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The correlated Einstein and Debye models for EXAFS parallel mean-square

relative displacement (MSRD) are derived from the general expression in terms

of eigenfrequencies and eigenvectors of the dynamical matrix, without ad hoc

assumptions. The two models are generalized to parameterize also the EXAFS

perpendicular MSRD. The physical meaning of Einstein frequencies, as well as

the application of the Debye model to crystals with more than one atom per cell,

are critically discussed.
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1. Introduction

Extended X-ray absorption fine structure (EXAFS) is mainly

known as a powerful structural probe for disordered systems.

However, accurate temperature-dependent measurements

also allow the possibility of extracting original information on

thermal properties in crystals. The sensitivity of EXAFS to the

relative atomic motion along the bond direction was recog-

nized long ago (Beni & Platzman, 1976): the EXAFS Debye–

Waller factor directly gives information on the parallel mean-

square relative displacement (MSRD||) between absorber and

back-scatterer atoms. The possibility of obtaining from

EXAFS the mean-square relative displacement perpendicular

to the interatomic bond (MSRD?) was only exploited more

recently (Dalba et al., 1999; Fornasini, a Beccara et al., 2004).

Indeed, the local interatomic distance hri = h|r2 � r1|i probed

by EXAFS is greater than the crystallographic distance

between average positions Rc = |hr2 � r1i| (Dalba et al., 1995;

Fornasini, Dalba et al., 2004). The difference, of geometrical

origin (Busing & Levy, 1964), can be utilized to measure the

temperature dependence of MSRD?.

The comparison between EXAFS MSRDs and absolute

mean-square displacements (MSDs) obtained from X-ray

diffraction (XRD) allows the evaluation of the correlation of

atomic motions parallel and perpendicular to interatomic

bonds. Besides being a test of lattice dynamical theories, this

kind of information can be very effective in the study of phase

transitions and negative thermal expansion.

In principle, the parallel and perpendicular MSRDs can be

expressed, within the harmonic approximation, in terms of

eigenfrequencies and eigenvectors of the dynamical matrix.

Simple phenomenological models are, however, commonly

used in many instances; for example, to evaluate absolute

MSRDs values from the relative values obtained through the

ratio method (Bunker, 1983), or to fast compare the thermal

behaviour of different atomic pairs.

For the parallel MSRD, the correlated Debye and Einstein

models were developed quite early (Beni & Platzman, 1976;

Sevillano et al., 1979). These models, specifically tailored to

account for correlation, were obtained as phenomenological

modifications of the familiar Debye and Einstein models used

for specific heats and diffraction MSD. In addition to the

original Debye model (Ashcroft & Mermin, 1976), the

correlated Debye model assumes a further spherical approx-

imation of the square moduli of eigenvectors (Beni &

Platzman, 1976; Sevillano et al., 1979) and applies only to cubic

crystals with one atom per primitive cell (for short, ‘cubic

Bravais crystals’). While the Einstein model for specific heats

approximates the phonon spectrum with a single frequency !E

(Ashcroft & Mermin, 1976), the correlated Einstein model

(Sevillano et al., 1979) is generally cast into the different

framework of the one-dimensional model of EXAFS, where it

considers the pair of absorber and back-scatterer atoms as an

independent harmonic oscillator (Dalba & Fornasini, 1997)

with frequency !E. Anharmonic corrections and improve-

ments to the original correlated Einstein model were succes-

sively proposed (Frenkel & Rehr, 1993; Hung & Rehr, 1997).

The MSRD|| of a given atomic pair has also been expressed

in terms of a local projected density of modes �R(!), taking

into account the relations between eigenvectors (Sevillano et

al., 1979), and intrinsically different from the true phonon

density of states �(!). Attempts to relate �R(!) with �(!), as

well as the Einstein frequency with the moments of the

phonon spectrum, were made assuming nearest-neighbours

central force models (Lottici, 1987; Knapp et al., 1985).

In spite of the widespread use of the Einstein and Debye

correlated models, their rigorous derivation from the general

expression of the parallel MSRD in terms of eigenfrequencies
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and eigenvectors of the dynamical matrix is, to our knowledge,

still lacking in the literature. In this paper we want to establish

on firm grounds this derivation, within the framework of the

harmonic approximation for crystals (Maradudin et al., 1971).

This treatment allows a critical reappraisal of the common

phenomenological interpretations of the Einstein and Debye

models, clarifying their strengths and limitations and contri-

buting to avoid their misuses. Besides, our procedure easily

leads to the peculiar extension of the two models to the case of

perpendicular MSRD, whose relevance for the study of

negative thermal expansion materials has been recently

demonstrated (Fornasini et al., 2006).

