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An expression is derived for the line intensities in a nuclear forward-scattering

energy spectrum that is obtained via a Fourier transformation of the time

dependence of the wavefield. The calculation takes into account the coherent

properties of the nuclear forward-scattering process and the experimental

limitations on the observable time window. It is shown that, for magnetic

samples, the spin direction can be determined from the ratios between the

different lines in the energy spectrum. The theory is complemented with

experimental results on �-iron.
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1. Introduction

A challenging problem in magnetism is the selective study of

different entities in a magnetic heterostructure as a function

of, for example, the external field, the temperature or the

shape of the magnetic structure. Mössbauer spectroscopy is an

isotope-selective technique and, therefore, allows one to study

a particular entity selectively, even when this entity is buried in

the material. It provides magnetic information by probing the

hyperfine fields. Most Mössbauer experiments are carried out

using a radioactive source. However, for the study of samples

containing a small amount of the resonant Mössbauer isotope,

e.g. samples embedded in a high-pressure cell (Mao et al.,

2004; Barla et al., 2004, 2005), thin films (Nagy et al., 2002;

Röhlsberger et al., 2002, 2004; L’abbé et al., 2004) or nano-

structures (Röhlsberger et al., 2001, 2003), the synchrotron

source is often a valuable alternative. It has the advantage that

it provides a well collimated intense beam. Moreover, the

energy of the beam is tunable over a wide range so that many

Mössbauer excitations can be accessed (for overviews, see

Röhlsberger, 2004; Leupold et al., 1999).

Nuclear resonant scattering experiments with synchrotron

radiation are generally performed in a time-differential mode

where the nuclear decay is recorded as a function of the time

after the excitation by the synchrotron pulse. The quantum

beats that are revealed are the fingerprints of the magnetic

fields at the position of the Mössbauer nuclei (Trammell &

Hannon, 1978; Gerdau et al., 1986). In order to extract the

magnetic information from the quantum beat pattern, a

substantial effort and experience is required, often inhibiting

an on-line interpretation of the data. Therefore, it has been

proposed to record both the norm and the phase of the scat-

tered wavefield (Sturhahn, 2001; Sturhahn et al., 2004; Callens

et al., 2005), allowing for a Fourier transformation of the

wavefield to the energy domain. The obtained spectra are

usually less complex and quite easy to interpret. A practical

scheme for the phase determination consists of a moving

single-line reference sample that is placed in-line with the

sample under investigation (Callens et al., 2005). For each

nuclear resonant scattered photon, both the time delay and

the velocity of the reference sample is recorded. For each time

channel, the velocity spectrum is a cosine function, from which

the norm and the phase of the wavefield component along the

incident polarization can be derived. The energy spectrum is

obtained by taking the norm squared of the Fourier-trans-

formed wavefield component.

In Mössbauer spectra taken with a radioactive source, the

line intensities depend on the magnetization direction

(Frauenfelder et al., 1962; Gonser et al., 1966). In this article

we will show that, for an energy spectrum obtained with

synchrotron radiation, the magnetization direction can also

be determined from the line intensities. Explicit expressions

for the line intensities of a 57Fe magnetic spectrum recorded

with linearly polarized synchrotron radiation are calculated.

The calculation is based on the dynamical theory of nuclear

forward scattering (Blume & Kistner, 1968) and takes into

account the finite experimental time window. The theory

is illustrated by a forward-scattering experiment on an

�-iron foil.

2. Calculation of the line intensities

For the calculation of the line intensities in a reconstructed

energy spectrum, we will focus on nuclear forward scattering

by 57Fe nuclei submitted to a uniaxial magnetic hyperfine field.
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The magnetic hyperfine field causes a Zeeman splitting of the

nuclear ground and excited states so that several nuclear

transitions can be distinguished. For a sufficiently large

Zeeman splitting, each allowed transition gives rise to a well

resolved resonance line in the energy spectrum. In Appendix

A we show that, for a sample with Mössbauer thickness L, the

intensity of the line associated with the j th hyperfine transi-

tion, Pj(L), can be related to the line intensity for a single-line

sample, PSL(Wj L), having a weighted Mössbauer thickness

Wj L,

PjðLÞ ¼ PSLðWj LÞje�j � einj
4: ð1Þ

The weighting factor Wj depends on the direction of the

hyperfine field, the polarization of the incident radiation and

the multipolarity of the Mössbauer transition.

