ

Typically, at 8-ID, we have Lx = Lz = 50 mm, while the sample

thickness, W, is comparable with the absorption length which

depends on the sample material and energy. For a typical

hydrocarbon studied using 6.7 keV X-rays the attenuation

length (and consequently a typical sample thickness) is

�1.6 mm. Choosing Q = 0.2 nm�1 gives �/� ’ 0.1, resulting in

a less than 10% correction to the contrast for the typical case

of Q < 0.2 nm�1. The effects of a finite longitudinal coherence

length will be discussed in more detail in x6.

Further, following the calculation of Lumma, Lurio,

Mochrie & Sutton (2000) and ignoring, for now, the effects of

longitudinal coherence we can write the optical contrast (A) of

the speckle patterns as

A ¼ F Lx=�xð ÞF Lz=�z

� �
; ð7Þ

where Lx and Lz denote the horizontal and vertical slit widths,

respectively, and F is the contrast function, given by

FðxÞ ¼ 1=x2
� �

x�1=2 erf xð Þ þ exp �x2
� �

� 1
� �

; ð8Þ

where erf( . . . ) is the error function. It will be useful to note

that, for x � 1, F(x) ’ �1/2/x, and that, for x � 1, F(x) ’

1 � x2/6.

In considering the SNR, the low-count-rate limit is the

appropriate limit for XPCS. Jakeman has shown that, in this

limit, the variance of g2 is given by

var g2 ¼ g2= M �nn2
� �

; ð9Þ

where �nn is the mean number of counts detected per accumu-

lation time and M is the total number of correlated pairs

averaged to yield g2 (Jakeman, 1973). This may be re-written

in terms of the count rate (�II) per CCD pixel, the accumulation

time (�), the number of pixels (nx � nz) and the total

experimental duration (T) as

var g2 ¼ g2= nxnzT��II
2

� �
: ð10Þ

A sensible measure of the SNR is

Rsn ¼ g2 � 1ð Þ= var g2ð Þ
1=2
¼ T� nxnz=g2

� �1=2 �II g2 � 1ð Þ: ð11Þ

A simplified expression, suitable for comparing different

experimental parameters, is obtained by combining (10) and

(11), substituting g2 with its zero time limit 1 + A, and

assuming that g
1=2
2 ’ 1, i.e. that the contrast is small,

Rsn ¼ A�II T� nxnz

� �1=2
: ð12Þ

In fact, we define (12) to be the SNR in XPCS experiments

and seek to maximize it. Equation (12) shows that for XPCS

the SNR is linearly proportional to the scattering intensity, in

contrast to ordinary intensity measurements where the SNR is

proportional to the square root of the intensity. On the other

hand, the XPCS SNR is proportional to the square root of the

experimental duration (T), just as for scattering experiments.

In an XPCS experiment the goal is to measure g2(Q, t) (and

thus the ISF) as a function of time (t) and wavevector (Q).

With an area detector it is possible to acquire data at many
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different wavevectors simultaneously. However, data with

insufficient SNR at many different values of Q are worthless.

It follows that in assessing the consequences of (12) we should

focus on the SNR for a particular value of Q within some

desired Q-resolution, not the whole area of the detector. In

the context of an experiment, this corresponds to the scattered

X-rays that fall within a definite solid-angular range of parti-

cular scattering angles. Thus, in (12), the values of nx and ny

correspond to this solid angular range. It is therefore conve-

nient to introduce the angle subtended by the Q of interest in

the x-direction (�x) and in the z-direction (�z). In terms of the

angular extent of each pixel, !x and !z in the x- and z-direc-

tions, respectively, and �x and �z, we may express the number

of pixels appearing in (12) as nx = �x/!x and nz = �z/!z. In this

paper we will usually assume that nx and nz do not exceed the

number of rows and columns available on the detector (or

detectors).

