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A new mother wavelet function for extended X-ray absorption fine-structure

(EXAFS) data analysis has been designed, combining a model EXAFS function

derived from the ab initio EXAFS code FEFF8.20 and the complex Morlet

wavelet. This new FEFF–Morlet mother wavelet routine allows the generation

of wavelets well adapted to specific EXAFS problems. A substantial gain in

resolution of the wavelet ridges in k and r space is achieved. The method is

applied to a structural problem of Zn–Al double-layer hydroxides, demon-

strating unequivocally the homogeneity of the metal cation distribution in the

hydroxide layers.
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1. Introduction

In the last five years, wavelet transform has been proven as a

valuable tool in addition to classical EXAFS data analysis,

especially for such structures where two types of back-

scattering atoms are at the same distance from the central

atom (Funke et al., 2005; Muñoz et al., 2003). In some recent

studies, wavelet analysis has been used for the interpretation

of EXAFS data as well (Sahnoun et al., 2007; Vespa et al., 2006;

Harfouche et al., 2006). A short recapitulation of the wavelet

transform is given in x2.

Isomorphous substitution of metal cations in minerals

commonly occurs in low-T, low-P environments; however, it is

often difficult to study using traditional EXAFS analysis. The

extension of the traditional analysis by wavelet analysis is

therefore well suited to investigate the short-range structure

of layered double hydroxides (LDHs) or hydrotalcite minerals

(Funke et al., 2005). LDHs are a group of minerals hosting a

wide range of divalent metal cations like Co2+, Ni2+, Zn2+

(M 2+) (D’Espinose et al., 1995). Owing to their relatively low

solubility at circumneutral pH values, formation of such

phases plays an important role in reducing the toxicity of

metals in soils, sediments and nuclear waste repositories

(Scheinost et al., 1999).

LDH phases consist of layers of edge-sharing metal

hydroxide octahedra, where up to one-third of the divalent

cations M 2+ are replaced by trivalent Al3+ (Voegelin et al.,

2002). The resulting net positive layer charge is compensated

by hydrated anions in the interlayer space (D’Espinose et al.,

1995). Owing to their low crystallinity and turbostratic layer

structure, LDHs are difficult to determine by X-ray diffrac-

tion. While EXAFS is much better suited for this purpose, the

localization of the various cations in the structure is compli-

cated by the fact that the backscattering wave from Al3+ is

masked by destructive interference with backscattering waves

from the heavier M 2+ (Manceau, 1990; Scheinost et al., 1999).

Duan & Evans (2006) provide a summary of a variety of

applications and problems concerning LDH phases.

For Zn–Al LDH, where part of the Zn2+ cations are

replaced by Al3+ cations, we could demonstrate by wavelet

analysis the presence of both types of atoms at distances of

3.06–3.08 Å from the Zn absorber atom (Funke et al., 2005).

A second interesting feature of the LDH structure is the

composition of the two metal shells at about 5.3 Å and 6.2 Å

(see Fig. 1). If one assumes a regular distribution of Al3+

occupying one-third of all metal centers, then the 5.3 Å shell

should contain only Zn atoms and the 6.2 Å shell should

contain both Zn and Al atoms (Brindley & Kikkawa, 1979).

Fig. 2 shows the measured EXAFS spectrum of a Zn–Al

LDH and its Fourier transform. The presence of Zn2+ and/or

Figure 1
Model of the octahedral layer of Zn–Al LDH. Zn(OH)6 octahedra are
shown in green (or dark grey), Al(OH)6 octahedra are shown in yellow
(or light grey). The circles mark the first three metal shells. This figure is
in color in the electronic version of the paper.
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Al3+ at the Fourier peaks labeled with question marks is not

clear.

Our previous approach of employing the Morlet mother

wavelet as a kernel of the wavelet transform was not suited to

providing the necessary resolution in both k and r space to

resolve both shells in distance and in atom type. Therefore, we

developed a new kind of wavelet particularly for EXAFS data

analysis, providing better resolution in both k and r space.