The paper is organized as follows. In x2 the general

harmonic expressions of EXAFS MSRDs are introduced; x3

and x4 are dedicated to the Einstein and Debye models,

respectively; x5 and x6 contain discussion and conclusions,

respectively.

2. EXAFS mean-square relative displacements

The parallel and perpendicular MSRDs are defined as

MSRDk ¼ h
��ðu2 � u1Þ � R̂Rc

��2i ð1Þ

and

MSRD? ¼ h
��ðu2 � u1Þ

��2
i � h

��ðu2 � u1Þ � R̂Rc

��2i; ð2Þ

respectively. Here, u1 and u2 denote the instantaneous thermal

displacements of absorber and back-scatterer atoms, respec-

tively, from the equilibrium positions, Rc is the equilibrium

distance between the two atoms, and R̂Rc is the corresponding

unit vector. Within the harmonic approximation (Maradudin

et al., 1971), one can express the parallel and perpendicular

MSRDs in terms of eigenfrequencies and eigenvectors of the

dynamical matrix,

MSRDk ¼ ð1=NÞ
X
�;q

h- =½2!ð�; qÞ� coth �h- !ð�; qÞ=2½ �

�

��� w2ð�; qÞ exp iq � Rcð Þ=M
1=2
2

�

�w1ð�; qÞ=M
1=2
1

�
� R̂Rc

���2; ð3Þ

MSRD? ¼ ð1=NÞ
X
�;q

h- =½2!ð�; qÞ� coth �h- !ð�; qÞ=2½ �

�

n���w2ð�; qÞ exp iq � Rcð Þ=M
1=2
2 � w1ð�; qÞ=M

1=2
1

���2

�

����w2ð�; qÞ exp iq � Rcð Þ=M
1=2
2

� w1ð�; qÞ=M
1=2
1

�
� R̂Rc

���2
o
: ð4Þ

In the case of ‘Bravais crystals’ (crystals with one atom per

primitive cell), these equations become

MSRDk ¼ 1=ðNMÞ
X
�;q

h- =½2!ð�; qÞ� coth ½�h- !ð�; qÞ=2�

�

���wð�; qÞ � R̂Rc

���2
��� expðiq � RcÞ � 1

���2; ð5Þ

MSRD? ¼ 1=ðNMÞ
X
�;q

h- =½2!ð�; qÞ� coth ½�h- !ð�; qÞ=2�

�

n���wð�; qÞ
���2

�

���wð�; qÞ � R̂Rc

���2
o��� expðiq � RcÞ � 1

���2:
ð6Þ

In (3)–(6), N is the total number of primitive cells, !(�,q) are

eigenfrequencies of the dynamical matrix labelled by the

normal mode (�,q), and wk(�,q) are the three-dimensional

eigenvectors referred to the k atom in the primitive cell.

It is worth remembering here that different dynamical

matrices can exist, sharing the same eigenfrequencies but with

different eigenvectors (Cochran, 1971). The reproduction of

parallel and perpendicular MSRDs, experimentally obtained

from EXAFS, represents an effective and peculiar test for

the phase relationships between eigenvectors obtained from

ab initio or model calculations.

3. Einstein model

The Einstein model, originally introduced for specific heats,

consists of approximating the phonon spectrum with a single

Einstein frequency !E (Ashcroft & Mermin, 1976),

!ð�; qÞ ¼ !E 8 � ¼ 1; 2; . . . ; 3r: ð7Þ

Equivalently, the Einstein model substitutes the phonon

density of states �(!) with a delta function centred at !E,

�einð!Þ / �ð!� !EÞ: ð8Þ

3.1. Parallel MSRD

Introducing the Einstein approximation of (7) into (3) and

expanding the square modulus, one finds

MSRDk ¼ h- =ð2N!EÞ cothð�h- !E=2Þ

�
X
�;q

n
ð1=M2Þ

��w2 � R̂Rc

��2 þ ð1=M1Þ
��w1 � R̂Rc

��2

� 1=ðM1M2Þ
1=2

� ��
w2 � R̂Rc

��
w�1 � R̂Rc

�
expðiq � RcÞ

þ c:c:
o
;

where the (�,q)-dependence of eigenvectors has been omitted

for brevity. Denoting by �,� the Cartesian components of

eigenvectors, making use of the closure-completeness rela-

tions (Maradudin et al., 1971),

X
�

w�;kð�; qÞw��;�ð�; qÞ ¼ ��;� �k;�; ð9Þ

and keeping in mind that R̂Rc is an unit vector, one can show

that

X
�

X
�;�

w�;kð�; qÞR� w��;�ð�; qÞR� ¼ �k;�;

and finally obtain
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MSRDk ¼ h- =ð2�!EÞ coth ð�h- !E=2Þ

