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d-Amino acid amidase (DAA) from Ochrobactrum anthropi SV3 catalyzes

d-stereospecific hydrolysis of amino acid amides. DAA has attracted attention as

a catalyst for the stereospecific production of d-amino acids, although the

mechanism that drives the reaction has not been clear. Previously, the structure

of DAA was classified into two types, a substrate-bound state with an ordered �
loop, and a ground state with a disordered � loop. Because the binding of the

substrate facilitates ordering, this transition was regarded to be induced fit

motion. The angles and distances of hydrogen bonds at Tyr149 O�, Ser60 O� and

Lys63 N� revealed that Tyr149 O� donates an H atom to a water molecule in the

substrate-bound state, and that Tyr149 O� donates an H atom to Ser60 O� or

Lys63 N� in the ground state. Taking into consideration the locations of the H

atoms of Tyr149 O�, Ser60 O� and Lys63 N�, a catalytic mechanism of DAA

activity is presented, wherein a shift of an H atom at Tyr149 O� in the substrate-

bound versus the ground state plays a significant role in the reaction. This

mechanism explains well why acylation proceeds and deacylation does not

proceed in the substrate-bound state.
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1. Introduction

d-Amino acids are important intermediates in the production of a

number of chemicals, including pharmaceuticals, agrochemicals and

food additives (Asano & Lübbehüsen, 2000).

Currently, d-amino acids and d-amino acids containing peptides

are produced by enzymatic transformation (Schulze & Wubbolts,

1999). Enzymatic transformation requires enzymes with high d-

stereospecificity in order to approach the maximum theoretical yield

(Schulze & Wubbolts, 1999). d-Amino acid amidase (DAA) from the

soil bacterium Ochrobactrum anthropi SV3 is an enzyme with this

type of high d-stereospecificity, and catalyzes d-stereospecific

hydrolysis of amino acid amides via bulky hydrophobic side chains to

yield d-amino acid and ammonia (Asano et al., 1989; Komeda &

Asano, 2000).

The crystal structures of DAA in the native form and in a complex

with d-phenylalanine were determined and functionally character-

ized in our laboratory (Okazaki et al., 2007). Several simulations

suggested that Tyr149 O� is an adequate candidate for a general acid

in the acylation step (Okazaki et al., 2008). However, an overview of

the catalytic mechanism of DAA functions, which include both

acylation and deacylation, has remained unclear.

Previously we reported that substrate binding occurred in concert

with a conformation change in the � loop (residues 207–223; Okazaki

et al., 2007), and we regarded this motion as induced fit motion

(Okazaki et al., 2008). New concepts about pre-existing apo states,

such as a conformational selection (Bosshard, 2001) or selected fit

mechanism (Wang et al., 2004), have been proposed. However, the

concept of induced fit, i.e. that the location of active site residues

around a substrate stabilize a transition state and thereby promote

the reaction (Koshland Jr, 1958), remains very important.

In considering induced fit motion and geometries of hydrogen

bonds at important residues in this work, we are able to speculate on

the overall catalytic mechanism of DAA. The reaction mechanism

that we propose provides a reasonable explanation of previously

observed experimental results, including the fact that deacylation

occurs at pH 6.8.

2. Speculated H-atom shift of Tyr149 Og by induced fit
motion

In the d-phenylalanine complex, subunits A–E belong to the

substrate-bound state, and subunit F belongs to the ground state

(Okazaki et al., 2007). The distances of the shift between the

substrate-bound state and the ground state in active site residues

Ser60 O�, Lys63 N� and Tyr149 O� were 0.2, 0.6 and 1.2 Å, respec-

tively (Fig. 1). The r.m.s. deviation in atomic positions estimated via a

Luzzati plot of the d-phenylalanine complex structures was 0.29 Å.

This value suggests that the shifts of Lys63 N� and Tyr149 O� were

significant. The extent of the shift of Tyr149 O� is the largest of the

three; thus, it is plausible to consider that Tyr149 is important for

induced fit motion. Tyr149 has been proposed to be a candidate for a

general acid in acylation and a general base in deacylation (Okazaki
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et al., 2008). The angles and distances of the hydrogen bonds related