2. Wavelet transform for EXAFS analysis (Funke et al.,
2005)

The wavelet transform is a two-dimensional integral trans-

form, which reaches a maximum when the wavelet (the

kernel) of the transform coincides with the signal itself. Vice

versa, the result is zero if there is no coincidence between the

signal and the integral transform kernel. In analogy, the

modulus of the one-dimensional Fourier transform shows

maxima for such frequencies of the sine function, which are

also contained in the signal.

The wavelet transform of the kn-weighted EXAFS spectrum

is given as

W 
� ðk; rÞ ¼ ð2rÞ1=2

Rþ1
�1

� k0ð Þk0n  � 2r k0 � kð Þ½ � dk0: ð1Þ

Thereby the ‘mother’ wavelet function may be chosen from

the wide class of functions l 2 with zero mean as the only

restriction,

Rþ1
�1

 ðkÞ dk ¼ 0: ð2Þ

�(k) is the EXAFS signal and  *[2r(k0 � k)] is the complex

conjugated wavelet function, translated by k and dilatated by

the parameter 2r.

For EXAFS data analysis we have chosen the complex

Morlet wavelet (Fig. 3). The Morlet wavelet is obtained by

taking a complex sine wave (like in the Fourier transform) and

by confining it with a Gaussian (bell-shaped) envelope,

 ðkÞ ¼
1

ð2�Þ1=2�
expði�kÞ exp �k2=2�2

� �
: ð3Þ

The parameter � is the frequency of the sine and cosine

functions, determining how many oscillations of the sine wave

are covered by a Gaussian envelope with the half width � = 1.

If the Morlet parameters fulfill the condition �� � 10, i.e. if

one forms a wavelet containing many oscillations (the ‘over-

view wavelet’), the dilatation parameter r of the wavelet

transform and the distance parameter R of the Fourier

transform coincide asymptotically. For Morlet parameters of

the order of �� ’ 5 (the ‘detail wavelet’), we receive a better

resolution concerning the wavevector k.

The choice of the Morlet wavelet was based on the fact that

its structure is similar to an EXAFS signal with a slowly

varying amplitude term and a fast oscillating phase term. The

parameters � and � are sufficiently descriptive to be adapted

easily to the present problem, e.g. to identify different

elements at a given distance of the central atom.

The wavelet approach using Morlet wavelets is applied to

resolve the Zn and Al atoms in the structure of Zn–Al LDH.

The results are demonstrated in Figs. 4 and 7.

The wavelet ridge at r ’ 2.65 Å shows two peaks at

different k, the one at k ’ 6.7 Å�1 corresponding to the Al

backscattering, and the other at k ’ 9.4 Å�1 corresponding to

the Zn backscattering. Both backscatterers are at the same

distance.

3. Limitations of the resolution using Morlet wavelets

Similar to a Gaussian normal distribution, where the infor-

mation uncertainty, i.e. the resolution, is described by the half

width �, the wavelet transform distributes the information of

the signal over some k–r cells, so-called Heisenberg boxes

(Chui, 1992; Louis et al., 1997). The width of these cells is
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Figure 3
Real (full line) and imaginary (dashed line) part of the Morlet wavelet for
� = 5 and � = 1.

Figure 4
Detail wavelet transform of the first metal shell with Morlet parameters
� = 30, s = 0.184.

Figure 2
Zn K-edge EXAFS spectrum and Fourier-transform magnitude of Zn–Al
LDH. The fit is shown in dotted lines.



defined by the second moments of the

wavelet, for instance with reference to k,

�k
 ¼

1

jj jj2

Z þ1
�1

k2
j ðkÞj2 dk

� �1=2

ð4Þ

where

jj jj2 ¼

Z þ1
�1

j ðkÞj2 dk:

Both widths (k and r) of the cells depend on the chosen

wavelet. The resolution properties of the wavelet transform

are determined by the size of the corresponding uncertainty

cell.

For the Morlet wavelet [equation (3)] the Heisenberg boxes

[k � �k] � [r � �r] have the form

k�
��

21=2r

h i
� r�

r

21=2��

� �
: ð5Þ

It follows from relation (5) that the k–r window is narrow in k

space for large values of r, and is wide for small r. The reso-

lution in r space hence decreases with increasing r. On the

other hand, for large values of the product of the Morlet

parameters �� the uncertainty is large for k and small for r

and vice versa. Therefore, the resolution in k and r critically

depends on the selection of the Morlet parameters � and �.

