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The response of an intrinsic Ge detector in energy-dispersive diffraction

measurements with synchrotron radiation is studied with model calculations and

diffraction from perfect Si single-crystal samples. The high intensity and time-

structure of the synchrotron radiation beam leads to pile-up of the output pulses,

and the energy distribution of the pile-up pulses is characteristic of the fill

pattern of the storage ring. The pile-up distribution has a single peak and long

tail when the interval of the radiation bunches is small, as in the uniform fill

pattern, but there are many pile-up peaks when the bunch distance is a sizable

fraction of the length of the shaping amplifier output pulse. A model for the

detecting chain response is used to resolve the diffraction spectrum from a

perfect Si crystal wafer in the symmetrical Laue case. In the 16-bunch fill pattern

of the ESRF storage ring the spectrum includes a large number of ‘extra

reflections’ owing to pile-up, and the model parameters are refined by a fit to the

observed energy spectrum. The model is used to correct for the effects of pile-up

in a measurement with the 1/3 fill pattern of the storage ring. Si reflections

(2h,2h,0) are resolved up to h = 7. The pile-up corrections are very large, but a

perfect agreement with the integrated intensities calculated from dynamical

diffraction theory is achieved after the corrections. The result also demonstrates

the convergence of kinematical and dynamical theories at the limit where the

extinction length is much larger than the effective thickness of the perfect

crystal. The model is applied to powder diffraction using different fill patterns in

simulations of the diffraction pattern, and it is demonstrated that the regularly

spaced pile-up peaks might be misinterpreted to arise from superlattices or

phase transitions. The use of energy-dispersive diffraction in strain mapping in

polycrystalline materials is discussed, and it is shown that low count rates but

still good statistical accuracy are needed for reliable results.
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1. Introduction

In energy-dispersive diffraction (EDD) a well collimated

polychromatic beam of X-rays falls on the sample, and the

spectrum of the radiation scattered at a fixed angle is analyzed

(Giessen & Gordon, 1968). The analyzer is usually a solid-

state detector, such as an intrinsic Ge diode, but scanning by a

perfect crystal can also be used (Parrish & Hart, 1988). The

principal application of the method is powder or polycrystal-

line diffraction, particularly under extreme conditions of high

pressures and temperatures (Prewitt et al., 1987; Mao &

Hemley, 1998). The use of synchrotron radiation from a

bending magnet or wiggler was introduced a long time ago

(Buras et al., 1976). With synchrotron radiation, very short

data acquisition times are needed, which makes time-resolved

studies of phase transitions and reaction kinetics possible

(Jupe et al., 1996; O’Hare et al., 1998). Another application in

materials science is diffraction tomography of polycrystalline

samples (Hall et al., 1998), and recently simultaneous

absorption tomography and diffraction analysis was intro-

duced (Pyzalla et al., 2005). Creep damage can be followed

in situ, and for high-resolution strain mapping in bulk samples

the use of high-energy synchrotron radiation and EDD is

superceding neutron diffraction methods. Quantitative whole-

pattern refinement in powder diffraction becomes possible

when the energy spectrum of the incident beam and the

response function of the detecting system are known. If the

sample is randomly oriented, the method can be used for

solving crystal structures, and even for determining thermal

parameters (Honkimäki & Suortti, 1992b).

The effects of high count rates have been discussed in detail

recently using a pulse-overlap model for photon counting

(Laundy & Collins, 2003). That work described the effects in

terms of the detector dead-time, and the results are directly
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applicable to the detection of mono-energetic X-rays. The

present work addresses the problems encountered in EDD,

where a distribution of energies is detected. The response

function of a solid-state detector such as an intrinsic Ge diode

involves creation of electron–hole pairs by the incident X-ray

photon, charge collection, and conversion to a voltage pulse in

the pre- and shaping amplifiers. The pulses are sorted into the

memory of a multi-channel analyzer (MCA) after passing

through an analog-to-digital converter (ADC). For a full

understanding of the output signal, pulse shapes and func-

tioning of the various components must be known in detail.