The expression e�j � ein in equation (1) gives the projection of

the polarization state of the incident radiation, ein, on the

polarization state ej of the radiation that is resonantly scat-

tered via the j th hyperfine transition. Note that the polariza-

tion projection appears to the fourth power in equation (1),

owing to the fact that phase reconstruction methods using

a single-line reference sample only measure the wavefield

component along ein (Sturhahn et al., 2004; Callens et al.,

2005). For the M1 transition in 57Fe and incident radiation that

is linearly polarized along ex, the factors Wj and the polar-

ization projections je�j � exj
2 are given in Table 1.

Experimentally, the wavefield is measured only in a certain

finite time interval. The properties of this experimental time

window influence the line intensities. According to equation

(1), we can restrict the discussion to the case of a single-line

sample. We will work out the example of the time window that

was used in the experiment described below, i.e. a window

lasting from 17 to 133 ns. The energy spectra for single-line

samples with different Mössbauer thicknesses are calculated

using the procedure outlined in Appendix A. In order to

reduce truncating wiggles in the energy spectrum, the time

dependence of the wavefield is multiplied by a Gaussian

before the Fourier transformation is performed. This function

is called the time-window function and is given by

SðtÞ ¼
exp �ðt � 75Þ2=1682

� �
if t 2 ½17; 133�

0 elsewhere;

�
ð2Þ

where t is in ns. The line intensity PSL is calculated by

integrating the energy spectrum over the interval

½h- !0 � 3�; h- !0 þ 3�� where !0 is the resonance frequency

and � is the natural linewidth of the Mössbauer level. The

result is shown in Fig. 1(a). In order to intuitively understand

this curve, one should have a look at the time dependence of

the norm of the forward-scattered wavefield (Fig. 1b). If the

Mössbauer thickness varies from 10 to 50, the first dynamical

minimum is moving through the experimental time window.

This explains the maximum around L = 16 and the minimum

around L = 33 in the line intensity of Fig. 1(a).

An expression for the line-intensity ratios will now be

derived from equation (1) and the expressions in Table 1,

P1

P3

¼
PSL½0:375ð1þ cos2 �ÞL�

PSL½0:125ð1þ cos2 �ÞL�
; ð3Þ

P1

P2

¼
PSL½0:375ð1þ cos2 �ÞL�

PSL½0:5ðsin2 �ÞL�

1� sin2 ’ sin2 �

sin2 ’ ð1þ cos2 �Þ

� �2

: ð4Þ

research papers

J. Synchrotron Rad. (2007). 14, 366–371 R. Callens et al. � Magnetic spin direction 367

Table 1
The spin projection of the ground state (mg) and the excited state (me) on
the hyperfine field direction, the thickness weighting factors Wj and the
polarization projections je�j � exj

2 for the six allowed transitions in 57Fe.

� and ’ are the polar and the azimuthal angle of the hyperfine field with
respect to the propagation direction (z-axis) and the polarization direction
(x-axis) of the incident synchrotron radiation, respectively.

j mg me Wj je�j � exj
2

1 �1/2 �3/2 0.375(1 + cos2�) (1 � sin2� sin2’)/(1 + cos2�)

2 �1/2 �1/2 0.5 sin2� sin2’

3 �1/2 1/2 0.125(1 + cos2�) (1 � sin2� sin2’)/(1 + cos2�)

4 1/2 �1/2 0.125(1 + cos2�) (1 � sin2� sin2’)/(1 + cos2�)

5 1/2 1/2 0.5 sin2� sin2’

6 1/2 3/2 0.375(1 + cos2�) (1 � sin2� sin2’)/(1 + cos2�)

Figure 1
(a) Line intensity for a single-line sample as a function of the Mössbauer
thickness L for a time window lasting from 17 to 133 ns and a time-
window function as defined in equation (2). (b) Solid line: time evolution
of synchrotron radiation that is nuclear resonant scattered by a single-line
sample of Mössbauer thickness L. Dotted line: time-window function as
defined in equation (2).