to Tyr149 O�, Ser60 O� and Lys63 N� are summarized for all subunits

in the native and d-phenylalanine complexes (Table 1). The data

reveal that the Tyr149 C�—Tyr149 O�—Ser60 O� angle (greater than

130�) is far from the regular tetrahedron angle of 109.5�, which is

suitable for donating an H atom to a hydrogen bond. The data also

reveal that the Tyr149 C�—Tyr149 O�—H2O (less than 100.4�) and

Tyr149 C�—Tyr149 O�—Lys63 N� angles (106–115�) are close to the

regular tetrahedron angle. Taken together, these results suggested

that the Tyr149 O�H atom in the substrate-bound state is donated to

a hydrogen bond with a water molecule (namely, Z164; see Fig. 1) or

Lys63 N�. Additionally, the results of docking simulation using the

MOE system (Version 2006.0801; Chemical Computing Group,

Montreal, Canada) suggest that the leaving group NH2 of the

substrate d-phenylalanine amide locates to the same position as the

water molecule (Z164 in Fig. 1) (Okazaki et al., 2008). Together with

the fact that acylation occurs in the substrate-bound state (Okazaki et

al., 2007), these findings lead us to propose that Tyr149 O� donates an

H atom to the water molecule rather than to Lys63 N� in the

substrate-bound state.

However, the results summarized in Table 1 suggested that Tyr149

O� forms hydrogen bonds to Ser60 O� or Lys63 N� in the ground

state (subunit F in the d-phenylalanine complex). The Tyr149 C�—
Tyr149 O�—Ser60 O� (104.2�) and Tyr149 C�—Tyr149 O�—Lys63

N� angles (99.1�) in subunit F in the d-phenylalanine complex seem

to be suitable for hydrogen bonding. On the basis of these data alone,

we cannot determine which residue interacts with the H atom of

Tyr149 O� in the ground state. Both locations of the H atom of

Tyr149 O� in the ground state are suitable for deacylation.

The hydrogen-bond geometry at Lys63 N� suggests that Lys63 N�
may donate H atoms to Asn151 O�1 and Ala242 O (Table 1). Lys63

N� is thought to be protonated under the conditions of crystallization

(pH 6.8) (Okazaki et al., 2007). Thus, on the basis of the geometries,

one additional H atom from Lys63 N� may be donated to Tyr149 O�,
rather than to Ser60 O�, in the substrate-bound state of the d-

phenylalanine complex (Table 1). For the ground state of the d-

phenylalanine complex, however, there are no suitable candidate

residues for acceptance of an H atom from Lys63 N� (Table 1).

The angles and distances related to Ser60 O� suggest that Ser60

O� directs an H atom to Lys63 N� and not to Tyr149 O� (Table 1).

The effect is quite pronounced, particularly in the ground state.

3. Proposed catalytic mechanisms

Reflecting the observations described above, we are able to propose a

mechanism for catalysis of DAA at the crystallization pH (6.8)

(Fig. 2), wherein d-phenylalanine amide acts as a substrate.

In the unbound states, the proportion of molecules adopting the

ground state is thought to be greater than the proportion adopting a

substrate-bound state (Fig. 2a) (Okazaki et al., 2007). In this state, and

considering the geometries of the residues (Table 1), we propose that

an H atom from Tyr149 O� is donated to Ser60 O� (Fig. 2a).

However, considering the angle and distances concerning Lys63 N�
(Table 1), it seems that an H atom of Lys63 N� is free and located at

an intermediate position between Tyr149 O� and Ser60 O� (Fig. 2a).

There are at least two possible ways for the initial transition from

ground state to occur in terms of the catalytic mechanism of DAA

(Fig. 2a) versus the substrate-bound state (Fig. 2b). One is via the

traditional induced fit mechanism; in this case, the substrate first

binds at the ground state and the complex then switches to the

substrate-bound state. The other is via the conformational selection

mechanism (Eisenmesser et al., 2005) or selected fit mechanism

(Boehr et al., 2006), in which the substrate binds to the minor

substrate-bound state conformation already present in solution.

The presence of an incoming substrate in the binding pocket

should shift the ratio of structures in favor of the substrate-bound

state by ordering the � loop (Okazaki et al., 2007) and bring about

the relocation of Tyr149 O� in the substrate-bound state as described
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Table 1
Angles (�) and distances (Å) in the native enzyme and d-phenylalanine complex.

Values in parentheses indicate distances corresponding to angles. – indicates an unidentified water molecule.