The pulsed time structure of synchrotron radiation makes the

temporal distribution of the output signal very non-uniform,

which leads to effects that are not encountered at steady-state

sources such as X-ray tubes. Unfortunately, this situation is

often ignored, and the energy spectra of the scattered radia-

tion, as recorded by solid-state detectors, are analyzed impli-

citly assuming a steady-state source of radiation. This article

presents a direct experimental approach to the analysis of

EDD patterns in single-crystal and powder diffraction, taking

into account the actual time structure of the incident

synchrotron radiation. The results are illustrated by several

simulations and by measured diffraction patterns.

2. Pulsed source and Ge detector

A storage ring is a cyclic source of X-rays, where short

bunches of electrons (or positrons) travel almost at the speed

of light and emit radiation in the forward direction. The

storage ring has a certain number of ‘buckets’, which can be

filled with electrons, and this creates the so-called fill pattern.

In the following we use the ESRF storage ring as an example.

There the circumference of the storage ring is 844 m, and the

number of buckets is 992, i.e. successive buckets are separated

by 0.85 m in space or 2.84 ns in time. Different fill patterns are

shown in Fig. 1. The partial filling modes (1/3 or 2/3) have been

used to reduce ion-trapping, but recently this problem has

been overcome even with the uniform fill, where all the

buckets are filled. Many experiments require longer intervals

between the bunches, and the fill patterns most frequently

used for time-resolved experiments are the 16-bunch mode

and the 1-bunch mode, where the bunch intervals are 176 ns

and 2.82 ms, respectively. The RMS bunch length depends on

the mode, being about 20 ps in the uniform fill and 73 ps in the

1-bunch mode. At the full current I in the storage ring, there

are 3.5 � 109 electrons in a bunch with the uniform fill (I =

200 mA), 9.3 � 1010 electrons in the 16-bunch mode (I =

85 mA), and 2.6 � 1011 electrons in the single bunch orbiting

in the ring (I = 15 mA).

Synchrotron radiation is emitted when the electron moves

on a curved trajectory in a magnetic field. The electrons

propagate almost at the same speed as the X-rays that they

emit, so that the X-ray pulse is only slightly longer than the

electron bunch, even when the source is an extended magnetic

structure, such as a wiggler or an undulator. For the present

work, it is instructive to calculate the number of X-ray photons

from one bunch through a pinhole in front of the sample. The

intensity at the center of the beam emitted by a bending

magnet in seconds and mrad2 within a 0.1% bandwidth is

d2n

d� d 
¼ 1:327� 1013 E2 ½GeV2

� I ½A� H2 yð Þ; ð1aÞ

H2 yð Þ ¼ y2K2
2=3 y=2ð Þ; ð1bÞ

where E is the electron energy, y = "/"c is the photon energy/

critical energy, and K2/3 is the modified Bessel function of the

second kind. At the critical energy, H2(1) ’ 1.5, so that 5.7 �

1010 photons s�1 (0.1% bandwidth)�1 of that energy pass

through a 1 mm2 pinhole placed at 50 m from the source, when

E = 6 GeV and I = 0.2 A. The corresponding numbers per

bunch are 1.2� 104 photons (0.1% bandwidth)�1 in the single-

bunch mode, 4.3� 103 photons (0.1% bandwidth)�1 in the 16-

bunch mode, and 1.6� 102 photons (0.1% bandwidth)�1 in the

uniform fill mode. For a wide energy band used in EDD, these

numbers must be multiplied by 103, so that, depending on the

fill pattern, 107 to 105 photons fall on 1 mm2 of the sample area

within less than 100 ps. In the case of a wiggler source, these

numbers are increased still by another order of magnitude. A

fraction of the photons that are scattered by the sample pass

through the receiving slit in front of the detector, and the

question to be answered is that of the detecting system

response to short bursts of photons arriving at regular

intervals.