The count rate per pixel (�II) depends on the incident flux

density (�), the solid angle subtended by each pixel, the

scattering cross section per unit volume of the sample (�), the

detector efficiency (K), the illuminated sample area (Lx � Lz)

and the sample thickness (W) and attenuation length (�) via

�II ¼ K�LxLz!x!z�W exp �W=�ð Þ: ð13Þ

[Equation (13) assumes that the flux is constant over the

illuminated sample area.] The flux density, in turn, can be

expressed in terms of the source brilliance B̃, the relative

energy bandwidth �E/E and the angular source sizes, yielding

� ¼ ~BB �E=Eð Þ 2�= 8 ln 2ð Þ½ � �x�z: ð14Þ

Using (2), (7), (12), (13) and (14) we obtain

Rsn ¼ K T��x�z

� �1=2
�W exp �W=�ð Þ ~BBð�E=EÞrsnxrsnz;

ð15Þ

where rsnx depends solely on the horizontal pixel size, the

horizontal source size and the horizontal slit size. Similarly, rsnz

depends solely on the vertical parameters. Specifically,

rsnx ¼ F Lx=�xð Þ!1=2
x �xLx; ð16Þ

with an analogous expression for rsnz. The factorization of (15)

permits us to optimize the SNR separately for the vertical and

the horizontal directions. Equation (15) further informs us

that the SNR is linearly proportional to the source brilliance,

but proportional to the square root of the accumulation time

(�). This scaling is especially interesting in the context of

proposals for more-brilliant X-ray sources. It implies that, for

a sample with a given scattering cross section, if one increases

the source brilliance by a factor f then one may decrease the

accumulation time by a factor of f 1/2 to achieve the same SNR.

For example, with a 100-fold increase in ~BB, one may keep the

total measurement time constant, and reduce the shortest

correlation time � by (100)2 to achieve an unchanged SNR.

For the present, (15) also reflects the important facts that the

SNR is linearly proportional to the detector efficiency and the

sample scattering strength. The SNR is also proportional to

Wexp(�W/�), which is maximized by choosing the sample

thickness to be equal to the attenuation length.

3. Optimizing the angular pixel size

In this section we explore whether there is an optimal angular

pixel size and whether we can improve the SNR by binning

several pixels together or by changing the detector-to-sample

distance. In these calculations we will consider the source sizes

and the slit sizes to be constant. Our single degree of freedom

will be the angular pixel size. As we noted in the previous

section, we can optimize the SNR separately for the horizontal

and vertical direction. Thus, we seek to optimize (16).

Fig. 1 plots (16) as a function of ! for several slit sizes. It is

apparent from this graph that for large slits (L � �) rsn is

independent of L. We explore this case first.

3.1. Large slit sizes

For large values of x, F(x)’ �1/2/x. This allows us to simplify

(16) to become

rsn ¼
2 ln 2 �2

�

� �1=2
1

� �=!þ !=�ð Þ

	 
1=2

: ð17Þ

This informs us first that for large slit sizes the SNR is inde-

pendent of slit size. The second notable feature is that rsn

exhibits a peak at ! = �, so that there indeed exists an

optimum detector distance for a given pixel size, or vice versa.

Usually CCD pixel sizes are between 10 and 30 mm; it follows

that it may be difficult to achieve the optimum sample-to-

detector distance. For example, the optimum sample-to-

detector distance for a CCD camera at 8-ID with 14 mm pixels

is 24.8 m, dictated by the excellent vertical coherence at the

APS. On the other hand the maximum possible sample-to-

detector distance in the 8-ID endstation hutch is 7 m. Clearly

the SNR of XPCS can only be improved if adequate higher-
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Figure 1
SNR versus the ratio of the angular pixel size (!) and the angular source
size (�) at different slit sizes (L).



resolution detectors are developed. Although the most

pressing problem of CCD area detectors is speed (Falus et al.,

2004), the SNR can only be optimized if the size of the

detector pixels is much smaller then the present sizes. Hope-

fully, parallel to developing new X-ray sources, new high-

efficiency detectors are also being developed.

We should emphasize that Fig. 1 is not valid for point

detectors. When we have a single pixel, the detector size �z�x

is not constant [unlike in (15)]; it scales with the pixel size

!x!z. Then Fig. 1 is modified such that for large pixel sizes the

SNR is constant; for small ! the SNR will decay linearly with

!. Thus we will have a lower limit on pixel size, but no higher

limit. The SNR is optimal for point detectors as long as the

detector size is bigger than the speckle size.

