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A new algorithm is introduced for separation of the scattered and non-scattered

parts of a monochromatic and well collimated synchrotron radiation beam

transmitted through a sample and analyzed by reflection from a perfect crystal in

the non-dispersive setting. The observed rocking curve is described by the Voigt

function, which is a convolution of Lorentzian and Gaussian functions. For the

actual fitting, pseudo-Voigtians are used. The fit yields the scaled integrated

intensity (the effect of absorption), the center of the rocking curve (the effect of

refraction), and the intensity of the transmitted beam is divided into the

scattered and non-scattered parts. The algorithm is tested using samples that

exhibit various degrees of refraction and scattering. Very close fits are achieved

in an angular range that is 15 times the full width at half-maximum of the

intrinsic rocking curve of the analyzer. The scattering part has long tails of

Lorentzian shape owing to the ‘long-slit geometry’ of the set-up. Quantitative

images of absorption, refraction and scattering are constructed and compared

with results of earlier treatments. The portion of scattering and the second

moment of the observed rocking curve both increase linearly with the sample

thickness and yield identical maps of the effects of scattering. The effects of

refraction are calculated using the geometrical optics approximation, and a good

agreement with experiment is found. The fits with reduced number of data

points (minimum number is five) yield closely the same results as fits to the full

data set.

Keywords: diffraction enhanced imaging; analyzer-based imaging; X-ray scattering;
Voigtian function.

1. Introduction

The interaction of X-rays with matter can be summarized by

the refractive index,

n ¼ 1� �þ i�: ð1Þ

The real part � corresponds to the phase change of the

resultant transmitted wave, and the imaginary part � to the

decrease of its amplitude. For X-rays of a few tens of keV

energy propagating in a low-Z medium the relative change in

the phase may be several orders of magnitude larger than the

relative change in the amplitude. For imaging of soft tissues

the variation of � is potentially a much stronger source of

contrast than the variation of �.

One of the methods of observing the effects of local

variation in � by analyzing the transmitted beam using a

perfect crystal is called diffraction enhanced imaging (DEI)

(Chapman et al., 1997) or analyzer-based imaging (ABI)

(Pagot et al., 2003). The experimental set-up is basically that of

a Bonse–Hart camera (Bonse & Hart, 1966), although often

only single reflections at the monochromator and analyzer are

used. When a pencil beam traverses the sample its propaga-

tion direction may change owing to refraction, and various

scattering distributions are created along the path of the beam.

The angular distribution of the transmitted beam in the plane

of diffraction is recorded by rocking the analyzer crystal, so

that the observed intensity is proportional to the convolution

of the actual angular distribution of the transmitted beam and

the rocking curve of the analyzer crystal.

In its original form, DEI is performed by tuning the

analyzer to reflect at half-height on the opposite sides [low (L)

and high (H)] of the analyzer rocking curve. Small changes in

the propagation direction owing to refraction are converted to

intensity changes at the steep slope of the rocking curve. The

refraction angle and the apparent absorption are solved from

a first-order Taylor expansion for the intensities IL and IH.
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However, this method ignores the presence of ultra-small-

angle X-ray scattering (USAXS) in the transmitted beam. In

such a case the width of the rocking curve is increased from

the intrinsic value, and the slope is decreased. The difference

between IL and IH is reduced, which would be interpreted as

lowered amounts of refraction. Thus, the presence of USAXS

affects both the refraction angle and apparent absorption

images. However, the enhanced contrast reveals details of the

sample morphology and is often sufficient for a qualitative

interpretation of the images. The method has been used for

imaging soft tissues, and particularly the images acquired at

the maximum of the intrinsic rocking curve (top position)

make visible small objects owing to combined effects of

refraction and scatter rejection (Hasnah et al., 2002; Zhong et

al., 2000; Keyriläinen et al., 2005; Bravin et al., 2007).

It is obvious that the scattering contribution and the effects

of refraction should be separated in quantitative analysis of

the analyzer-based images. The refraction angle in the plane

of diffraction is proportional to the gradient of the phase ’
in that direction, �� = �(�/2�)ð@’=@zÞ, where � is the X-ray

wavelength. Mapping of the refraction angle gives access to

small variations of the object density, revealing tissue

morphology on the level that is determined by the spatial

resolution of the detector. On the other hand, USAXS (and

SAXS, which is partly outside the angular window of the

analyzer) arises from electron density variations at the mole-

cular and above-molecular level. It has been demonstrated

that the scattering patterns are ‘signatures’ of different tissues,

and that cancer growth causes changes in the patterns (Lewis

et al., 2000; Fernández et al., 2002, 2005). Therefore, an

adequate analysis of the scattering contribution in the

analyzer-based images provides essential information on the

tissue structures.