Tyr149 Ser60 Lys63

Model Subunit

149 C�—
149 O�—
O2H

149 C�—
149 O�—
60 O�

149 C�—
149 O�—
63 N�

60 C�—
60 O�—
63 N�

60 C�—
60 O�—
149 O�

63 C"—
63 N�—
149 O�

63 C"—
63 N�—
60 O�

63 C"—
63 N�—
151 O�1

63 C"—
63 N�—
242 O

Native A 100.4 (2.96) 139.0 (2.67) 108.6 (3.14) 119.5 (2.68) 87.2 (2.67) 88.3 (3.14) 137.7 (2.68) 104.2 (2.67) 120.5 (2.72)
B 97.6 (2.90) 138.4 (2.77) 111.2 (2.96) 111.4 (2.63) 83.2 (2.77) 87.3 (2.96) 142.0 (2.63) 107.4 (2.79) 121.5 (2.86)
C 94.6 (3.13) 133.9 (2.82) 110.9 (3.22) 116.5 (2.70) 85.0 (2.82) 80.7 (3.22) 133.0 (2.70) 108.3 (2.72) 120.2 (2.67)
D 90.4 (3.06) 137.8 (2.67) 112.0 (2.90) 120.6 (2.55) 89.2 (2.67) 91.4 (2.90) 143.1 (2.55) 106.4 (2.82) 109.6 (2.87)
E – 137.1 (2.86) 111.3 (2.86) 112.3 (2.62) 84.3 (2.86) 95.8 (2.86) 148.7 (2.62) 105.8 (2.75) 107.4 (2.87)
F – 124.4 (2.85) 105.8 (3.01) 109.9 (2.88) 76.1 (2.85) 84.8 (3.01) 141.3 (2.88) 101.1 (2.68) 114.9 (2.60)

d-Phe A 91.1 (2.86) 140.0 (2.74) 111.8 (2.72) 105.3 (3.26) 87.3 (2.74) 96.8 (2.72) 141.0 (3.26) 116.9 (2.71) 121.5 (2.95)
complex B – 138.0 (2.70) 115.2 (2.68) 101.0 (2.80) 82.8 (2.70) 94.6 (2.68) 150.3 (2.80) 98.9 (2.84) 117.4 (2.77)

C 83.0 (2.98) 137.1 (2.82) 109.9 (2.71) 105.4 (3.13) 83.4 (2.82) 98.9 (2.71) 146.1 (3.13) 116.6 (2.85) 115.3 (3.02)
D – 140.6 (2.85) 115.8 (2.73) 100.9 (3.16) 90.3 (2.85) 96.7 (2.73) 145.1 (3.16) 111.1 (2.83) 107.8 (2.88)
E – 131.9 (3.01) 105.2 (2.99) 100.7 (3.32) 78.7 (3.01) 91.5 (2.99) 140.9 (3.32) 118.6 (2.81) 117.8 (2.92)
F – 104.2 (3.09) 99.1 (3.25) 102.3 (3.13) 73.5 (3.09) 78.5 (3.25) 135.6 (3.13) 103.2 (2.88) 115.9 (2.50)

Figure 1
Induced fit motion of Tyr149 O� in the ground (subunit F) versus the substrate-
bound state (subunit A) d-phenylalanine complex. For subunit A, C atoms are
shown in cyan, O atoms in red and N atoms in blue. For subunit F, C atoms are
shown in orange, O atoms in magenta and N atoms in light blue. Possible hydrogen
bonds around Tyr149 O� based on the angles and distances for subunits A and F are
shown as red or magenta broken lines, respectively. d-Phenylalanine and Ser60 are
represented with a ball and stick model.



above (Fig. 2b). We consider that adoption of the substrate-bound

state lowers the activation energy necessary for the proceeding

acylation step by creating an environment in which the transition

state of acylation is stabilized (Okazaki et al., 2008). After a substrate

is incorporated into the catalytic cleft in the substrate-bound state,

the general base Lys63 N� may deprotonate Ser60 O�, and the

nucleophile Ser60 O� may then attack the amide group of the

substrate, generating tetrahedral intermediates [light-green arrows in

Fig. 2(b)]. Subsequently, the leaving group of the tetrahedral inter-

mediate should deprotonate the general acid Tyr149 O�, leading to

release of NH3. In turn, Tyr149 O� may deprotonate Lys63 N�, and

finally the acylation is completed [cyan arrows in Fig. 2(b)]. There-

fore, Lys63 and Tyr149 appear to be the most plausible candidates for

the general base and acid, respectively, that act in acylation (Okazaki

et al., 2008).

In the substrate-bound state of the d-phenylalanine complex,

acylation occurred but deacylation did not (Okazaki et al., 2007). This

may result from the specific position of the H atom of Tyr149 O� in

the substrate-bound state. The OH group of Tyr149 in the substrate-

bound state could easily donate an H atom to either the leaving group

of the substrate or a water molecule: that is, the location of Tyr149

OH is well situated to participate in acylation (Fig. 2b). In the next

step, the positioning of Tyr149 OH in the substrate-bound state may

prevent deprotonation of a nucleophilic water molecule and thus

would not be well suited for deacylation [Fig. 2(d ); note that the NH3

group in Fig. 2(d ) is replaced by H2O in the d-phenylalanine

complex]. After the release of NH3, Tyr149 OH should become

positioned in a way that is well suited for deacylation: that is to say,

the H atom of Tyr149 O�may be directed to either Ser60 O� or Lys63

N� (Fig. 2e or 2f ).