The functioning of the Ge detector is characterized by the

length and shape of the output pulse of the amplifier, and by

the operation logic of the ADC and MCA. The photons

scattered from a given bunch arrive at the detector simulta-

neously, creating a single output pulse. Pulses that come from

different bunches close to each other overlap partially, and the

pulse height is increased from that of a single pulse. The

effects are customarily described as dead-time losses and pulse

pile-up. Detector electronics usually include the option for
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Figure 1
Fill patterns of the ESRF storage ring. There are 992 ‘buckets’, which are
spaced by 2.84 ns. In the uniform fill (a), all the buckets are filled by
electrons; in the 1/3 fill (b), 2/3 of the buckets are empty; but in the hybrid
mode (c), a single bucket in the middle of the empty part is filled. In the
16-bunch mode (d), the bunch interval is 176 ns.



automatic corrections for these effects, but the correction

circuits have limited capabilities for handling very large pulse

rates, and their actual effects on the output spectrum at the

MCA may be obscure. The actual response of a Ge detector

and pulse analyzing electronics can be found only experi-

mentally, and the response function should be described by a

model where the temporal structure of the incident radiation

and time constants and operation mode of the detector elec-

tronics are properly included.

Fig. 2 shows the pulse shape at the amplifier output. The

pulse is an asymmetric Gaussian (owing to charge collection

time in the detector crystal), where the leading edge is slightly

steeper than the trailing edge. Different shapes of the sum

pulse from two photons arriving almost simultaneously are

illustrated in the figure. The pulse sorting by the shaping

amplifier and the ADC varies from one detector set-up to

another, and here a widely used combination of an intrinsic

Ge planar detector and an ADC is considered (Camberra

8715). When the pulse separation is sufficiently large, the sum

pulse becomes double-peaked, and the detector electronics

may assign the pulse according to the height of the first or the

second peak, or count two separate pulses. The actual pulse

pile-up can be illustrated by a simple model for the ADC: (i)

when the minimum between two pulses is higher than the

threshold, the sum of the pulses is detected (pile-up); other-

wise they are detected separately. (ii) The peak height is

defined when the signal falls by 10% (even if the signal rises

again before falling below the threshold).

For a continuous monochromatic source, the total amount

of pile-up is

Ptot ¼ 1� exp �n0� 2 ln 2U0=UTð Þ
� �1=2

n o
;

and the n-event pile-up is

Pn ¼ P n�1
tot 1� Ptotð Þ;

where � is the shaping time of the amplifier, U0 is the energy in

volts and UT is the threshold. For example, for n0 =

50000 counts s�1, � = 0.5 ms, U0 = 5.0 V and UT = 0.1 V, the

total amount of pile-up is 7.31% with P2 = 6.77%, P3 = 0.49%

and P4 = 0.04%. Because the effect of the filling mode on the

total amount of the pile-up turns out to be very small and all

count rates in this paper are well below 50000 counts s�1, the

effects of three or more event pile-ups on the calculated pile-

up spectra are neglected.

For a pulsed source the probability that two successive

photons are separated by m buckets is

pm ¼

1�expð�nbÞ½ �
2

nbNocc

PNtot�1

i¼0

ciciþm exp nb 1�
Piþm�1

k¼i

ck

� �� �
; m 6¼ 0

1�
1�expð�nbÞ½ �

nb
; m ¼ 0;

8>><
>>:

ð2Þ

where nb = n0�TNtot=Nocc, n0 is the total count rate, �T is the

time between the buckets, Ntot is the total number of buckets,

Nocc is the number of occupied buckets and ci is the occupation

number of the bucket (1 or 0). When nb is small, the prob-

ability pm is an autocorrelation function of the filling pattern.

The total pile-up spectrum is the sum of triple products,

np-u "ð Þ ¼
1

n0

X
ijm

pmn "ið Þn "j

� �
f "� E "i; "j;m�T; �

� �� �
; ð3Þ

where the peak height E("i, "j, m�T, �) in energy is calculated

using the ADC model (ii). "i and "j are the energies of the

successive photons separated by time m�T, and n("i) and n("j)

are their count rates, respectively. The sum over m runs until

the two photons are detected separately using the ADC model

(i). In the case of a modelled spectrum, f is the resolution

function. For an experimental spectrum, the �-function is used.

In order to give a flavour of what is to be expected in

different cases, the pile-up distributions for typical fill patterns

of the ESRF are shown in Fig. 3. For simplicity, only a single

narrow energy band around "0 = 50 keV is considered. The

pile-up is distributed between the nominal energy "0 and 2"0.

The operation mode of the detector electronics has particular

effects, e.g. the cut-off of pile-up at 53 keV in the uniform fill

mode is due to the transition from the case in Fig. 2(b) to that

in Fig. 2(c). In the uniform fill mode, and in a partial fill mode

(1/3 in this example), the pulses originating from closely

spaced bunches combine to a sharp peak at 2"0. On the other

hand, combinations from bunches separated by 176 ns in the

16-bunch mode peak at many positions between "0 and 2"0.