Recently, several different approaches have been put

forward to account for the effects of scattering in ABI. In the

treatment of Oltulu et al. (2003), the observed angular distri-

bution of the transmitted beam is written as a sum of distri-

butions of the non-scattered and scattered beams, and the

propagation direction of the beams may have changed owing

to refraction. The angular distribution for the non-scattered

beam is that of the intrinsic rocking curve of the analyzer, and

the distribution of the scattered beam is given as a convolution

of the intrinsic rocking curve and an appropriate function for

the scattering distribution. Gaussian approximations are used

throughout in this treatment. In another approach, the

intrinsic rocking curve is convolved by an impulse response

function of the sample explicitly (Wernick et al., 2003) or

implicitly (Pagot et al., 2003). The observed rocking curve is

characterized by the zeroth moment (effects of attenuation),

the first moment (effects of refraction) and the second

moment (effects of USAXS), and parametric images are

constructed pixel-by-pixel. Multiple-image radiography

(MIR) has been reformulated using the radiative transport

description of beam propagation (Khelashvili et al., 2006).

One important outcome of this treatment is that all three

images correspond to line integrals of the respective para-

meters, which justifies analyzer-based computed tomography

imaging. For in vivo applications the number of images, i.e. the

number of working points along the analyzer rocking curve,

should be kept minimum. The original DEI method has been

extended by adding a second-order term to the Taylor

expansion for the rocking curve, and images of attenuation,

refraction and scattering are derived from three measure-

ments only (Rigon et al., 2003, 2007; Chou et al., 2007).

The present treatment is a generalization of the first

approach (Oltulu et al., 2003), but it also facilitates a quanti-

tative comparison with the results of MIR. The basic idea is to

develop an accurate description of the observed rocking curve

by analytic functions, which represent the sum of the non-

scattered and scattered beams or the convolution of the two.

The use of analytical functions has certain advantages. First, a

small number of data points along the rocking curve may be

sufficient for an adequate fit. Second, different derived

quantities can be calculated for further analysis, such as the

parameters used in MIR. It turns out that in most cases the

Gaussian presentation is not adequate, as the observed

rocking curves have long tails. This is attributed to the fact that

the analyzer integrates scattering in the direction perpendi-

cular to the diffraction plane. A Gaussian excludes this part of

scattering, which may be an appreciable part of the total. In

this work a more general but still simple description of the

scattering distribution is introduced, and images of phantoms

are analyzed using this model in order to separate the effects

of refraction and scattering in a consistent way.

2. Experimental set-up and intensity recording

The monochromator and analyzer form a non-dispersive pair

of crystals, so that the analyzer rocking curve is the auto-

correlation function of the perfect crystal rocking curve. The

relative rocking angle � is zero when the crystals are parallel,

and the working point is denoted by �A. The effect of
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Figure 1
Refraction and scattering of a pencil beam in the scattering vector scale,
q = 2sin(�)/�. The beam is deviated from O to C by refraction and a halo
of scattered radiation is created, indicated by the circle. The horizontal
lines indicate the ‘long receiving slit’ of the analyzer crystal rocking curve
RC centered at 2�A/� = 2��z/� + s.



refraction is shown in Fig. 1. The angle of incidence at the

analyzer is

� ¼ �A � cos ��refr ¼ �A ���z: ð2Þ

Here ��refr is the deviation of a pencil beam owing to

refraction, and  is the azimuth angle of the refracted beam.

Only the component ��z affects the angle of diffraction at the

analyzer.

We consider the general case where the object is illuminated

by a uniform beam and the transmitted beam is recorded by a

two-dimensional pixel detector, e.g. by a CCD camera or

imaging plate. For understanding the intensity recording,

typical spatial and angular dimensions are considered. The

angular opening of a detector pixel, as seen from the sample, is

about 20 mrad in the present experiment. The X-ray energy is

51.5 keV, i.e. the wavelength � is 0.0241 nm, and so USAXS is

confined to a range smaller than 20 mrad, but SAXS extends to

the mrad regime.

Scattered radiation forms a halo or ‘dress’ around the pencil

beam traversing the sample, as shown in Fig. 1. In the

following, axial symmetry of scattering is assumed in order to

keep the functional forms sufficiently simple. The analyzer is a

‘long slit’ in the terminology of SAXS, meaning that the

angular slit is open in the direction perpendicular to the

diffraction plane so that scattering at fixed s is integrated in

the lateral direction (t in Fig. 1). The projection of the scat-

tering vector on the diffraction plane is

s ¼ 2 sin �=� ’ 2 �A ���z

� �
=�: ð3Þ

The scattering vector position q in the ‘slit’ opening is indi-

cated by t in the direction perpendicular to the diffraction

plane, and by u in that plane. The observed intensity, inte-

grated over the lateral opening of the detector, is (Feigin &

Svergun, 1987)

IðsÞ ¼
R R

RðuÞ I t2 þ ðs� uÞ2
� �1=2
n o

dt du; ð4Þ

where R(u) is the reflectivity of the analyzer crystal in the

scattering vector scale. Integration over t gives the ‘long slit’

intensity at s � u, I1ðs� uÞ, so that

IðsÞ ¼
R

RðuÞ I1ðs� uÞ du ¼ RðsÞ � I1ðsÞ; ð5Þ

where � indicates convolution. It must be noted here that

owing to the ‘long slit’ geometry of the two-crystal (Bonse–

Hart) set-up there is no clear separation between USAXS and

SAXS. At the detector, the refracted pencil beam and USAXS

fall on the same pixel, but the contribution from SAXS

spreads out in the lateral direction to the neighboring pixels.