The dynamics of transition from substrate-

bound to ground state in DAA are still

unclear; however, it is possible to speculate

that the release of NH3 through the

proposed NH3 channel (Okazaki et al., 2008)

can trigger a conformational transition from

the substrate-bound to the ground state, and

cause penetration of a nucleophilic water

molecule in the catalytic center [Fig. 2; from

(d ) to (e) or ( f )]. Interestingly, the transition

from the substrate-bound to the ground state

generates movement of the phenyl group of

Phe282, producing a space that permits a

water molecule to access the catalytic center

from the exterior. In other penicillin-recog-

nizing proteins, such as DD-peptidase, class

C �-lactamase and EstB esterase, water

molecules from the exterior are considered

to be essential for deacylation (Wagner et al.,

2002). In fact, the catalytic clefts of DD-

peptidase and extended spectrum class C �-

lactamase are maintained in the open form

after substrate binding, which permits a

water molecule to access the acyl enzyme

(Negoro et al., 2007).

We previously proposed that deacylation

in subunit F of the d-phenylalanine complex

is facilitated by extraction of an H atom from

Tyr149 O� via a deprotonated His307 N"2
(Okazaki et al., 2007). The Tyr149 C�—
Tyr149 O�—His307 N"2 angle (122.2�) and

the distance between Tyr149 O� and His307

N"2 (2.9 Å) in subunit F in the d-phenyla-

lanine complex suggests that Tyr149 O� can

donate an H atom to His307 N"2 as well as

Ser60 O� and Tyr149 Lys63 N�. Therefore

we could not exclude the possibility that

His307 N"2 extracts the H atom of Tyr149

O�, as in the case of either Fig. 2(e) or 2( f ).

To bring about a transition from the acyl-

enzyme state to a free (deacylated) state,

initially the general base Tyr149 O� must

deprotonate a water molecule and the acti-

vated nucleophilic OH group must attack

the carbonyl carbon of d-phenylalanine,

generating a tetrahedral intermediate [light-

green arrow in Fig. 2(e) or 2( f )]. Succes-

diffraction structural biology

252 Seiji Okazaki et al. � Catalytic mechanism of d-amino acid amidase J. Synchrotron Rad. (2008). 15, 250–253

Figure 2
Proposed catalytic mechanism of DAA. The numerals in parentheses show the steps in the reaction. Proposed
hydrogen bonds are represented as broken lines. The substrate d-phenylalanine is shown in red. In this model,
enzyme catalysis proceeds according to the following steps. (1) By approaching the substrate d-Phe-NH2 at the
active site of DAA, Tyr149 O�makes a transition to the location found in the substrate-bound state by induced fit
motion. (2) Lys63 N� enhances the nucleophilic attack of Ser60 O� on d-Phe-NH2 as general base, and a
tetrahedral intermediate forms (light-green arrow). Finally, acyl enzyme is formed (cyan arrow). (3) NH3 is
released via a channel; Tyr149 O�makes a transition to the location found in the ground state; and a nucleophilic
water molecule enters. (4) Finally, deacylation occurs via formation of a tetrahedral intermediate (light-green
arrow) and regeneration of the free enzyme (cyan arrow). (a) Arrangement of the active site residues in the free
enzyme. (b) A noncovalent substrate complex is transferred to a tetrahedral intermediate in the substrate-bound
state. (c) Acyl enzyme right after acylation. Black arrows indicate proton transfer facilitated by the location of
Tyr149 in substrate-bound state, and circled numbers indicate the order of transition. (d ) Acyl enzyme observed
in the d-phenylalanine complex (Okazaki et al., 2007), in which NH3 is replaced by H2O. (e) and ( f ) Acyl enzyme
is transferred to a tetrahedral intermediate in the ground state. Either Tyr149 O� (e) or Lys63 N� ( f ) may act as
the general acid for deacylation.



sively, a tetrahedral intermediate should deprotonate the general acid

Tyr149 O�, leading to the release of d-phenylalanine [cyan arrow in

Fig. 2(e)]. Tyr149 O� is the stronger candidate for the general acid in

deacylation, on the basis of the geometries observed for Tyr149 O� in

the ground state (Table 1). In contrast, Lys63 N� may be able to

donate an H atom to Ser60 O� as the general acid in deacylation and

subsequently Lys63 N� extracts an H atom from Tyr149 O� [cyan

arrow in Fig. 2( f )]. This model is supported from the viewpoint that

the location of the H atom of Ser60 O� is predominantly at Lys63 N�
in the ground state, as shown in Table 1. Thus, the location of the H

atom of Tyr149 O� in the ground state is considered to be an essential

step prior to deacylation (Fig. 2e or 2f ).
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