It is also interesting to note that to achieve the maximum

SNR requires pixels with an aspect ratio that is the same as the

aspect ratio of the source. For the usual case of cameras with

square pixels, this can be achieved by binning or adding the

signal from several pixels in the horizontal direction. These

considerations suggest that the optimum experimental set-up

at 8-ID would be achieved by moving the camera as far back

as possible in the hutch, so as to approach as closely as

possible the condition !z = �z. At this distance, !x will be

smaller than �x but this can be compensated by binning several

pixels together until !x = �x.

To elucidate how important is it to achieve these optimum

conditions, it is useful to employ the approximation that rsn ’

rsnmax
ð2!=�Þ1=2, which is approximately valid for �/! > 3. Then

we may examine the following three 8-ID-based examples:

(i) Using a camera with 14 mm� 14 mm pixels at 1.7 m from

the sample, the horizontal size is optimal, the vertical size is

larger than optimal by a factor of 14 causing the SNR to be

71/2 = 2.6 smaller than optimal. This is a significant loss of SNR

from that optimally possible.

(ii) Using the same camera with 14 mm � 14 mm pixels at

7 m, the vertical pixel size is a factor of 3.5 larger than optimal,

while the horizontal pixel size is a factor of four smaller than

optimal. It follows that the SNR is [(3.5/2)(4/2)]1/2
’ 1.9 less

than optimal. This too represents an important loss of SNR.

(iii) Using the same camera with 14 mm � 14 mm pixels at

7 m but now binning four pixels horizontally, the vertical pixel

size is a factor of three larger than optimal, while the effective

horizontal pixel size (56 mm) is optimal. In this case the SNR is

(3.5/2)1/2 = 1.3 times smaller than optimal, which is a consid-

erably better situation than in (i) and (ii).

These considerations are modified in the case where the

detector area is not large enough to accept all of the scattering

at the wavevector of interest. This is not a fundamental issue,

since in principle we may tile together a number of smaller

detectors to make an arbitrarily large detector, which would

be able to accept all of the scattering at a given wavevector.

Nevertheless, for a single detector the finite detector accep-

tance is of practical relevance. In particular, for isotropic

systems, which give rise to circularly symmetric rings of scat-

tering, we can average g2 from all the pixels within rings that

correspond to the same wavenumber. If the detector accep-

tance is not large enough to detect the entire ring, the detected

solid angle is reduced by a factor proportional to R�1.

Consequently, for high wavenumbers the number of pixels in

the ring varies as Rdet, not as R2
det, resulting in a R

�1=2
det

correction to our calculation or the SNR.

Again taking into account the scaling form of rsn / R
1=2
det for

!� �, and rsn / R
�1=2
det for !� � (large Rdet), noting that the

azimuthal correction varies as R
�1=2
det , and noting that in case of

optimum binning rsn is constant for ! < �, we distinguish four

cases which are demonstrated in Fig. 2:

(i) The detector intercepts all of the scattering, but we do

not use binning. The SNR has a wide peak between the !x = �x

and !z = �z points. With 8-ID parameters the peak is between

Rdet = Rx = 1.7 m and Rdet = Rz = 25 m. This case is shown by

curve ‘Q = 0’ in Fig. 2.

(ii) The detector intercepts all of the scattering and we use

optimal binning. As shown in curve ‘Q = 0 bin’ in Fig. 2, the

SNR will increase with increasing sample-to-detector distance

until we have moved the detector as far as Rz. Beyond Rz, the

SNR remains approximately constant (the discernible dips in

the theoretical SNR from twofold to threefold binning and

from threefold to fourfold binning etc.).

(iii) The detector does not intercept all of the ring of scat-

tering of interest and we do not use binning. Here the SNR

peaks at a detector distance of Rx and decreases sharply for

larger sample-to-detector distances, as shown by curve ‘Q =

0.2 nm�1’.