The radiation scattered away from the incident beam and

not recorded by the detector is termed the absorption loss.

Evidently this depends on the scanning range of the analyzer

and the lateral opening of the beam. As argued above, the

refracted beam, USAXS and some part of SAXS are detected,

so that the attenuation factor is

expð��TÞ ¼
R

I �Að Þ d�A =
R

I0Rint �Að Þ d�A; ð6Þ

where I0 is the incident intensity (flux per pixel) from the

monochromator, and Rintð�AÞ is the intrinsic rocking curve of

the analyzer, when there is no sample.

Following Oltulu et al. (2003), the transmitted beam is

divided into the non-scattered refracted beam and the halo of

scattering around it. The observed reflectivity at the rocking

angle �A is

R1 �Að Þ � I �Að Þ=I0 ¼ expð��TÞ
R
½��ð�Þ þ ð1� �ÞF1ð�Þ�

� Rint � � �A ���z

� �� �
d�: ð7Þ

The � function counts for the refracted beam, and F1 for the

associated scattering. Both functions are normalized to unity,

and the intrinsic rocking curve is convolved by the weighed

sum of these functions. The maximum of R(�A) is at �A = ��z.

It has already been mentioned that Rint is the autocorrelation

function of the reflectivity curve.

The corresponding equation in the treatments where the

incident distribution is convolved by the scattering distribu-

tion (Pagot et al., 2003; Wernick et al., 2003) is

R2 �Að Þ ¼ expð��TÞ
R

F2ð�ÞRint � � �A ���z

� �� �
d�; ð8Þ

where F2(�) is normalized to unity.

3. Functional form of scattering

When the axially symmetrical scattering distribution I(q)

around the refracted beam is observed through the ‘long slit’

of the analyzer crystal the distribution is smeared. The effect

of smearing can be calculated for given analytical forms of

I(q). In general, the contribution of the tails of I(q) are

enhanced in I1(s). At sufficiently large values of q,

IðqÞ / q�p; ð9Þ

where the exponent p is 4 for three-dimensional objects with

a smooth surface, 2 for two-dimensional discs, 1 for one-

dimensional rods, 2 or 5/3 for coils, and between 1 and 4 for

different mass and surface fractals (Feigin & Svergun, 1987;

Schmidt, 1991). Integration over the ‘long slit’ gives

I1ðsÞ / s�ð p�1Þ; ð10Þ

except in the case p = 1. At small values of q, where Guinier’s

law applies (Guinier & Fournet, 1955), I(q) is approximately

Gaussian, and also the corresponding I1(s) remains Gaussian.

The observed intensity is a combination of the small-q and

large-q contributions, so that a functional form that has a

pronounced peak and long tails is to be found for F1(�)

and F2(�).

The main application of ABI is tissue imaging, and there-

fore we look for a functional form that approximates SAXS

from tissues. The actual form of the SAXS intensity depends

on the sample, but in human breast tissue samples an

approximate q�3 behavior was found in many cases

(Fernández et al., 2002, 2005). It is expected that the total

scattering seen by a detector pixel changes from the Gaussian

to the Lorentzian shape when the analyzer angle � = �A���z

is increased. This behavior can be described by a single
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function called Voigtian (V), which is a convolution of a

Gaussian (G) and a Lorentzian (L),

Vsð�Þ ¼ Gsð�Þ � Lsð�Þ: ð11Þ

It will be seen that use of these functions makes the mathe-

matical formulation simple, but still versatile.

In the following we start from the first treatment (Oltulu et

al., 2003), in order to separate the non-scattered (refracted)

and scattered contributions of the detected beam. Dropping

the argument � = �A � ��z and writing Rint(�) = V0(�)!int,

where !int is the integrated reflectivity of the analyzer without

a sample, the observed reflectivity from (7) is written as

R1 �Að Þ ¼ expð��TÞ!int �V0 þ ð1� �ÞV0 � Vs

� �

¼ expð��TÞ!int �G0 � L0 þ ð1� �ÞðG0 �GsÞ
�

� ðL0 � LsÞ
�

¼ expð��TÞ!int �V0 þ ð1� �ÞG1 � L1

� �

¼ expð��TÞ!int �V0 þ ð1� �ÞV1

� �
:

ð12Þ

The functions G, L and V are normalized to unity, and their

centers are at ��z. The simplicity of the result is due to the fact

that the convolution of two Gaussians is a Gaussian, and the

convolution of two Lorentzians is a Lorentzian. The proper-

ties of the functions are summarized in the following section.