The Heisenberg uncertainty condition �k�r � 1/2 [see

equation (3.2.17) in Chui (1992)] is fulfilled by �k�r = 1/2.

To demonstrate exemplary the effect of the resolution

properties on wavelet transform plots, Fig. 5 shows two typical

uncertainty cells with the centers k = 2.5 Å�1, r = 4 Å and k =

8 Å�1, r = 1.3 Å. The surface of both cells is equal.

The model function corresponding to Fig. 5,

f mod
ðkÞ ¼

1

ð2�Þ1=2
sinð2 	 4kÞ exp �ðk� 2:5Þ2=2

� ��

þ sinð2 	 1:3kÞ exp �ðk� 8Þ2=2
� ��

; ð6Þ

and its wavelet transform are plotted in Fig. 6. The Morlet

parameters are � = 7.5 and � = 0.5.

Qualitative knowledge of the behavior of the uncertainty

boxes is indispensable for a deeper understanding of the

wavelet transform of EXAFS data. The resolution conditions

which follow from (5),

��

21=2r
<

kmax � kmin

2
and

r

21=2��
<

rmax � rmin

2
; ð7Þ

were applied to the examples presented in Figs. 4 and 7 (see

Table 1). The results show that the resolution conditions for k

and r are both fulfilled for the first metal shell. For the second

and third metal shell, however, the resolution condition is

fulfilled either only for r in the overview wavelet transform or

only for k in the detail wavelet. That means that the wavelet

transform of the first metal shell consists of two single wavelet

ridges separated in k and r, representing the two different

types of atoms (Al, Zn). This is not the case for the overview

and detail wavelet transform of the second and third metal

shell. The overview wavelet transform shows two shells clearly

discriminated in r in complete agreement with the Fourier

transform (see Fig. 2), while the resolution is not sufficient to

resolve the two types of atoms. In reverse, the detail wavelet

transform shows two shells clearly discriminated in k, but

the resolution is not sufficient to resolve the two different

distances. Hence the simultaneous resolution in r and k space

of the second and third metal shells is impossible using the

Morlet wavelet. To overcome this limitation we have devel-

oped a new approach, which is described in the following

sections.
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Figure 5
Two typical uncertainty cells (schematic).

Figure 6
Model function with distances r1 = 4.0 Å and r2 = 1.3 Å centered at k =
2.5 Å�1 and k = 8.0 Å�1 and their wavelet transform (WT).

Table 1
Resolution properties of the wavelet transform for the first, second and third metal shells.

rmedian �� (kmax � kmin)/2 (rmax � rmin)/2 ��/(21/2r) r/(21/2��)

First metal shell 2.65 5.52 2.00 0.40 1.47 0.34
Second + third metal

shells (overview)
5.40 30 1.50 0.60 3.93 0.13

Second + third metal
shells (detail)

5.40 4.65 0.75 0.60 0.61 0.82



4. Construction of the FEFF–Morlet wavelet

When analyzing complex signals with wavelet transform, we

have to discriminate two cases. In case one, neither a basic

theory nor a mathematical model exist that could be applied to

the process under investigation (e.g. Chui, 1992; Mallat, 2001;

Daubechies, 1992). An example is the EEG signals of the

human brain, where time–frequency plots of the electrical

current measured in response to different events are treated as

fingerprints of these events. Even without a basic theory, this

wavelet method is widely used for medical diagnostics and has

largely replaced Fourier analysis (e.g. Samar et al., 1999). In

case two, an at least rudimentary mathematical model of the

process under investigation exists. The model, or parts of it,

may then be used to construct a wavelet specifically adapted to

the process. An example is seismic oil prospection, where the

reflection of pressure waves on single sediment boundaries

can be modeled, while the description of the complex reflec-

tion processes across greater depths of the Earth’s crust fails

(Morlet et al., 1982a,b; Kumar & Foufoula-Georgiou, 1997).