The different intervals between two bunches give rise to nine

research papers
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Figure 2
The output pulse of a Ge detector. The pulse shape is slightly asymmetric
Gaussian, and different cases of the sum of two adjacent identical pulses
are shown. The leading edge width is 0.48 ms, and the trailing edge width
is 0.52 ms. The assigned pulse heights are indicated by small circles. In (b)
and (c) the second maximum is higher than the first due to the asymmetric
pulse shape. In (a) the almost simultaneous pulses are counted as a single
pulse of double height; in (b) the signal has fallen less than 10% from the
first peak value and the second maximum is recorded as the peak height;
in (c) the fall is larger than 10%, and the first maximum is recorded as the
peak height; and in (d) two separate peaks are recorded when the valley is
lower than the threshold. Cases (a), (b) and (c) lead to dead-time loss, but
also lead to pile-up signal between "0 and 2"0, where "0 is the height of the
single pulse.



narrow peaks between "0 and 2"0. Owing to the almost

Gaussian shape of the detector output pulse, the distance

between neighbouring peaks is not constant. Although the

distributions are very different, the integral over the pile-up

pulses is the same in all cases, irrespective of the fill pattern.

The actual pile-up distribution is very sensitive to the shape

of the detector output pulse and the thresholds of the pulse-

sorting logic. The observed positions and heights of the pile-up

peaks are used for a precise determination of the shape of the

detector output pulse, as discussed in detail in the next section.

3. EDD from a perfect crystal

EDD can be used for probing reciprocal space very efficiently.

The direction of the scattering vector is determined by the

incident and scattered beams, and EDD probes the reflectivity

of the crystal along a line starting from the origin of the

reciprocal space (Buras et al., 1975). A challenging application

is a measurement of the integrated intensities of a perfect

crystal, because the crystal is totally reflecting within narrow

energy bands, so that the count rates at these energies are

those of the incident beam within these bands. When the

crystal is oriented in such a way that the scattering vector

passes through the reciprocal lattice point hkl, all allowed

reflections mh,mk,ml are seen at multiple energies m"hkl. The

Bragg law in the energy scale is given by

" ¼
hc

2dhkl sin �
¼

12398 eV Å

2dhkl sin �
; ð4Þ

where " is the photon energy, h is Planck’s constant, c is the

velocity of light, dhkl is the lattice spacing and 2� is the scat-

tering angle. The situation is illustrated by the Ewald

construction in Fig. 4. The scattering vector is K = 2k0sin� =

4�sin�/�, where � is the X-ray wavelength, and the variation

within the angular range �2�, determined by the receiving slit

opening in the scattering plane, is �K = k0 cos�(�2�). The

range of total reflection is the Darwin width, which is inde-

pendent of k0 in the relative wavevector or energy scale,

�K

K

� �
D

¼ re

4d 2
hklKpol;dFhkl

�Vc

; ð5Þ

as long as the dispersion corrections to the structure factor Fhkl

are small. Here, re is the electron scattering length (classical

electron radius), Kpol,d is the polarization factor in dynamical

diffraction, and Vc is the unit-cell volume. The integrated

intensity of a reflection from a non-absorbing perfect crystal is

(4/3)wD, where the angular width of the total reflection is wD =

(�K/K)D tan�. The number of photons diffracted to the

receiving slit is

nhkl ¼ n0 hklð Þð4=3ÞwD; ð6aÞ

where n0 = (dn0 /d")hkl�" is the number of incident photons

(spectral flux) within the energy band accepted by the

receiving slit, �" = (1/2)"cot��(2�),

nhkl ¼
2

3
wD

dn0

d"

� �
hkl

" cot �� 2�ð Þ

¼
2

3

�K

K

� �
D

dn0

d"

� �
hkl

"� 2�ð Þ: ð6bÞ

The Darwin widths of perfect crystal reflections are accurately

known, and even the integrated intensities for absorbing

crystals can be calculated precisely. Accordingly, Bragg

reflections from a perfect crystal can be used for determina-

tion of the incident spectral flux. However, count rates at "hkl

are very large when synchrotron radiation is used, so that the

detecting system response function must be known accurately.