In the corresponding equation in the second treatment (Pagot

et al., 2003; Wernick et al., 2003), the sum within the brackets is

replaced by just one Voigtian, V2 = V0 � Vs , so that the

observed rocking curve is given by

R2 �Að Þ ¼ expð��TÞ!intV0 � Vs: ð13Þ

4. Voigt and pseudo-Voigt functions

The Voigt function has been used in many fields of research as

a versatile description of observed peaked distributions. In

particular, the Voigt function was introduced for the profile

analysis of powder diffraction data (Langford, 1978; Suortti et

al., 1979) (see also Snyder et al., 1999). In practice, the actual

Voigtian is often replaced by the so-called pseudo-Voigtian

(pV), which approximates the normalized real Voigtian by a

weighted sum of normalized Lorentzian and Gaussian func-

tions (Wertheim et al., 1974). The properties of these functions

are summarized in the following.

The normalized Gaussian and Lorentzian functions are

Gð�Þ ¼
1

�
ffiffiffiffiffiffi
2�
p exp ��2=2�2

� �
; ð14Þ

Lð�Þ ¼
a

�ða2 þ �2Þ
: ð15Þ

The Gaussian is fully determined either by the standard

deviation � or by the full width at half-maximum, FWHM =

2�(2ln2)1/2 = 2.3548�, and the Lorenzian by FWHM = 2a. The

corresponding integral breadths are �G = �(2�)1/2 = 2.5066�
and �L = �a = 3.1416a. The normalized Voigtian is determined

by �G and �L (Suortti et al., 1979),

Vð�Þ ¼
1

�G

< � �=�G

� �1=2
h i

� þ iy
n o� �

; ð16Þ

where y = �L/(��G)1/2, and <½�ðzÞ� is the real part of the

complex error function,

�ðzÞ ¼ exp �z2
� �

erfcð�izÞ: ð17Þ

The relative importance of the Lorentzian and Gaussian

functions are given by y; the value y = 0 corresponds to a pure

Gaussian, and the value y =1 to a pure Lorentzian function.

In the pseudo-Voigtian presentation (subscript pV) the

FWHM of both components is that of the real Voigtian, 2wV,

and the relative weights are given by factor 	,

V ¼ 	LpV þ ð1� 	ÞGpV: ð18Þ

There are approximate expressions for wL/wV and wG/wV,

given as functions of the weight factor 	 (Thompson et al.,

1987).

With the pseudo-Voigtian presentation the normalized

intensity distribution from (12) is

R1 �Að Þ=!int ¼ expð��TÞ � 	0L0;pV þ 1� 	0ð ÞG0;pV

� ��

þð1� �Þ 	1L1;pV þ 1� 	1ð ÞG1;pV

� �	
: ð19Þ

The corresponding expression in the second treatment is

R2 �Að Þ=!int ¼ expð��TÞ 	2L2;pV þ 1� 	2ð ÞG2;pV

� �
: ð20Þ

These are the actual working formulae, which are used in the

next section to resolve the observed intensity to the non-

scattered (refracted) and scattered components, or to derive

parameters describing these components. The weight factor

for scattering in the first case (19) may be written as 1 � � =

1 � exp(�
T), where 
 is the small-angle scattering coeffi-

cient (extinction coefficient) per unit length of the beam path.

In the second case (20) the scattering contribution is not

measured by a weight factor, but by its standard deviation �sc =

ð�2
obs � �

2
intÞ

1=2, which is calculated from the second moments

of the observed intensity distributions.

5. Refracting and scattering phantoms

The phantoms used in the experiment resembled the one used

by Oltulu et al. (2003), but several additional components were

included: there was a strip of 1–11 layers of paper, so that the

thickness increased stepwise from 0.1 mm to 1.1 mm, silver

behenate powder, dry 100 nm-diameter PMMA spheres, and a

Lucite rod of diameter 10 mm across the paper strips. These

components were mounted in aluminium sample holders (see

Fig. 2). Radial scattering patterns of the different components

are shown in Fig. 2(b). Cellulose fibers are hierarchical

structures that cover many length scales, so that strong SAXS

is expected from paper (Fengel & Wegener, 1984). Silver

behenate powder is often used for calibration of the angular

scale in SAXS experiments, because the lattice constant is

large (5.84 nm), and there are distinct Bragg reflections at

small scattering angles. The SAXS pattern from independent

PMMA spheres can be calculated, and it is used for intensity
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calibration and testing of the SAXS cameras. The Lucite rod

causes strong effects of refraction near the edges.

6. Experimental details

The phantoms were imaged at the Medical beamline (ID17) of

the European Synchrotron Radiation Facility. The optics

hutch is situated at 145 m from the source, which is a 21-pole

wiggler with 0.6 T field at 60 mm gap. A double-Laue Si(111)

pre-monochromator was used to separate a relatively broad

(�E/E > 10�4) energy band at 51.5. keV. The beam was

shaped by slits to a fan of 80 mm � 1 mm [horizontal (H) �

vertical (V)].