EXAFS spectra can be considered as belonging to this

second group, since the spectra may be modeled by the so-

called EXAFS equation, which is based on Fermi’s Golden

Rule (e.g. Sayers & Stern, 1971; Stern, 1974; Lytle et al., 1975;

Stern et al., 1975),

�ðkÞ ¼ S2
0

Xn

i¼ 1

Ni

R2
i

Fiðk;RÞ

k
exp �2Ri=�ð Þ exp �2�2

i k2
� �

� sinð2kRi þ�Þ; ð8Þ

where �(k) is the measured EXAFS spectrum and k is the

electron wavevector. The searched, i.e. fitted, parameters are

the number of atoms in the ith coordination sphere Ni , the

average radial distance Ri and the Debye–Waller factor �2
i .

The function’s backscattering amplitude, Fi(k, R), the sum of

the phases of the central- and back-scattering atoms �(k, R),

and the mean free path �(k) are usually calculated using the

FEFF code (Ankudinov et al., 1998).

FEFF is a complex computer program for ab initio scat-

tering calculations of EXAFS spectra using predetermined

model clusters of atoms. The code yields theoretical scattering

amplitudes and phases used in the standard XAFS analysis

codes, as well as the EXAFS spectra for each path individually.

The identity of the backscattering atom is not fitted and has to

be pre-selected based on the underlying model.

In our new model, EXAFS functions for selected paths

calculated using the FEFF8.2 program (Ankudinov et al.,

1998) form the basis for the construction of mother wavelet

functions. Wavelets designed in this way should be in good

agreement with individual paths of interest, which are

contained in the experimental spectrum. Thus the sensitivity

of the wavelet transform for these paths is strengthened. In

comparison with such real functions, complex mother wavelet

functions, like Morlet or Cauchy wavelets, generate much

more descriptive plots of magnitude. Thus, taking the FEFF-

designed wavelet as the real part, the associated imaginary

part has to be constructed. The sum of the real and the

imaginary parts form the FEFF–Morlet wavelet. This wavelet

is expected to combine the accurate characteristics of the

theoretical EXAFS function with the descriptiveness and

simplicity of the complex Morlet wavelet.

In the following sections, two tools are introduced which

render the data analysis by means of wavelet transform more

precise and more descriptive: the scale parameter s and the

power density function.

4.1. Four steps to the FEFF–Morlet wavelet

4.1.1. Modeling a spectrum using FEFF. An FEFF input file

is written with one backscatterer atom at the distance of

interest. The global Debye–Waller factor and the distance are

taken from first fit estimations or from earlier results. The

resulting feff0001.chi file, k3 weighted, is used as theore-

tical spectrum �theor(k) (Fig. 8). The full �theor(k) spectrum has

to be restricted to its left-hand slope, i.e. the k interval which
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Figure 7
Overview and detail wavelet transform of the second and third metal
shells with Morlet parameters � = 30, s = 1 at the top and � = 30, s = 0.155
at the bottom.

Figure 8
Full model spectrum �theor(k)k3 for Zn–Zn backscattering at 6.2 Å from
FEFF 8.2. The Debye–Waller factor is �2 = 0.0065 Å2. The envelope E(k),
which is used for the construction of the FEFF–Morlet wavelet, is drawn
in bold lines.



contains information on the amplitude

function. The right-hand slope, i.e. the

signal for large k values, is attenuated

substantially by the Debye–Waller

factor, and typical amplitude informa-

tion is suppressed. In addition, the

complete calculated �theor(k) function

contains too many oscillations, and a

wavelet built from the full �theor(k)

would behave like an overview Morlet

wavelet, i.e. would not be sensitive to

the amplitude information. Therefore,

the maximum of the envelope of the

theoretical spectrum is chosen as the

upper limit of the relevant k range, kmax,

and the lower limit, kmin, is taken from

the spectrum (see Fig. 8).

4.1.2. Adjustment of the amplitude
information. The envelope E(k) is built

by a spline procedure connecting the

maxima of the oscillations of the spec-

trum (Fig. 8) between kmin and kmax. To avoid truncation

effects in the wavelet transform, the envelope is smoothed by

adding the right-hand half of a Gaussian curve with half width

� = 1/2 Å. The resulting model spectrum in the limits kmin and

kmax complemented by the smoothing function attached to the

right-hand side of kmax is �mod(k).