When the incident spectrum and the efficiency of the

detector are known, diffraction from a perfect crystal sample

can be used to study the functioning of the detector under

different conditions. Fig. 2 shows the simplest case, where the

individual pulses have the same height, i.e. the pulses come
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Figure 4
Ewald construction for energy-dispersive diffraction from a perfect
crystal. The origin of the reciprocal lattice is indicated by O, and K is the
scattering vector. The equatorial opening of the receiving slit is �2�,
where 2� is the scattering angle. When K passes through a reciprocal
lattice point a range of energies is reflected, corresponding to the
convolution of �2� and the Darwin width of the reflection.

Figure 3
Pile-up distributions for different fill patterns of the ESRF storage ring:
(a) uniform fill, (b) 1/3 fill, (c) 16-bunch mode with shaping time as in
Fig. 2 and a count rate of 5000 counts s�1. The integral of the pile-up
distributions is about the same in all cases: 1.5%.



from the same reflection hkl but from different bunches of the

synchrotron radiation beam. In general, the pulse heights

correspond to "hkl and "h0k0l 0, and the probability for the

combination (hkl, h0k0l 0) is proportional to the product of the

integrated intensities of the respective reflections. Therefore,

many combinations are possible, even though the small

contribution of the background is ignored.

The initial parameters of the model for the operation of the

Ge detector were taken from the manual supplied by the

manufacturer, and the leading and trailing Gaussian pulse

widths were refined by fitting the calculated pattern to the

observed one. The pattern measured in the 16-bunch mode is

most sensitive to the model parameters. A Si crystal wafer was

oriented in symmetrical Laue geometry in such a way that the

scattering vector passed through reciprocal lattice points

2m,2m,0, where m is an integer (1, 2, 3, . . . ). Fig. 5 shows the

energy spectrum of radiation scattered by the crystal from a

wiggler beam, when the ESRF storage ring is operated in the

16-bunch mode. On the basis of Fig. 3, many ‘extra reflections’

are to be expected, not just the ones at energies "hkl + "h0k0l 0,

which would be seen with the uniform or a partial fill pattern.

The observed pile-up pattern can be reproduced very closely

by a calculation where the actual fill pattern and the optimized

output pulse of the detector are used. The result is very

sensitive to the pulse shape, which is fine-tuned for the best fit

with the experimental diffraction pattern. The real Bragg

reflections from the Si(hh0) crystal are indicated (sitting at the

top of the pile-up fit), and it is seen that the very rich structure

between the reflections is just due to pulse pile-up in the Ge-

detector electronics.

The model for the detector operation was used to resolve

the weak high-order reflections from Si(hh0), where the pulse

pile-up is expected to have profound effects. The spectrum of

the beam observed by the detector is shown in Fig. 6; the full

spectrum on a logarithmic scale in the inset, and the part

above 100 keV on an enlarged linear scale. In this case the

measurements were carried out when the storage ring had the

so-called 1/3 fill pattern. The upper curve shows the observed

intensity, and the lower curve shows the pattern corrected for

pile-up. The pile-up contribution follows exactly that shown in

Fig. 3(b). The actual diffraction pattern is obtained when the

pile-up distribution is subtracted, which leaves the reflections

above a low background. There are some extra peaks about

11 keV below the low-order reflections. These are the so-

called (K-edge) escape peaks of the detector, and they are

assigned back to the peaks of their origin. At high energies

the escape peaks are weak (here less than 1%), but at small

energies they are substantial.