(iv) The detector does not intercept all of the ring of scat-

tering and we use optimal binning. In this case the SNR shows

a broad maximum for sample-to-detector distances between

Rx and Rz, and we have a wide range within which to set the

sample-to-detector distance (see curve ‘Q = 0.2 nm�1 bin’ in

Fig. 2).

research papers

256 P. Falus et al. � X-ray photon correlation spectroscopy J. Synchrotron Rad. (2006). 13, 253–259

Figure 2
SNR versus sample-to-detector distance, calculated with parameters
appropriate to 8-ID. Specifically, the detector pixel size is 14 mm, the
source size is 220 mm � 15 mm, the slit size is 1000 mm and the photon
energy is 6.7 keV. For reference, with these parameters �x = !x occurs at a
distance of 1.7 m, �z = !z at 25 m. The wiggles on the binned curves are
the result of taking the maximum of several peaks corresponding to all
possible binnings.



3.2. Small slit sizes

It is clear from Fig. 1 that, for slit sizes smaller than about

three coherence lengths, the SNR displays a significant L

dependence. In fact, the maximum SNR decreases with

decreasing L, while the optimum pixel acceptance ! increases

with decreasing L. This is highlighted in Fig. 3, which plots

versus L the values of ! at which the SNR is a maximum for a

particular L.

An analytically tractable expression for the L-dependence

of the maximum SNR follows from the approximation that

F(x)’ 1� x2/6, which is valid for L/�� 1. The location of the

maximum SNR in this limit is

!opt ¼ 12 ln 2ð Þ
1=2�= 51=2 �L

� �
’ 0:41�=L; ð18Þ

which varies inversely with the slit width and, interestingly, is

independent of the angular source size. Careful inspection of

the curve in Fig. 3 for L/� � 1 reveals an !opt ’ 0.78�/L

dependence. Thus, the first-order analytical approximation is

not precise enough to find the exact maximum; the scaling is

preserved though. This limit is especially important in the case

of X-ray free-electron lasers, where the fully coherent beam

corresponds to � = 0 and the optimum pixel size will always be

determined by the beam size (speckle size).

4. Determining the best slit size

As already noted, for large slits the SNR is independent of slit

size, while for small slits the SNR decreases linearly with the

slit size. In this section we will explore the dependence of the

SNR on the slit size for constant pixel size (!) and constant

source size (�). Since we know that the maximum SNR is

achieved in the large-slit limit [equation (17)] for any !, it is

instructive to plot the ratio

rsnðLÞ

rsnð1Þ
¼ F

L

�

� �
1

�1=2

L

�
: ð19Þ

This function depends only on L/�. It is apparent from Fig. 4

that the SNR increases monotonically with L, reaching 0.5 for

L/� = 1, 0.8 for L/� = 3, and 0.9 for L/� = 6. This confirms

that, while widening the slits is generally beneficial, opening

them too much past a few times the effective coherence length

will not significantly increase the SNR. It is not surprising

either that, for L/�� 1, rsn is proportional to L, since in this

case closing the slits does not increase the contrast but merely

reduces the intensity.

If L/� is very large, the optical contrast is correspondingly

very small, and it may be preferable to instead maintain a

certain level of contrast in order to insure against any

systematic errors that might create small baseline shifts. Some

examples are given in Table 1.

As a compromise between the best SNR and non-zero

contrast, it is sensible to set the slit width to be several times

(three to six times) wider than the coherence length, which

will yield contrast values between 0.07 and 0.14. It is also clear

from the last two lines that, while setting the slit width

symmetrically produces the best SNR, asymmetric set-ups

yield a SNR that is only slightly lower.

5. Optimizing energy

Since the efficiency of direct-detection CCD detectors is

invariably X-ray energy dependent, and since at 8-ID and

other beamlines one generally has considerable freedom in
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Figure 3
Ratio of the angular pixel size ! and the angular source size � at
maximum signal-to-noise ratio versus slit size. The optimum values are
deduced by numerically finding the maximum of curves similar to the
ones in Fig. 1.

Table 1
SNR and contrast for several slit settings at 8-ID.