4.1.3. Adjustment of the phase information of vmod(k).
Knowing the envelope E(k), the real part of a complex

function  (k) (the future FEFF–Morlet wavelet) is defined as

Re ðkÞ ¼ EðkÞ cosð2krþ ’Þ: ð9Þ

The values of the parameters in the cosine function, distance

(frequency) r and phase ’, will be adapted from �mod(k) by

means of a correlation procedure. We calculate the correlation

function C(r, ’) between the functions Re (k) and �mod(k)

with respect to a unique distance (frequency) r and phase ’,

Cðr; ’Þ ¼
Rkmax

kmin

EðkÞ cosð2krþ ’Þ�modðkÞ dk: ð10Þ

Thereby the values of r and ’ are varied in the ranges r 2 [r +

�r, r� �r] (�r < 0.5 Å) and ’ 2 [0, 2�], fulfilling C(r, ’)!max.

�r must be selected in such a way that no influence of a

neighbor shell exists.

The imaginary part of the FEFF–Morlet wavelet is then

simply built by addition of a phase shift of �/2 to the phase of

Re (k) with the implicit understanding that E(k) is a real

function,

Im ðkÞ ¼ EðkÞ sinð2krþ ’Þ: ð11Þ

4.1.4. Fulfilling the ‘zero mean’ condition. The complex

function  (k) has to be converted into a mother wavelet,

fulfilling the condition (2). That means that we translate  (k)

on the k axis by a correction kgrav and add a phase correction ’
such that the center of gravity becomes zero. With this final

step, the FEFF–Morlet (FM) wavelet is fully defined,

Re FMðkÞ ¼ E kþ kgrav

� �
cos 2 kþ kgrav

� �
rþ ’

� �
;

Im FMðkÞ ¼ E kþ kgrav

� �
sin 2 kþ kgrav

� �
rþ ’

� �
:

ð12Þ

The resulting FEFF–Morlet wavelets based on the single

scattering paths Zn–Al at 5.3 and 6.2 Å with the Debye–Waller

factor �2 = 0.0056 Å2, and Zn–Zn at 5.3 and 6.2 Å with �2 =

0.0065 Å2, are shown in Fig. 9.

4.2. From distance (r) to scale parameter (s)

As noted in the Introduction, the magnitude of an integral

transform has a maximum if the agreement of the integral

kernel (wavelet) and the signal is at a maximum. To express

this fact more descriptively, the wavelet transform for EXAFS

analysis [equation (1)] is reformulated in an adequate way.

Owing to its construction, the FEFF–Morlet wavelet is the

optimal mother wavelet function for a specific backscattering

atom at a specific distance. The information about the optimal

distance is contained in the FEFF–Morlet wavelet  FM
½ropt�

itself.

Each scaling (stretching or shrinking) would mean a decrease

of the agreement, if the basis model is correct.

Consequently, the dilatation parameter r is replaced by a

new scale parameter s if the mother wavelet is a function

derived from a certain model. The definition of s is that s = 1 if

the argument of the wavelet is not scaled. This means that, if the

wavelet transform for s = 1 (in a certain region of k) shows a

maximum, then the signal and the mother wavelet function in

this k region coincide maximally. It is reminded that the

dilatation parameter r (like the distance parameter R of the

Fourier transform) is not phase corrected. However, the

meaning of s is clearly defined.

The wavelet transform, depending on the translation and

scale parameters k and s, then takes the form

W 
� k; sð Þ ¼ s1=2

Z
� k0ð Þk03 FM�

½ropt�
s k0 � kð Þ½ � dk

0
: ð13Þ
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Figure 9
Real (full lines) and imaginary (dashed lines) part of the FEFF–Morlet wavelets FM (k) constructed
from the four model spectra.



For each value of s, the wavelet transform with respect to k

reduces to a convolution of �(k)k3 with  FM�

½ropt�
. Consequently,

the relation between the scale parameter s and the physical

parameter r is wavelet dependent.