The relative Darwin widths and integrated intensities of the

Si(hh0) reflections can be derived from (6), because the

spectral flux and the detector response function are known

from the measurements with calibrated powder samples (see

the next section). The result is shown in Fig. 7 with calculated

curves in the ideally dynamical and kinematical diffraction

cases. The theoretical curves are obtained by using the

formulae for the integrated intensity in symmetrical Laue

diffraction and the analytical expression for the atomic scat-

tering factor as a function of the scattering vector (Wilson &

Prince, 1999). The effects of absorption and anomalous

dispersion can be ignored in the present energy range. It is

known that, at the limit where the crystal thickness is much

less than the extinction length � = Vc /(re�Kpol,dFhkl), the

dynamical diffraction intensity approaches asymptotically the

kinematical limit (Zachariasen, 1945). The present work may

be the first case where this merge of theories is demonstrated
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Figure 5
EDD pattern from a perfect Si(hh0) crystal, when the ESRF storage ring
has the 16-bunch fill pattern. Radiation from the ID15 wiggler has been
used, and the scattering angle 2� is 24.4�. The solid line gives the pile-up
pattern calculated from the detecting system response model. The
shaping time is as in Fig. 2 and the total count rate is 13000 counts s�1.
Only a few of the maxima are due to the real Bragg reflections: 660 at
about 46 keV, 880 at 61 keV and so on.

Figure 6
EDD pattern from a Si perfect crystal in symmetrical Laue geometry (2� =
12.2�), when the scattering vector passes through the reciprocal lattice
points (2h, 2h, 0). The storage ring has the 1/3 fill pattern, the shaping time
is 0.5 ms, the total count rate is 11000 counts s�1 and the acquisition time
is 180 s. The whole spectrum on a logarithmic scale is given in the inset,
and the high-energy part is given on a linear scale. The upper curve (solid
line) shows the recorded energy spectrum, and the lower curve (dotted
line) shows the spectrum as corrected for the effects of pile-up. Note the
small escape peaks about 11 keV below the low-order reflection peaks.



by a simple experiment. The measured integrated intensities

span three orders of magnitude, and in that range the differ-

ence between the kinematical and dynamical intensities

decrease from two orders of magnitude to zero.

4. Powder EDD

Scattering of broad-band radiation from a powder sample

includes many different components. In most cases the aim of

the experiment is to separate the Bragg reflections from the

total observed spectrum and, for that end, the profiles of the

reflections and the components of the background must be

described by an adequate model. There are some sum rules

and internal relations for the integrated intensities of the

reflections, the intensity of the thermal diffuse scattering, and

the intensity of inelastic scattering. The relations are used to

construct a self-consistent model for the total scattering, and

the model is used for whole-pattern fitting introduced by the

present authors (Honkimäki & Suortti, 1992a).

The different components of scattering can be calculated

for an ideal powder sample of known structure and thermal

motion parameters. The result is obtained on an absolute

scale, and it can be used for determination of the spectrum of

the incident radiation and the detector response function. The

integrated scattered flux of reflection hkl to solid angle � at

energy "hkl isZ
nhkl "ð Þ d" ¼ nhkl "hklð Þ

¼
dn0

d"

� �
hkl

"hkl A "ð ÞKpol;kð�=4�Þ t "ð Þd 3
hkl

� phkl reM0Fhklð Þ
2: ð7Þ

Here (dn0 /d")hkl is the incident photon flux per unit energy

interval and A(") is an attenuation factor, which includes

absorption between the sample and detector, and the effi-

ciency of the detector. Kpol,k is the polarization factor for

kinematical diffraction, t(") is the effective thickness of the

sample (including absorption), phkl is the multiplicity of the

reflection, and M0 = 1/Vc is the number of scattering units (unit

cells) in unit volume. When the diffraction pattern is recorded

at low count rates, where the effects of dead-time and pulse

pile-up are negligible, (dn0 /d")A(") can be determined from a

sufficient number of reflections. The method has been used

successfully to calibrate the spectral brightness of different

synchrotron radiation sources using well characterized stan-

dard samples. When the effective sample thickness and

opening of the receiving slit are known, the spectral brightness

is obtained in absolute units. The results were used for scaling

the perfect crystal diffraction patterns discussed in the

preceding section. One example of calibration of the source by

the powder diffraction pattern is shown in Fig. 8 (Honkimäki

& Suortti, 2001).