Slit width Slit height Contrast
SNR relative
to maximum

2�x 2�z 0.40 0.52
4�x 4�z 0.14 0.74
6�x 6�z 0.07 0.82
11�x 3�z 0.07 0.77

Figure 4
Relative SNR versus slit size while keeping � and ! fixed



choosing at what energy to carry out an XPCS experiment, it is

valuable to investigate the effects of varying the X-ray energy

on the SNR. We first consider how to optimize the energy in

the limit of large slits. We furthermore suppose that when we

tune the energy we keep fixed the range of wavevectors

contributing to the particular Q of interest. It follows that

�x�z must be varied to maintain this range of wavevectors,

while ! and � are fixed (and optimally equal to each other). In

addition, we suppose that we adjust the sample thickness (W)

in order to keep the sample attenuation constant, i.e. we set

W = �(E). Equation (17) then informs us that rsnxrsnz varies as

E�2 because of the factor �2. Other energy-dependent factors

in (15) are (�x�z)1/2, which is proportional to E�1, and

W exp(�W/�), which is material-dependent but is often

proportional to E3. Thus, to leading order, these factors cancel

each other out. The remaining factors are the source brilliance

and the detector efficiency. In addition, at 8-ID we should

recognize that there is an energy-dependent attenuation

owing to Be windows in the beamline. For the APS, the bril-

liance varies weakly with energy with a peak at about 7 keV.

Reducing the X-ray energy can significantly increase the CCD

detector’s quantum efficiency (at least within the range 4–

10 keV) and can reduce the spreading of photons (Hashimo-

todani, 1998). In its simplest form the CCD detector efficiency

varies as � = 1 � exp(�ddep /�Si) where ddep is the depletion

layer thickness, and the silicon attenuation length �Si / E3,

strongly favoring low energies. Both of these effects tend to

improve the SNR at lower energies. By contrast, the

attenuation of Be windows increases sharply for energies

below about 5 keV. Thus, for 8-ID or other beamlines in which

there are Be windows, we expect that the optimum X-ray

energy for XPCS is about 6 keV (see Fig. 5). Since Be windows

are far from perfect optics, it would be desirable in any case to

find an improved X-ray window material. With a different

window material the calculus leading to the prediction that the

SNR will be optimal at 6 keV will be changed somewhat. In

the case of a sample with isotropic scattering, so that at high

wavenumbers the scattering ring does not completely fit on the

CCD, an extra factor in the SNR proportional to E1/2 becomes

necessary. However, this moves the optimum energy only

slightly. While in Fig. 5 the longitudinal and azimuthal

correction was calculated for all wavenumbers, neither of the

corrections have an effect on the solid line, and the dashed line

is only affected by the azimuthal correction. For anisotropic

systems at wavenumbers where the longitudinal correction is

negligible, the solid line should be used.

Our conclusions are different from those of Thurn-Albrecht

et al. (2003), who predict that the SNR in an XPCS experiment

has an overall E2 dependence. The chief points of difference

between our analysis and that of Thurn-Albrecht et al. involve

the factors dealing with the efficiency of a CCD camera, the

angular factor of (�x�z)1/2, and the assumption, made by

those authors, that the total measurement time is limited by

the rate of sample damage. The first two differences result

from the choice of detector: an area detector in the present

case and a point detector by Thurn-Albrecht et al. In this

context we note that a current state-of-the-art area detector

yields a much superior SNR than a point detector for corre-

lation times greater than 2 ms (Falus et al., 2004). With regard

to the sample damage issue, we assume that the time required

to damage the sample is at least a few times longer than the

relevant correlation times. Consequently, using an area

detector, the sample can be periodically moved to illuminate a

fresh spot, so that there is no limitation on overall measure-

ment time (Lumma, Lurio, Mochrie & Sutton, 2000).

6. Longitudinal coherence

The preceding discussion of energy optimization has been

made under the assumption that the longitudinal coherence

length (�) is large in comparison with the maximum optical

pathlength difference (�) within the sample. A detailed

calculation of the effect of longitudinal coherence on the

contrast requires an integral of the relevant sample volume

and energy distributions (Sandy et al., 1999) and is beyond the

scope of this paper. In brief, however, with the approximation

that the X-ray power spectrum is a Lorentzian, and that the

dimensions of the sample transverse to the beam are suffi-

ciently small, then the X-ray contrast will vary as exp(�|�|/�).