The Si(333) imaging monochromator reduced the relative

energy band to less than 10�5, and the analyzer was an iden-

tical crystal in non-dispersive setting (Fig. 3). The phantom

was situated approximately half way between the mono-

chromator and the analyzer, and the phantom was scanned

vertically through the beam. A fast-readout low-noise

(FReLoN) CCD camera with tapered fiber optics was used in

the so-called pipeline mode (Bravin et al., 2003; Coan et al.,

2006). The pixel size of the detector was 47 mm, and the

distance from the analyzer was about 2.2 m. Scanning was

synchronized with readout of the detector, and a rotating

chopper was used to stop the beam during readout in order to

reduce the detector noise (Renier et al., 2005).

The analyzer crystal is detuned from the maximum trans-

mission (top) position by a piezo-electric drive acting on a

500 mm-long lever arm. The angular resolution is about

0.1 mrad. The scanning stage was separated from the mono-

chromator–analyzer mount, which was placed on a vibration-

damped table. Even with these precautions, some high-

frequency noise (in comparison with the acquisition time) was

transmitted, and there was a slow drift in the angular position

of the analyzer. The reflectivity or rocking curve of the

analyzer was measured in 0.2 to 1.0 mrad steps in the range

�12 mrad around the top position.

The intrinsic rocking curve Rint is measured without the

sample. The experimental points and the pV fit are shown in

Fig. 4. The background is negligible, but the rocking curve has

tails that are not accounted for by a Gaussian form only; in

fact, the parameter 	0 = 0.78 indicates a substantial Lorentzian

contribution. Presumably this is due to thermal diffuse scat-

tering (TDS) from the analyzer crystal. TDS increases at high

X-ray energies, where the penetration depth controlled by

absorption is much larger than the extinction distance in

Bragg reflection. The fitted curve of Rint is used in the analysis

to describe the non-scattered beam transmitted through the

sample.

The total area of the samples in the regions of interest was

about 26 cm2, so the image field to be analyzed consisted of

more than 106 pixels, and the field was recorded at 30–50
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Figure 3
Perspective drawing of the DEI set-up. The Si(333) monochromator
reflects a narrow band of energies at 51.5 keV. The beam dimensions are
80 mm � 1 mm (H � V). The analyzer crystal is identical to the
monochromator. The pixel size of the FReLoN detector is 47 mm.

Figure 2
(a) Ensemble of phantoms at the sample holder. These include a strip of
1–11 layers of paper, crossed by a Lucite rod of diameter 10 mm (top),
and about 1 mm-thick loosely packed discs of silver behenate powder, dry
PMMA spheres of diameter 100 nm, and ox tendon (bottom). The latter
samples are contained by thin Kapton windows. (b) Radial SAXS
patterns of the components. The intensities are scaled to correspond to
approximately the same sample thicknesses.



analyzer settings. The images were normalized to the white

field without the sample to correct for the effects of the non-

uniform intensity of the incident beam. During data acquisi-

tion, the analyzer angle drift was monitored by recording the

parts of the beam that were not intercepted by the sample. An

algorithm was introduced for calculation of the actual working

point �A, and the observed intensity values were assigned

accordingly. A fitting routine based on (19) was applied at

each pixel, so that maps of various parameters were

constructed, and these correspond to refraction, absorption

and scattering images of the samples. There are only five

parameters to be optimized in fitting (19) to the observed

scaled intensities I(�A)/I0!int = R(�A)/!int. These parameters

are the refraction angle ��z, the absorption factor exp(��T),

the parameter �, which gives the relative integrated intensity

of the non-scattered (refracted) beam, � = 2wV, which is the

Voigtian FWHM of the scattered intensity, and the mixing

parameter 	1 in the pseudo-Voigt representation. Another

fitting routine based on (20) was used in selected areas for

comparison of the different approaches. Fitting of (20) does

not separate �, 	 and 	1, so that the fitting parameters are ��z,

exp(��T), � and 	2.

7. Results and discussion

7.1. Paper and Lucite rod

The fitting procedure based on (19) should be able to

separate the contributions of the non-scattered and scattered

beams to the total transmitted beam, which is recorded by the

analyzer and detector. The procedure was tested with the

phantom that consisted of 1–11 layers of paper, and was

crossed by the 10 mm Lucite rod. It is expected that the

attenuation increases with the layer thickness T as exp(��T),

where � is the linear attenuation coefficient owing to photo-

electric absorption and elastic and inelastic scattering that is

not transmitted by the analyzer. The integrated scattering

signal per pixel, on the other hand, should depend on T as

follows, Jsc(T) = J0�scTexp(��T), where �sc is the scattering

coefficient per unit path length, and J0 is the incident flux per

pixel. SAXS intensity spreads to neighboring pixels, but this

loss of intensity is compensated by scattering from other parts

of the incident beam.