It is interesting to study the effects of fill patterns of a

storage ring on powder diffraction patterns measured by an

energy-dispersive detector. The excellent agreement between

the experiment and calculation in the preceding section indi-

cates that the response of the detector is accurately known. A

simple case was chosen for detailed simulations of the

diffraction pattern under different conditions. Fe has b.c.c.

structure at room temperature, so that only reflections with

h + k + l = 2m are allowed, and the integrated intensities are

calculated from (7). With a few exceptions, h2 + k2 + l 2

increases by steps of 2, so that in the "2 scale the reflections are

at regular intervals. The calculated patterns of Fig. 9 demon-
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Figure 8
Whole-pattern fit to the EDD spectrum scattered from a standard Fe
sample. The solid angle subtended by the detector is small in order to
eliminate the effects of pile-up. The pattern includes the Bragg
reflections, a function describing the thermal diffuse scattering, which
peaks under the Bragg reflections and equals the part lost from the Bragg
reflections due to thermal motion, Compton scattering, and parasitic Pb
fluorescence from shielding. The total intensity of the background
scattering is given by the thick line, and the inelastic part is indicated by
the broken line. The spectral brightness [photons s�1 mrad�2 (0.1%
bandwidth)�1 (100 mA)�1] of the radiation from the ID15 asymmetrical
multipole wiggler (AMPW), as calculated using the integrated intensities
of the Bragg reflections from Al (circles) and Fe (crosses) powder
samples, is given in the inset. The solid line is calculated from source
parameters, including the effects of beam filters.

Figure 7
Calculated integrated reflectivity for the (2h, 2h, 0) reflections of single-
crystal Si according to kinematical theory (dashed curve) and to
dynamical theory (solid curve; cf. Zachariasen, 1945). The measured
points for reflections from 4,4,0 to 14,14,0 are indicated by the small
circles.



strate that the ring fill pattern may introduce very rich struc-

ture between the proper reflections, particularly in the 16-

bunch mode, and that the proper reflections are distorted.

The experimental situations simulated in Fig. 9 may be

commonplace in cases where the fill pattern includes only a

small number of widely separated pulses. The extra structure is

regular, as seen in Figs. 3 and 9, and it may even be interpreted

to be real, e.g. arising from multiple phases or superstructures

in the powder sample. This is particularly clear in Fig. 9(c),

where the simulated pattern from an Fe powder sample is

shown for the 16-bunch fill pattern of the ESRF. It has to be

emphasized that the total count rate is not particularly high,

1.5 � 104 counts s�1, and that a short shaping time, 0.5 ms, is

used in the calculation. In Fig. 9(b) the uniform fill pattern is

used, and the effects of pulse pile-up are seen as increased

background and distortion of the reflection profiles and inte-

grated intensities. In truly accurate work there is no short-cut,

but the pile-up must be calculated properly and subtracted

from the pattern, or the pile-up pulse should be re-assigned to

the contributing reflections.

5. Polycrystalline samples: applications in materials
science

Materials of technological interest are often polycrystalline,

resembling powder samples. However, the grain size is large in

comparison with crystallites of ideal powder samples, and

there may be strong texture and preferred orientation of the

grains. Such a structure gives rise to a spotty angular pattern in

diffraction of a monochromatic X-ray beam, or as strong

variation in the EDD spectrum, depending on the orientation

of the sample.

EDD has many advantages in studies of polycrystalline

materials. The typical experimental set-up is shown in Fig. 10.

For instance, the local texture in the scattering volume is

obtained from the integrated intensities of a few reflections,

which are recorded simultaneously when the sample is rotated

about the incident pencil beam, or when a multi-detector in

conical geometry is used. When the scattering angle is small,

the reflections occur at high energies, which ensures that

kinematical diffraction theory applies, and the scattering

vector is almost perpendicular to the incident and reflected

beams, which facilitates the analysis. To our knowledge, EDD

has not been used in texture mapping, in spite of the obvious

advantages.

A large and growing area of materials science applications

of the EDD method is strain mapping and stress analysis. With

an optimized set-up and adequate modelling of the EDD

spectrum, the peak position changes (�"/")hkl have been

determined with a precision of about 10�5 (Steuwer et al.,

2004). However, the actual accuracy, even in the relative

values of �d/d, may be an order of magnitude worse for two

reasons. First, it is obvious that in order to find the true

reflection profile the parasitic contributions to the EDD

spectrum must be removed or eliminated and, for that,

understanding the response of the Ge detector is essential.