If the sample thickness is adjusted to match the attenuation

length, then � will depend on both the energy and wavevector

of the measurement. Specifically, in the range of wavevectors

where the sample thickness is much bigger than the beam size,

equation (5) may be approximated as

� ¼ W�2Q2=8�2: ð20Þ

The energy dependence of (20) results from the factor of �2

and the E3 dependence of the attenuation length. Conse-

quently, since � varies as E�1, the ratio �/� will vary as Q2E2.

Based on this observation, we note that for a scattering

wavevector of 0.5 nm�1, for example, it is only sensible to

research papers

258 P. Falus et al. � X-ray photon correlation spectroscopy J. Synchrotron Rad. (2006). 13, 253–259

Figure 5
Energy dependence of the SNR for parameters relevant to 8-ID. The
brilliance of the APS undulator A, the attenuation of four 0.25 mm Be
windows, and the measured efficiency and detector size of the SMD 1M60
detector (Falus et al., 2004) are taken into account. The SNR is calculated
taking into account the effect of longitudinal coherence and the
correction for azimuthal averaging. The solid line is unaffected both by
the longitudinal and azimuthal correction.



increase the sample thickness to match the attenuation length

of the sample (for typical organic-based materials) out to

about 11 keV. At 1 nm�1 the effect is so strong that it influ-

ences the optimum energy calculation (see Fig. 5).

7. Focusing

So far we have not considered the possibility of focusing in this

paper. Since the vertical coherence lengths at synchrotron

sources are much greater than the horizontal coherence

lengths, it is first sensible to examine the effect of vertical

focusing on the coherence properties of the beam. To this end

we consider a focusing optic a distance R1 from the source that

focuses to an image at an additional distance R2 downstream.

The image, which is of size �0z = R2�z/R1, may be viewed as a

new source, so that the coherence length at the sample posi-

tion, which we take to be a further distance R3 downstream, is

	F = �R3/2��0z = �R3R1/2��zR2. This may be compared with

the coherence length at the sample position in the absence of

the focusing optic, which is 	 = �(R1 + R2 + R3)/2��z, since R1 +

R2 + R3 is the source-to-sample position. Although the value

of R1 may be constrained by the location of the beamline’s first

optics enclosure, there remains considerable freedom in the

choice of the ratio 	/	F = (R1 + R2 + R3)R2/(R3R1). At 8-ID-I,

in particular, it might be convenient to pick 	/	F = 5, so that the

optimum sample-to-detector distance would become 5 m,

which would then lie within the 8-ID-I hutch. This could be

arranged, for example, with R1 = 35 m, R2 = 22 m and R3 = 8 m,

or with R1 = 55 m, R2 = 8 m and R3 = 2 m. A similar focusing at

NSLS-II would reduce the optimum sample-to-detector

distance there from 50 m to a more manageable 10 m.

8. Conclusion

In this paper we have explored how to optimize the signal-to-

noise ratio in an X-ray photon correlation spectroscopy

experiment by revisiting and analyzing the calculation of the

optical contrast at a synchrotron source. We demonstrated

that for fixed slit size the signal-to-noise ratio for data at a

particular wavevector exhibits a maximum versus the angular

pixel size. For slits wider than the transverse coherence length,

we showed that the optimum signal-to-noise ratio is achieved

when the angular source size and the angular pixel size are

equal to each other. We quantified the well known fact that

opening up the collimating slits increases the signal-to-noise

ratio but that, once the slit size is larger than several times the

effective coherence length, the signal-to-noise ratio does not

improve significantly by further increasing the slit size. Finally,

we showed that the signal-to-noise ratio depends on the

energy mainly through the detector efficiency and window

attenuation. Thus, it is sensible to select the X-ray energy

accordingly to take advantage of higher detector efficiencies.

In summary, the best signal-to-noise ratio can be achieved

by moving the detector sufficiently far back from the sample

so that the vertical angular source size is the same as the

angular detector pixel size, or, at 8-ID, as far back as possible

within the hutch. Then, since the horizontal source size is

usually much larger than the vertical source size, we have

shown that one should bin together the counts in pixels in the

horizontal direction so as to match the effective horizontal

pixel size with the horizontal source size.
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