� and ’ are the polar and the azimuthal angle of the hyperfine

field with respect to the propagation direction (z-axis) and the

polarization direction (x-axis) of the incident synchrotron

radiation. The ratio between the first and the third line

[equation (3)] does not depend on the azimuthal angle ’ and,

therefore, allows one to determine the polar angle �. Note

that, using linearly polarized radiation, one cannot distinguish

between a polar angle � and 180� � �. The degeneracy could

be resolved by using circularly polarized radiation (L’abbé et

al., 2004). In Fig. 2(a) the ratio P1/P3 is plotted as a function of

the polar angle � for the experimental time window and the

nominal Mössbauer thickness of the sample used in the

experiment. The highest sensitivity of the ratio P1/P3 to the

angle � is around � = 45�.

Once the polar angle � is known, the azimuthal angle ’ can

be determined from the ratio between the first and the second

line [equation (4)]. Again, owing to the sin2 dependence on

the angle ’, different angles give rise to the same line inten-

sities, i.e. �’ and 180� � ’. Part of this ambiguity can be

resolved by performing a second measurement using a

polarizer that tilts the linear polarization direction by 45�. This

allows one to distinguish between ’ and 180� + ’ on the one

hand and �’ and 180� � ’ on the other.1 If the magnetic

hyperfine field lies in the plane perpendicular to the propa-

gation direction of the photon, i.e. � = 90�, equation (4) can be

rewritten as

P1

P2

¼
PSLð0:375LÞ

PSLð0:5LÞ

1

tan4 ’
: ð5Þ

This function is plotted in Fig. 2(b) for the nominal Mössbauer

thickness of the sample used in the experiment. Since the

intensity of either the first or the second line is negligible near

’ = 90� or ’ = 0�, respectively, optimal sensitivity is achieved

in the intermediate region. Note that performing a second

measurement using a polarizer that tilts the linear polarization

direction by 45� will improve the sensitivity near ’ = 90� and

’ = 0�.

3. Experimental results

The formalism will be illustrated using experimental data on

an �-iron foil. The experiment was performed at the

Advanced Photon Source at beamline XOR-3-ID (Alp et al.,

1994), a beamline that is specially designed for nuclear reso-

nant scattering experiments. The ring was operated in the

standard top-up mode consisting of singlets with 153 ns

interval. The energy of the beam was tuned to the 14.4 keV

Mössbauer transition in 57Fe. In order to filter a 1 meV

bandwidth, a high-resolution monochromator consisting of a

pair of asymmetrically cut silicon (4 0 0) reflections followed

by a pair of asymmetrically cut silicon (10 6 4) reflections was

used (Toellner, 2000). The polarization of the beam is known

to lie in the plane of the storage ring. The sample was a 50 mm-

thick natural �-iron foil. It was placed perpendicular to the

beam and magnetized along four different directions in the

plane of the foil (� = 90�) using a small external field. For the

energy-resolved measurements, a 95% 57Fe-enriched stainless-

steel reference foil was placed in line with the �-iron foil. The

foil was mounted on a velocity drive operating in the sinu-

soidal mode with a maximum velocity of 16.7 mm s�1. For the

photons with a delay between 17 and 133 ns, both the time

delay and the velocity of the reference sample were registered.

Using the computer code PHASE,2 the data were transformed

to the energy spectra of Fig. 3(a). This code was developed to

automatically perform the procedure outlined by Callens et al.

(2005). It does not require any information on the sample

parameters and can be used for on-line visualization of

the data.