�

n
1� 2�= NðM1M2Þ

1=2
� �

�1;2

X
q

expðiq � RcÞ

o
;

where it has been taken into account that the sum over q,

extending over the first Brillouin zone, contains N values of

wavevectors and is symmetric with respect to q = 0. Besides,

one has introduced the reduced mass � = M1M2 /(M1 + M2).

Now, the term �1;2

P
q expðiq � RcÞ is always zero. This can

be understood considering two distinct cases: (i) if the two

atoms 1 and 2 occupy different symmetry positions in the

crystal (i.e. they are labelled by two different indexes within

the primitive cell) then �1,2 = 0; (ii) if the two atoms 1 and 2

have the same symmetry positions in the crystal, then �1,2 = 1

but the equilibrium interatomic distance Rc is a non-zero

vector of the Bravais lattice. In this case,
P

q expðiq � RcÞ = 0

(Ashcroft & Mermin, 1976). Therefore, one finally obtains

MSRDein
k ¼ h- =ð2�!EÞ coth ð�h- !E=2Þ: ð10Þ

The Einstein approximation, (8), is in principle rather crude. It

is, however, a matter of experience that the temperature

dependence of the parallel MSRD is satisfactorily fitted by

(10), at least within the current experimental uncertainties.

This fact is not surprising, since at high temperatures equation

(10) is approximated by the classical linear behaviour anyway,

while at low temperatures the behaviour of the MSRD is less

sensitive to the peculiarity of the model than the specific heat.

The success of (10) has been boosted by its current

phenomenological interpretation (Sevillano et al., 1979),

which considers the pair of absorber and back-scatterer atoms

as an independent Einstein oscillator with frequency !E

related to a local effective bond-stretching force constant � =

�!E
2 (Dalba & Fornasini, 1997). The Einstein frequency has

thus a double meaning: (i) an effective vibrational frequency

of the interatomic bond; (ii) a constant which roughly repre-

sents the centroid of the distribution of normal mode

frequencies.

3.2. Perpendicular MSRD

The derivation in the previous paragraph can be easily

extended to the case of the perpendicular mean-square rela-

tive displacement. One can proceed in an absolutely analo-

gous way to the case of MSRD||: applying into (4) the Einstein

approximation of (7) and the closure-completeness relation of

(9), one arrives at the correlated Einstein model for the

perpendicular MSRD,

MSRDein
? ¼ h- = �!Eð Þ coth �h- !E=2ð Þ: ð11Þ

The analytical expression for the perpendicular MSRD, (11),

corresponds to the expression for the parallel MSRD, (10),

apart from a factor 2. There is, however, no a priori reason

why, for a given pair of atoms, the temperature dependence of

the parallel and perpendicular MSRDs should be best-fitted

by the same Einstein frequency.

4. Debye model

The Debye model, widely used for specific heats and diffrac-

tion MSDs, applies in principle only to monatomic ‘Bravais

crystals’ and consists of (Ashcroft & Mermin, 1976): (i) line-

arly approximating the (acoustic) phonon spectrum

!ð�; qÞ ¼ vs q 8 � ¼ 1; 2; 3; ð12Þ

where vs is the sound velocity in the crystal; (ii) replacing the

first Brillouin zone with a sphere of radius qD (Debye wave-

vector) containing the same number N of wavevectors,

qD ¼
�
6	2N=V

�1=3
; ð13Þ

where V is the total volume of the crystal. The Debye model is

characterized by an (acoustic) phonon density of states,

�deb
ð!Þ / !2=!3

D: ð14Þ

4.1. Parallel MSRD

Inserting the Debye approximation of (12) into (5) and

properly replacing the sum over the first Brillouin zone by an

integral, one obtains

MSRDk ¼ V=ðNMÞ � 1=ð2	Þ3
Z

BZ

h- =ð2vsqÞ coth ð�h- vsq=2Þ

�
X
�

���wð�; qÞ � R̂Rc

���2
��� expðiq � RcÞ � 1

���2 dq: ð15Þ

Using the closure-completeness relations of (9) one has

X
�

���wð�; qÞ � R̂Rc

���2 ¼ 1:

Using (13) and introducing spherical coordinates r, 
 and ’,

one has

MSRDk ¼ 3= 2Mq3
D

� � Z qD

0

dq q2h- =ð2vsqÞ coth ð�h- vsq=2ÞFðqÞ;

ð16Þ

where

FðqÞ ¼

Z 	

0

sin 

��� exp iqRc cos 
ð Þ � 1

���2 d
: ð17Þ

Performing the integration in (17) and re-writing the entire

expression in the frequency variable, one arrives at

MSRDdeb
k ¼ 3h- =M

Z !D

0

d! ð!=!3
DÞ coth ð�h- !=2Þ

�

h
1� sin ð!Rc=vsÞ=ð!Rc=vsÞ

i
: ð18Þ

With respect to previous derivations of the Debye correlated

model (Sevillano et al., 1979), here the use of closure-

completeness relations eliminates the necessity of introducing

the ad hoc assumption of spherical approximation for the

geometrical term containing the square modulus of eigen-

vectors.
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4.2. Perpendicular MSRD

As in the case of the Einstein model, the work of the

previous paragraph can be easily extended to the perpendi-

cular MSRD. Applying into (6) the Debye approximations of

(12) and (13) and the closure-completeness of eigenvectors of

(9), one obtains

MSRDdeb
? ¼ 6h- =M

Z !D

0

d! ð!=!3
DÞ coth ð�h- !=2Þ

�

h
1� sin ð!Rc=vsÞ=ð!Rc=vsÞ

i
: ð19Þ

Like for the Einstein model, the analytical expression for the

perpendicular MSRD for the Debye model, (19), also corre-

sponds to the expression for the parallel MSRD, (18), apart

from a factor 2. Again, there is no a priori reason why, for a

given pair of atoms, the temperature dependence of the

parallel and perpendicular MSRDs should be best-fitted by

the same Debye frequency (or temperature).

5. Discussion

Both parallel and perpendicular MSRDs, according to (3) and

(4), are the sum of the effects of 3Nr oscillators of different

frequencies, weighted by different geometrical factors. The

Einstein and Debye models, which are characterized by only

one free parameter (the frequency !E or !D, or the corre-

sponding temperature 
E or 
D), are approximations based on

rather restrictive assumptions. It is a matter of experience,

however, that the temperature dependence of the experi-

mental MSRDs can be reasonably fitted by both models, the

difference between the two models being generally smaller

than the uncertainty of experimental data or theoretical

calculations.

The main current applications of the Einstein and Debye

models are: (i) to calculate absolute values of parallel and

perpendicular MSRDs from the relative values obtained from

the phenomenological analysis based on the ratio method; (ii)

to express by one parameter the parallel MSRD at different

temperatures when the data analysis is based on the best fit to

theoretically simulated EXAFS spectra. It is, however, inter-

esting to inquire on the physical meaning that can be actually

attributed to the Einstein and Debye frequencies.

The Debye model, in view of the more realistic density of

states, appears more suitable for a physical interpretation, at

least for ‘Bravais crystals’. Strengths and limitations of the

Debye model are enlightened by a recent EXAFS study of

copper (Fornasini, a Beccara et al., 2004). The Debye

temperatures best-fitting the parallel MSRD of the first four

coordination shells are in reasonable overall agreement with

the Debye temperatures of specific heat, Bragg diffraction and

thermal diffuse scattering. However, while the EXAFS Debye

temperatures are very similar for first, third and fourth coor-

dination shells, the second shell is characterized by a smaller

value, corresponding to a correlation effect smaller than

expected according to the Debye model, but reproducible by

more refined calculations (Jeong et al., 2003).

Specific heats depend only on normal mode frequencies: as

a consequence, one can also still use the Debye model for

‘non-Bravais’ crystals, for example by properly extending the

Debye sphere and considering only the three acoustic bran-

ches (Ashcroft & Mermin, 1976). The same procedure can be

performed in the case of XRD Debye–Waller factors, by

assuming a spherical average of the squared moduli of

eigenvectors contained in the harmonic expression of the

absolute mean-square displacements (Maradudin et al., 1971).

Also, the Debye correlated model for EXAFS parallel MSRD

is often used for ‘non-Bravais’ crystals. The physical meaning

of this approach was shown to be questionable on the basis of

experimental results on germanium (Dalba & Fornasini,

1997), where the Debye temperatures best-fitting the parallel

MSRDs are very different for different coordination shells

and different from the known Debye temperatures of XRD

and specific heats. This work clarifies that the situation for

EXAFS is more complex than for specific heats and diffrac-

tion: the general harmonic expressions of MSRDs [see (3) and

(4)] contain the correlation term and then the cross product of

eigenvectors referred to different atoms within the primitive

cell, for which a physically sound spherical average cannot be

defined. Therefore the correlated Debye model for EXAFS

MSRDs should not be extended to ‘non-Bravais crystals’.