4.3. The power density function

In order to focus the wavelet transform analysis to specific

distances and specific k ranges, the power density function

(PDF) � is introduced depending on either k, s or r. Thereby

the computation of �(k) is performed by integration over a

distance range �r or �s. The computation of �(s) and �(r)

is performed by integration over the entire k range of the

experimental spectrum,

�½s�ðkÞ ¼
Rs2

s1

W 
� k; sð Þ

� �2
ds;

�½r�ðkÞ ¼
Rr2

r1

W 
� k; rð Þ

� �2
dr;

ð14Þ

�ðsÞ ¼
Rkmax

kmin

W 
� k; sð Þ

� �2
dk;

�ðrÞ ¼
Rkmax

kmin

W 
� k; rð Þ

� �2
dk:

ð15Þ

An example of a PDF �(k) resolving two backscattering

centers at r ’ 2.65 Å is shown in Fig. 10 (compare with Fig. 4).

Analysis of the function �(k) is useful if the k resolution

of the wavelet ridges in simple contour plots is not easy to

interpret. An application of �(s) will be given in the following

section.

5. Application of wavelet analysis to the second and
third metal shell of the Zn–Al LDH

The FEFF–Morlet technique is applied to verify the model of

Brindley & Kikkawa (1979), assuming an even metal distri-

bution in the LDH layer, in line with an even charge distri-

bution. In this case the first metal shell (r ’ 3.1 Å = RZn-Zn)

contains three Zn and three Al atoms, the second metal shell

(r ’ 5.3 Å = 31/2RZn-Zn) contains six Zn atoms, and the third

metal shell (r ’ 6.2 Å = 2RZn-Zn) contains three Zn and three

Al atoms.

Now the wavelet transform analysis of the second and third

metal shell of the LDH spectrum will be performed using the

following four FEFF–Morlet wavelet mother functions (Fig. 9):

Zn–Zn at 6.2 Å, Zn–Al at 6.2 Å, Zn–Zn at 5.3 Å and Zn–Al

at 5.3 Å. The start functions �mod(k) were calculated using the

FEFF program, and the final wavelets were designed following

the procedure described in x4.

For r ’ 6.2 Å, the analysis of the wavelet transforms with

the power density function �(s) shows maxima around s = 1

for Zn and Al, confirming that both atoms are present at this

distance (Fig. 11). At a distance of r ’ 5.3 Å, however, only

the path involving Zn backscattering shows an additional

shoulder at s = 1, while the path involving Al does not (circle)

(Fig. 12). This confirms the model shown in Fig. 1.

6. Conclusions

It is demonstrated that a wavelet analysis of EXAFS data

using a combined FEFF–Morlet wavelet is able to discriminate

different atoms at similar distances when the resolution of

the Morlet wavelet is not sufficient. With the previously used

Morlet wavelet, it was possible to distinguish Zn and Al in the

first metal shell (3.1 Å) of the LDH spectrum. However, it was

not possible to resolve the two more distant shells at 5.3 and

6.2 Å simultaneously with respect to wavenumber k (element

identity) and distance r. This problem is now overcome with

the newly developed FEFF–Morlet wavelet. FEFF–Morlet

wavelets were individually adapted to resolve the second and

third metal shell of Zn–Al LDH. In confirmation of Brindley

& Kikkawa’s model (Brindley & Kikkawa, 1979) postulating

an even charge distribution in LDHs, we were now able to

show that the second metal shell contains only Zn, and the

third metal shell contains both Zn and Al.
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Figure 10
PDF �(k) of the detail wavelet transform for the first metal shell (see
Fig. 4) within the limits r1 = 2.5 Å and r2 = 2.75 Å.

Figure 11
Two PDFs �(s) of the wavelet transform of Zn–Al LDH, performed
using the adapted FEFF–Morlet wavelets (see text).

Figure 12
Two PDFs �(s) of the wavelet transform of Zn–Al LDH, performed
using the adapted FEFF–Morlet wavelets (see text).



In this study we made use of the most important advantage

of the continuous wavelet transform, the possibility to permit

infinitely many test functions from the function class l2. The

FEFF–Morlet wavelet is a sharper, though more complicated,

instrument for EXAFS data analysis compared with the

Morlet wavelet.
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