The energy spectra of Fig. 3(a) provide us directly with

information about the direction of the magnetic hyperfine

field. Assuming that the magnetic hyperfine field lies in the

plane of the foil, i.e. � = 90�, we can use equation (5) for the

determination of the azimuthal angle ’. The experimental

line-intensity ratios P1/P2 and the values for the azimuthal

angle ’p derived from these ratios are tabulated in Table 2.

These values are in good agreement with the values ’t

obtained from a CONUSS (Sturhahn, 2000) analysis of time

spectra taken without reference sample in the beam (Fig. 3b).

The polar angle � can also be derived from the experimental

energy spectra. We find that the line-intensity ratio P1/P3 �
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Figure 2
Line-intensity ratios for a Zeeman-split sample with Mössbauer thickness
L = 18.2 for the time-window function S(t) of equation (2). (a)
Dependence of the line-intensity ratio P1/P3 on the polar angle �. (b)
Dependence of the line-intensity ratio P1/P2 on the azimuthal angle ’
for � = 90�.

1 In order to calculate the line-intensity ratios for the set-up with the polarizer
tilted by 45�, the angle ’ in equation (4) should be replaced by ’ � 45�. 2 On request, the computer code PHASE is available from the author.



4.7, from which we can conclude that � = 84 (6)�. In order to

determine the azimuthal angle ’ using � = 84 (6)�, the more

general expression of equation (4) was used. Within the error

bars, we found the same results as for � = 90�.

4. Conclusion

From the line-intensity ratios in the reconstructed energy

spectrum, the magnetization direction can be deduced. For

incident synchrotron light that is linearly polarized, the polar

angle � can be determined from the intensity ratio between the

first and the third line. This determination is most sensitive

around 45�. Once the polar angle � is known, the azimuthal

angle ’ is obtained from the intensity ratio between the first

and the second line. Also, for the azimuthal angle ’, the

highest sensitivity is obtained around 45�.
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Table 2
The line-intensity ratio P1/P2 calculated from the experimental energy
spectra of Fig. 3(a), the azimuthal angle ’p deduced from this ratio, and
the azimuthal angle ’t determined from the CONUSS analysis of the time
spectra of Fig. 3(b).

’ (�) P1/P2 ’p (�) ’t (�)

90 < 0.0035 83 (7) 84 (4)
60 0.0659 62 (1) 62 (2)
30 7.78 29 (1) 28 (2)

0 > 400 7 (7) 2 (3)

Figure 3
Nuclear resonant scattering data for an �-iron foil with the hyperfine field B oriented along different
directions in the plane perpendicular to the photon direction k (� = 90�). The angle ’ is the angle
between the polarization of the radiation ex and the direction of the magnetic hyperfine field B. The
dots are the data and the solid line is a fit obtained using the software package CONUSS (Sturhahn,
2000). (a) Energy spectra. The energy scale is given in units of the natural linewidth of the
Mössbauer level in 57Fe, � = 4.66 neV. (b) Time spectra taken without reference sample in the beam.
(c) Schematic picture of the hyperfine field direction with respect to the photon direction.

APPENDIX A
Detailed calculation of the line
intensity

In the following, an expression for the

line intensities in a nuclear forward-

scattering energy spectrum of a 57Fe

Zeeman-split sample is derived. The

magnetic hyperfine field is assumed to

be uniaxial and sufficiently large so that

the lines in the spectrum are completely

resolved. The energy dependence of the

wavefield transmitted through the

sample in the vicinity of the nuclear

transition frequency !j equals (Blume &

Kistner, 1968)

Etrð!� !jÞ ¼ exp ið2�=kÞ� f ð!� !jÞd
� �

	 Ein; ð6Þ

where k is the wavenumber, � is the

concentration of the chemical element,

f is the coherent forward-scattering

matrix from a single nucleus, d is the

sample thickness and Ein = Einein is the

incoming wavefield polarized along ein.