Further insights can be gained by comparing the parallel

and perpendicular MSRDs. If the dynamical properties of a

crystal could be described by a unique Debye frequency (or

temperature), the perpendicular MSRD would be twice the

parallel MSRD [see (18) and (19)]. This follows from the fact

that the perpendicular MSRD is a projection of relative

atomic motion onto a plane, while the parallel MSRD is a

projection along the bond direction, and the Debye model

implicitly assumes isotropy. However, even in the case of the

first shell of copper (Fornasini, a Beccara et al., 2004; Forna-

sini, Dalba et al., 2004), one can experimentally monitor a

deviation from a pure Debye behaviour: the Debye

temperatures best fitting the perpendicular and parallel

MSRDs are different, and the perpendicular/parallel ratio � is

non-negligibly greater than 2.

Let us now consider the Einstein model. The comparison of

the Einstein frequencies, obtained from the best fit to the

temperature dependence of experimental data, with the

dispersion curves and the phonon density of states (DOS) is

far from trivial. For both parallel and perpendicular MSRDs,

�E is a single frequency which approximates the whole phonon

spectrum. A comparison of the EXAFS Einstein frequencies

(Table 1) with the phonon DOS of copper (Nilsson &

Rolandson, 1973) and germanium (Nelin & Nilsson, 1972)

shows that in both cases the Einstein frequencies do not

correspond to any definite peak in the phonon DOS, since

obviously every lattice mode contributes to the MSRDs.

Qualitative information can, however, be obtained in some

cases. For germanium (Dalba et al., 1999; Fornasini, Dalba et

al., 2004) the perpendicular to parallel anisotropy of relative

atomic vibrations is much larger than for copper and the

perpendicular/parallel ratio � reaches a value of 6 at high

temperatures. This fact reflects the more open crystal structure
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of diamond, which allows more intense perpendicular relative

vibrations, and is probably related to the negative thermal

expansion observed in germanium below 40 K. As a conse-

quence of this high perpendicular/parallel ratio, the Einstein

frequency for the perpendicular MSRD is much lower than

that for the parallel MSRD. The comparison with the phonon

DOS of germanium (Nelin & Nilsson, 1972) suggests that the

high-frequency optical modes contribute primarily to the

parallel MSRD, while for the perpendicular MSRD the low-

frequency acoustic modes play a more determinant role. This

kind of consideration can be important, for example, to

qualitatively recognize the importance of low-energy trans-

verse acoustic modes in negative thermal expansion materials.

6. Conclusions

In this work the correlated Einstein and Debye models for the

EXAFS parallel MSRD have been derived within the general

framework of the harmonic approximation for crystals,

without ad hoc assumptions. The widespread expressions of

the two models, which are generally based on simple

phenomenological considerations, are thus established on

firmer grounds, allowing a better evaluation of their strengths

and limitations. In particular, the lack of physical meaning of

the Debye correlated model in the case of crystals with more

than one atom per primitive cell, already experimentally

observed for germanium, is demonstrated on general grounds.

The procedure adopted for the parallel MSRD allowed a

straightforward extension of the Einstein and Debye models

to the case of the perpendicular MSRD. Both models impli-

citly assume isotropy: as a consequence they would give a

perpendicular MSRD that is always twice the parallel MSRD

and the same frequencies. However, accurate experimental

data on simple crystals have shown a degree of anisotropy in

the relative atomic vibrations, that is non-negligible in copper

and very significant in germanium. Consequently, the parallel

and perpendicular MSRDs are best-fitted by different

Einstein or Debye frequencies (or temperatures).

The comparison of the Einstein frequencies with phonon

DOS is far from trivial. However, in some cases it allows a

qualitative evaluation of the different contribution of phonon

branches to parallel and perpendicular MSRDs.
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Table 1
Einstein frequencies �E = !E/2	 (in THz) best fitting the parallel (||) and
perpendicular (?) MSRDs of the first coordination shell of copper and
germanium.

In the case of germanium, the value quoted for �E
? is different from the value

quoted by Dalba et al. (1999), where (10) was used instead of (11).

�E
|| �E

?

Cu 4.95 � 0.05 4.6 � 0.2
Ge 7.6 � 0.1 4.1 � 0.1