The working formula (19) was written in a short-hand

notation as

R �Að Þ=!int ¼ expð��TÞ �Rint þ ð1� �ÞRsc

� �
: ð21Þ

The intrinsic rocking curve Rint, which describes the non-

scattered (but probably refracted) beam, is already given by a

pseudo-Voigtian V0, and now a similar fit is used for the

scattered part Rsc,

Rsc ¼ 	1L1;pV þ 1� 	1ð ÞG1;pV: ð22Þ

In addition to the center shift owing to refraction, the fitting

parameters in (21) and (22) are exp(��T), �, 	1 and the

FWHM � of the Voigtian.

The overall results of the fitting procedure are described

first, and mapping absorption, refraction and scattering are

discussed separately. A single pseudo-Voigtian function was

fitted to the observed rocking curve, to obtain the peak

position and an initial estimate on the width. The shape of the

scattered pseudo-Voigtian was then optimized by a Nelder–

Mead simplex search (Press et al., 2002) for the parameters

	 and �. For each trial value of 	 and �, the mixing parameter

� and attenuation exp(��T) were optimized by a separate

Nelder–Mead simplex search for the best linear combination

of the intrinsic and scattering curves. This allowed the

attenuation and the amount of scattering to be optimized

independently of the scattering shape.

The scattering part Rsc should retain its shape indepen-

dently of the paper thickness, so that � and 	1 should be

constant, unless there are substantial multiple-scattering or

cumulative effects of refraction. An example of the pV curves

fitted to the observations is shown in Fig. 5(a). Figs. 5(b) and

5(c) show that Rsc is not properly separated when its contri-

bution is small. The FWHM of Rsc increases slightly with paper

thickness to more than three times the intrinsic FWHM, but

the Lorentzian tails of Rsc become visible only gradually. The

parameters � and 	1 are constrained to the asymptotic values

shown in the figures, and these are used in the attenuation,

refraction and scattering maps discussed later in this section.

7.2. Silver behenate and PMMA

The rocking curve of the beam transmitted through the

sample of Ag behenate powder is shown in Fig. 6(a). The

curve coincides almost exactly with the intrinsic rocking curve,

when scaled by the attenuation factor exp(��T) = 0.98,

indicating very weak scattering or broadening owing to

refraction. This is expected from the SAXS patterns of Fig. 2,

where the intensity from the powder sample is low except for

the strong crystal reflection at s = 0.171 nm�1. On the other

hand, when the beam transmitted through the sample of

PMMA spheres is divided according to (19), the intrinsic part

is negligible, suggesting complete scattering of the incident
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Figure 4
The measured intrinsic rocking curve of the analyzer (points), and a
pseudo-Voigtian fit. The FWHM is 1.48 mrad and the Lorentzian weight
	0 = 0.78 is due to the substantial tails of the rocking curve.



beam (Fig. 6b). The FWHM is 2.45 mrad, while the FWHM of

the intrinsic rocking curve is 1.48 mrad. The SAXS pattern of

the PMMA sample can be calculated for independent spheres

of diameter 100 nm. The result is shown in Fig. 7 on a loga-

rithmic scale. The calculated SAXS pattern is two orders of

magnitude wider than the observed rocking curve. Presumably

the reason for this discrepancy is the fact that the PMMA

spheres are not independent, but form closely packed powder-

like granules, which have diameters of a few micrometers. The

inner structure of these granules, i.e. the individual spheres,

gives rise to the s�3 or q�4 behavior in the Porod regime

between q = 0.03 and 0.1 nm�1, which is seen in Fig. 2, while

the width of the central peak is due to the size of the granules.

7.3. Attenuation, refraction and scattering maps

Parametric maps for the beam transmitted through the

paper and Lucite part of the phantom are shown in Fig. 8. The

attenuation map is shown in Fig. 8(a), and the bands where

attenuation, refraction angle and scattering fraction are

calculated are indicated by broken lines. Another image of the

rod is shown in Fig. 8(b), which is acquired at the top position

of the analyzer. The drop of intensity with increasing paper

thickness is due to the scattering loss, 1 � �, which is shown in

Fig. 8(c). The effect of refraction is a strong decrease of

intensity at the edges of the rod, and this is closely reproduced

by calculation. The calculation is based on the geometrical

optics approximation (cf. Keyriläinen et al., 2002), which is

valid when the Takagi number (h/�)2[R0(�)/R000(�)]� 1; here h

is the smallest discernible feature of the object, given by the

detector pixel size, and R0 is the analyzer reflectivity

(Nesterets et al., 2006). Extrapolating from earlier calculations

for the Si(333) analyzer reflection the Takagi number is about

40 in the vicinity of the center of the Bragg reflection (Pavlov

et al., 2004). The agreement between the calculation and

experiment demonstrates that the geometrical optics calcula-

tion is valid in the present case.