For a single-line sample with resonance

frequency !j, the matrix f is a diagonal

matrix explicitly given by (Hannon &

Trammell, 1969)

f ð!� !jÞ ¼ �
k

8�
�0 fLM �

�

!� !j þ i�=2

1 0

0 1

� �
; ð7Þ

where � is the inverse of the lifetime of the excited state, fLM is

the recoilless fraction, � is the isotopic enrichment and �0 is

the maximal resonant-scattering cross section. By combining

equations (6) and (7) we find that the wavefield transmitted

through a single-line sample is given by

ESLð!� !j;LÞ ¼ exp �i
L

4

�

!� !j þ i�=2

� �
Einein; ð8Þ

where the Mössbauer thickness L is defined as

L ¼ �0 fLM ��d: ð9Þ

In the case of a hyperfine-split sample, there are several

resonance frequencies !j. For well separated hyperfine levels,

the matrix for coherent scattering by a single 57Fe nucleus in

the vicinity of a transition frequency !j is given by (Hannon &

Trammell, 1969)

f ð!� !jÞ ¼ �
k

8�
�0 fLM �

3

4
C2

j �1 M

�

!� !j þ i�=2
; ð10Þ

where Cj is the Clebsch–Gordan coefficient,

Cj ¼ C 1
2 1 3

2 ; mg M me

� 	
;

in the notation of Rose (1957) and is given in Table 3. The

matrix �1 M gives the dependence of the scattering matrix on

the direction of the hyperfine field. It is defined in terms of



the vector spherical harmonics Y
ð1Þ
1 MðkÞ and the polarization

vectors ein and esc before and after the scattering process,

�1 M ¼ 8�e�sc � Y
ð1Þ
1MðkÞY

ð1Þ
1 MðkÞ

�
� ein: ð11Þ

The matrix elements in the basis of circular polarization are

listed in Table 4. The eigenvalues of this matrix are calculated

according to equation (59) in Hannon & Trammell (1969) and

are given by 	j (Table 3) and 0, resulting in the following

expression for the matrix �1 M in the eigenbasis of the j th

transition,

�1 M ¼
	j 0

0 0

� �
: ð12Þ

Combining equations (6), (10) and (12) yields an expression

for the transmitted wavefield in the vicinity of the transition

frequency !j,

Ejð!� !j;LÞ ¼ exp �i
Wj L

4

�

!� !j þ i�=2

� �
Einðe

�
j � einÞej;

ð13Þ

where Wj is defined as

Wj ¼
3

4
C 2

j 	j ð14Þ

and ej is the eigenpolarization corresponding to 	j . Explicit

expressions for ej in the basis of circular polarization can be

calculated using equation (60) of Hannon & Trammell (1969),

and are tabulated in Table 3. Expressions for |e�j � ein|2 for

the case of incident linearly polarized radiation ein = ex =

2�1/2(�e+ + e�) are given in Table 1.

If we compare the argument of the exponential function in

equation (13) with that for the single-line sample in equation

(8), we find that they are identical except for the Mössbauer

thickness that is scaled with the factor Wj . Conse-

quently, the transmitted wavefield for a particular

nuclear transition can be written as

Ejð!� !j;LÞ ¼ ESLð!� !j;Wj LÞðe�j � einÞej: ð15Þ

Using the phase determination method described by

Callens et al. (2005), the component along ein of this

wavefield is measured,

Ein
j ð!� !j;LÞ ¼ e�in � Ejð!� !j;LÞ

¼ ESLð!� !j;Wj LÞ je�j � einj
2: ð16Þ

Since the intensity is proportional to the square of the norm of

the wavefield, the line intensity for the j th resonance is given

by

PjðLÞ ¼ PSLðWj LÞje�j � einj
4; ð17Þ

where PSL(Wj L) is the line intensity for a single-line sample

having a Mössbauer thickness Wj L.