The pile-up spectrum distorts the reflection profiles as illu-

strated in Fig. 9. The positions of the reflections are shifted due

to the pile-up, and the shifts depend on the total count rate at

the detector, as shown in Fig. 11. In practice, the EDD pattern

may vary strongly across the sample, so that a calculation of

the pile-up distribution may not be feasible, and the only

solution is to reduce the count rate to the level where the

effects of pulse pile-up can be ignored. The counting statistics

become the critical factor for determination of the position of

a reflection, and the probable error can be calculated for a

profile of Gaussian shape. Supposing that the background has

been adequately removed, the relative statistical error in

observed count rate yi in the detector channel i is yi
�1/2. The

probable error �" in the position of the whole profile is found

by differentiating with respect to ", yielding a simple result,
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Figure 10
Experimental set-up for EDD measurement from a thick polycrystalline
sample. The volume seen by the detector is determined by the beam
width, the entrance slit ES, and the slits CS and DS in front of the solid-
state detector (SSD). There may be only a small number of reflecting
grains in the volume, and their non-uniform distribution causes variation
in the actual scattering angle, as indicated by a spot in the enlarged
picture of the scattering volume.

Figure 9
Simulated EDD patterns from an Fe powder sample, when different
storage-ring fill patterns of the ESRF storage ring are assumed: (a)
spectrum without pile-up and dead-time effects, (b) spectrum in uniform
fill, and (c) spectrum in 16-bunch mode. The source is the AMPW of ID15
with the full field of 1.85 T. Symmetrical transmission geometry is used,
the sample thickness is 1 mm, the scattering angle 2� is 5�, the total count
rate is 1.5� 104 counts s�1, and the shaping time of the amplifier is 0.5 ms.
The total pile-up count rate is 910 counts s�1. Background due to
Compton scattering has been added.



�" ¼ �=n
1=2
hkl ; ð8Þ

where � is the standard deviation of the Gaussian, and nhkl =

�yi is the integrated number of counts in the reflection. For a

Ge detector, � = a + b"1/2, and, at " = 100 keV, � is about

200 eV, so that for �"/" = 10�4 the integrated count nhkl = 400,

but for �"/" = 10�5 already 40000 counts must be collected. It

is seen in Fig. 11 that on that level of accuracy the total count

rate should be less than 2 � 103 counts s�1, and an order of

magnitude less for one reflection. In our example the acqui-

sition time should be 200 s. The second limitation in the

accuracy is due to the detector electronics, because main-

taining long-term stability within 1 eV over the whole counting

chain may be impossible. Moreover, the channel width of an

MCA for an energy range of 100 keV is typically 25 eV,

preventing monitoring the stability by a pulse generator on the

1 eV level.

6. Summary

EDD is a very powerful tool for studying crystal structures,

and, in particular, their changes under extreme conditions.

When synchrotron radiation is used, the data acquisition times

become very short making dynamical studies possible.

However, the detecting system response to high rates of

diffracted photons of different energies and arriving in short

bursts is rather complicated. The effects are usually called

pulse pile-up and detector dead-time, but these depend on the

time structure of the X-ray source and on details of the

detector electronics functioning. These can be modelled

accurately and the model can be used to resolve energy

spectra that include many artefacts arising from pulse pile-up.

It is concluded that without an adequate correction for these

effects the results obtained by EDD remain qualitative or

even questionable.

In this work we have reported results for EDD, obtained

with a commonly used Ge detector and standard electronics.

However, the pulsed time structure of the synchrotron

radiation source introduces a structured pile-up distribution

in the output of any photon-counting detector. This may be

invisible, or can be accounted for by a simple correction for

dead-time loss, but it is always advisable to study how the

detector and associated electronics function, and simulate the

output under the actual experimental conditions. There is no

simple recipe for making the pile-up corrections by extra-

polating from the present examples. The results give some

guidelines, but for actual corrections a realistic model for the

detector operation must be used.

The authors thank K.-D. Liss for providing the diffraction

spectrum of the Si(hh0) crystal, measured during the 16-bunch

operation of the ESRF storage ring.
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Figure 11
The absolute relative shifts of the positions of the first four reflections
from an Fe powder sample as functions of the total count rate (cf. Figs. 9a
and 9b). Uniform fill of the ESRF storage ring is assumed. The shift is
positive (0 < �E) for reflections 110, 200 and 211, and negative for 220.
The positions are calculated from Gaussian fits to the reflection profiles.