The redistribution of intensity by scattering is shown

quantitatively in Fig. 8(c) using the parameters � and

exp(��T). The portion of the scattered radiation, 1 � �,
increases from 0 at zero paper thickness to 0.6 at the maximum

paper thickness of 1.1 mm, while the total transmission factor

exp(��T) drops by a few percent only. The non-scattered and

scattered parts of the transmitted beam are well separated by

the Voigtian presentation, and the scattering contribution
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Figure 6
Pseudo-Voigtian fits to beams that have traversed a sample of silver
behenate powder (a) and PMMA spheres (b).

Figure 7
Calculated rocking curve for the beam scattered by PMMA spheres of
diameter 100 nm (thin broken line) and 10 mm (thin solid line), together
with the observed rocking curve (thick broken line) and the intrinsic
rocking curve (thick solid line).

Figure 5
(a) The rocking-curve fit for the beam that had traversed 11 layers of
paper. The contributions are the non-scattered beam (dashed line),
scattered beam (dotted) and their sum (solid line). (b) The FWHM and
(c) the Lorentzian weight factor 	1 as functions of the paper thickness in
an unconstrained fit to (22). In subsequent fitting the values � = 5.5 mrad
and 	 = 0.5 are used.



follows the expected linear behavior with T. The simultaneous

effects of attenuation, refraction and scattering are shown

along a line that crosses the Lucite rod and the underlying

layers of paper (Fig. 8d). The curve-fitting procedure separates

absorption (mostly in the Lucite rod), the peak shift owing to

refraction and the stepwise increase of scattering with the

increasing thickness of the paper layer.

7.4. Minimal data set for curve fitting

It has already been mentioned that reduction of the number

of working points along the rocking curve is essential, parti-

cularly for in vivo imaging, where the allowed radiation dose is

limited. There are five parameters to be optimized in fitting

the Voigt function (19) to the observed rocking curve, and four

parameters in (20). The stability of the fit was tested by

varying the number and location of data points on the rocking

curve. Results for attenuation, the refraction angle and the

portion � of the non-scattered beam are shown in Fig. 9 along

the same line as in Fig. 8(d). At least in this simple case the

results obtained by using the full data set are closely repro-

duced already with ten data points, while with five data points

the separation of refraction shift and scattering portion is

incomplete.

7.5. Comparison with other methods

The different methods for treatment

of analyzer-based imaging data aim at

separating the effects of attenuation

(true absorption and scatter rejection),

beam deviation owing to refraction, and

scattering. The differences between the

methods arise from description of the

effects of scattering. The common

feature is that any deviation of the

observed rocking curve from the shape

of the intrinsic rocking curve is assigned

to scattering, although the broadening

may be due to USAXS, SAXS,

multiple-scattering or cumulating

refraction effects. In one approach the

recorded intensity is given as a sum of

two parts: the non-scattered beam,

which has the shape of the intrinsic

rocking curve, and the scattered part

(Oltulu et al., 2003). In the other

approach, which is now called the MIR

method (Wernick et al., 2003; Khelash-

vili et al., 2006), the interaction with the

sample is included in the impulse

response function (per unit path

length), which convolves the intrinsic

rocking curve. We have called these two

treatments the sum approach and

convolution approach, respectively.

The present formulation is equally amenable to the sum and

convolution approaches and allows for a direct comparison of

the two. In order to give quantitative results the sample made

of paper layers is considered, and the parameters describing

the effects of scattering are compared. The parameters of

attenuation and beam deviation are identical in the two

approaches. In the sum approach, the degree of scattering is

given by the parameter 1� �, and in the convolution approach

by the second moment of the observed rocking curve minus

the second moment of the intrinsic rocking curve. It was seen

in Fig. 8(c) that 1 � � increases linearly with the sample

thickness, and in the following the second moment in the

pseudo-Voigtian expression (22) is considered. The second

moment of the pseudo-Voigtian function is

M2;pV ¼ 	M2;L þ ð1� 	ÞM2;G

¼ 	ð�=�Þ �max � ð1=2Þ� tan�1 2�max=�ð Þ
� �

þ ð1� 	Þ 21=2=8 ln 2
� �

�2: ð23Þ

It can be seen that M2,L increases with the integration range

(from ��max to �max) so that the range must be kept finite and

constant for adequate comparisons. The last two terms tend to

cancel each other, and with a sufficiently large value of �max

the second moment is proportional to the FWHM �. Broad-

ening owing to successive convolutions by an impulse

response function that has Lorentzian shape should increase �
linearly with paper thickness. Results may be seen in Fig. 10.
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Figure 8
(a) Attenuation in the phantom of 0–11 paper layers plus a Lucite rod of diameter 10 mm. The thin
broken lines indicate the bands where curves in (c) and (d) were calculated. (b) Top image of the
phantom with intensity curves across the rod: experiment (left) and calculation (right). (c)
Transmitted intensity (thin line), non-scattered portion � (thick line) and refraction angle (broken
line) along the horizontal band in (a). (d) Transmitted intensity (thin line), refraction angle (broken
line) and portion of the non-scattered beam (thick line) along the diagonal band in (a). For the
pseudo-Voigtian fit (21) the full data set of 33 points between �12.5 mrad and +11.0 mrad are used.