For the calculation of the line intensity PSL(WjL) for a

single-line sample, one has to take into account the experi-

mental time-window. The time dependence of the nuclear

resonant wavefield for a single-line sample with Mössbauer

thickness L and resonance frequency !j is given by (Kagan et

al., 1979)

ESLðt; !j;LÞ ’

�L exp½�i!jt � ðt=2
Þ� J1½ðLt=
Þ1=2
�ein=ðLt=
Þ1=2 if t � 0

0 if t< 0;

(

ð18Þ

where 
 is the lifetime of the Mössbauer level and J1 is the

first-order Bessel function. This expression for the wavefield is

multiplied by the experimental time-window function S(t) and

Fourier transformed to the energy domain,

ES
SLð!� !j;LÞ ’

Z þ1
�1

dt exp½�ið!� !jÞt�SðtÞESLðt; !j;LÞein:

ð19Þ

The norm squared of this wavefield corresponds to the

intensity in the energy domain. As a measure for the line

intensity, we will integrate the intensity over the interval

[!j � 3�; !j + 3�] where � = 1/
 is the inverse of the lifetime.
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Table 3
The spin projection of the ground state (mg) and the excited state (me) on the hyperfine field direction, the change in spin projection (M), the square of
the Clebsch–Gordan coefficients (C 2

j ), the eigenvalues 	j, and the projections e�þ � ej and e�� � ej for the six allowed transitions in 57Fe.

� and ’ are the polar and the azimuthal angle of the hyperfine field with respect to the propagation direction (z-axis) and the polarization direction (x-axis) of the
incident synchrotron radiation.

j mg me M C 2
j 	j e�þ � ej e�� � ej

1 �1/2 �3/2 �1 1 (1 + cos2�)/2
ffiffiffi
2
p

sin2
ð�=2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 �
p

�
ffiffiffi
2
p

expð�2i’Þ cos2ð�=2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 �
p

2 �1/2 �1/2 0 2/3 sin2� 1=
ffiffiffi
2
p

expð�2i’Þ=
ffiffiffi
2
p

3 �1/2 1/2 +1 1/3 (1 + cos2�)/2
ffiffiffi
2
p

cos2ð�=2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 �
p

�
ffiffiffi
2
p

expð�2i’Þ sin2
ð�=2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 �
p

4 1/2 �1/2 �1 1/3 (1 + cos2�)/2
ffiffiffi
2
p

sin2
ð�=2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 �
p

�
ffiffiffi
2
p

expð�2i’Þ cos2ð�=2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 �
p

5 1/2 1/2 0 2/3 sin2� 1=
ffiffiffi
2
p

expð�2i’Þ=
ffiffiffi
2
p

6 1/2 3/2 +1 1 (1 + cos2�)/2
ffiffiffi
2
p

cos2ð�=2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 �
p

�
ffiffiffi
2
p

expð�2i’Þ sin2
ð�=2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 �
p

Table 4
The matrix elements of �1 M in the basis of circular polarization (e+, e�).

� and ’ are the polar and the azimuthal angle of the hyperfine field with respect to the
propagation direction (z-axis) and the polarization direction (x-axis) of the incident
synchrotron radiation.

escein = e+e+ escein = e+e� escein = e�e+ escein = e�e�

M = +1 [(1 + cos�)/2]2
�1

4 sin2� exp(2i’) �1
4 sin2� exp(�2i’) [(1 � cos�)/2]2

M = 0 1
2 sin2� 1

2 sin2� exp(2i’) 1
2 sin2� exp(�2i’) 1

2 sin2�

M = �1 [(1 � cos�)/2]2
�1

4 sin2� exp(2i’) �1
4 sin2� exp(�2i’) [(1 + cos�)/2]2



Thus, the expression for the line intensity for a single-line

sample is given by

PSLðLÞ ’

Z !jþ3�

!j�3�

d! jES
SLð!� !j;LÞj2: ð20Þ

Equations (17)–(20) now allow for the calculation of the line-

intensity ratios as a function of the direction of the hyperfine

field (see x2).
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