The Lorentzian character in the pseudo-Voigtian presentation

(20) is dominant and even complete at thick samples. As

expected, the second moment of the total rocking curve minus

that of the intrinsic rocking curve increases linearly with the

sample thickness in agreement with results of earlier obser-

vations and calculations (Wernick et al., 2003; Khelashvili et

al., 2006), and the increase of � is linear after four paper

layers.

8. Conclusions

This study was undertaken to introduce a new parametrization

of the data obtained in ABI. The method is based on fitting a

simple but still versatile function to the observed rocking

curve of the analyzer. The experimental set-up is essentially

that of the Bonse–Hart camera in the ‘long-slit’ geometry, and

it turns out that the rocking curves may

have long tails owing to SAXS picked

up in the lateral direction. An accurate

description is obtained by the use of

Voigt functions, which are convolutions

of Lorentzian and Gaussian functions.

For the actual fitting, the so-called

pseudo-Voigtians are used. An even

more flexible fitting function would be

Pearson VII, where the asymptotic

behavior of the tails can be tuned by

one parameter (Pearson, 1900). This

option was not studied, because the

Voigt function provided an adequate

description of the observed rocking

curves.

The present formulation allows for a direct comparison

between different treatments of the scattering contribution in

the transmitted beam. It turns out that the respective para-

meters in the sum approach and in the convolution approach

behave in the same way. There are five and four fitting para-

meters in the pseudo-Voigtian presentations, respectively, so

that the latter approach may be favored in practical applica-

tions. The results concern scattering from paper, but these may

be extended for human tissues, as both have structures in

many length scales. The motivation of analyzer-based imaging

is to overcome the limitations of the absorption-based

methods in medical imaging, so the present observations have

significance beyond the phantom studies.

Calculations for a simple object indicate that the geome-

trical optics approach is adequate in the present case, offering

a great simplification of the general treatment of ABI

(Nesterets et al., 2006). In general, the image contrast is

stronger in ABI than in the propagation-based imaging (PBI),

although the effects overlap, and the PBI contrast is seen also

in the direction perpendicular to the plane of diffraction

(Pavlov et al., 2004, 2005; Coan, 2006). With these reservations,

extensions of the original DEI algorithm can be used to

interpret the results of ABI.

This study indicates that the MIR method or its variants

yield images that are similar or identical to the present results.

The advantage of the curve-fitting approach is that meaningful

results are obtained with their statistical accuracy with a

limited number of data points along the rocking curve of the

analyzer. This is important with the prospect of in vivo

imaging, where the allowed dose is limited. It is also

remarkable that the combined effects of refraction and scat-

tering are seen in the top image. This has been exploited in

imaging breast cancer samples, where important structures

such as collagen strands and micro-calcifications are high-

lighted (Keyriläinen et al., 2002; Bravin et al., 2007). The

present work demonstrates that it is sufficient to image the

sample at a few analyzer angles and still be able to extract the

scattering contribution. SAXS in particular carries informa-

tion about the molecular structure of the object, and the

changes in breast tissue structures have been used as indica-

tors of cancer growth. It may be possible to combine the
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Figure 10
The Lorenzian weight factor 	2 in the pseudo-Voigtian (20), the second
moment minus the second moment of the intrinsic rocking curve (broken
line: linear fit), and the FWHM of the curve fitted to the rocking curve for
the beam that has traversed 0–11 layers of paper.

Figure 9
Transmitted intensity (thin line), refraction angle (broken line) and portion of the non-scattered
beam (thick line) along the diagonal band crossing the Lucite rod and paper layers (same as in
Fig. 8d), calculated from curves fitted to five data points (�8.6;�3.6.; �0.9; +0.1; +1.8 mrad) (a), and
to ten data points (additional angles �6.6; �0.3; +0.5; +4.0; +10.0) (b) along the analyzer rocking
curve.



morphological information from ABI with information about

the molecular structures and their changes.
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Med. Biol. 52, 2197–2211.

Chapman, D., Thomlinson, W., Johnston, R. E., Washburn, D., Pisano,
E., Gmür, N., Zhong, Z., Menk, R., Arfelli, F. & Sayers, D. (1997).
Phys. Med. Biol. 42, 2015–2025.

Chou, C.-Y., Anastasio, M. A., Brankov, J. G., Wernick, M. N., Brey,
E. M., Connor, D. M. Jr & Zhong, Z. (2007). Phys. Med. Biol. 52,
1923–1945.

Coan, P. (2006). PhD thesis, Université Joseph Fourier, Grenoble,
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