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Aberration theory of plane-symmetric optical systems of mirror and grating
has been developed based on the wavefront aberration method. A toroidal
reference wavefront surface is used to define the wavefront aberration. Based
on the ray geometry, the coordinate mapping relationships of the ray between
the optical element and the incident and aberrated wavefronts are derived using
a polynomial-fit method; this enables the resultant coefficients of the wavefront
and the transverse aberration to be kept to the fourth-order accuracy of the
aperture-ray coordinates. By setting up the transfer equations of the field and
aperture rays, the contribution to wavefront aberrations from each mirror and
grating can be added to make the aberration calculation of multi-element
systems feasible. The theory is validated by the analytic formulae of the spot

diagram.
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1. Introduction

Recent developments in synchrotron radiation instrumenta-
tion are toward higher spectral and/or spatial resolution X-ray
and ultraviolet (XUV) optics. They usually consist of a series
of mirrors and gratings arranged with a plane of symmetry.
The initial determination and optimization of optical para-
meters of these instruments need aberration analysis of the
optical systems although ray tracing can provide a powerful
tool for evaluating XUV optics. The grating theory developed
by Beutler and Namioka has often been used to analyze these
optical systems, but it is essentially suitable for a single grating,
and its high-order aberration coefficients can correctly
describe the aberration of the grating only in the case where
the angle of diffraction is zero and the meridional and sagittal
focal curves cross on the grating normal (Beutler, 1945; Noda
et al., 1974). A number of attempts have been made on the
aberration analysis of multi-element systems. The analytic
formulae of the spot diagram can reproduce the ray-traced
spot diagram with a high degree of accuracy (Namioka et al.,
1994); its aberration expressions on the image plane are
correct; and recently the mathematical tool of Lie optics has
been applied to the grating imaging systems (Goto & Kuro-
saki, 1993). The aberration coefficients for double-element
systems from the two methods have been studied (Masui &
Namioka, 1999a,b; Namioka et al, 2001; Palmer et al.,
1998a,b), but they are very complex and difficult to be used to
optimize the optical parameters.

An important advance in the wavefront aberration (WFA)
theory for multi-element systems was made by Chrisp
(1983a,b). He defines the wavefront aberration with reference
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to an astigmatic wavefront surface and an aperture stop
displaced from the grating center to make possible the aber-
ration calculation of the off-plane object. However, if we apply
the theory to calculate the image of mirror—grating systems,
we find that it can give a good agreement to ray-tracing results
only with a small acceptance angle of the ray pencil; besides,
the calculation of the transverse aberration is limited to the
case when the image plane is just on the focus position and the
wavefront of the exit ray pencil is almost stigmatic. These
limitations result from the following. (i) In finding the trans-
verse aberration with the wavefront aberration, the deviation
angle of the aberrated ray from the reference wavefront
surface normal in the meridional and sagittal directions, 6./,
0/, are determined by
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where x,, y, are the coordinates of the ray position on
the aberrated wavefront at the exit pupil, whereas Chrisp
(1983a,b) used those on the reference wavefront, and it will
lead to a significant error in the image when a large wavefront
aberration exists. This may be due to the difficulty in the
wavefront aberration method that the intermediate variables
X¢', yo' depend on the ultimate variables, the image coordinates
x',y'. (ii) In finding the wavefront aberration coefficients, a few
significant errors exist; for example, in finding the focal line of
the reference wavefront, the position of the aperture-stop
center and in dealing with wavefront aberration. Namioka et
al. (1994) have indicated that the aberrations from Chrisp
(1983a,b) significantly deviate from those of the analytic
formulae of the spot diagram or ray tracing calculations.
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In this study we have developed an accurate third-order
aberration theory of plane-symmetric mirror or grating
systems based on Chrisp’s work. The theory is applicable
to the aberration analysis of the optical figure of a plane,
cylindrical, spherical, toroidal, ellipsoidal and paraboloidal. It
circumvents the above limitations of Chrisp (1983a,b) by two
measures: (i) a toroidal reference wavefront surface is used to
define the wavefront aberration in §2.2; (ii) the mapping
relationships of the coordinates of the ray between the optical
element and the wavefront surfaces are obtained by solving
the complex ray equations using the polynomial-fit method.
Consequently, the wavefront and transverse aberration coef-
ficients are derived in §2.3 to §2.4 and §3. In §4, where the
transfer equations of the field and aperture rays between
optical elements are set up, the wavefront aberration of multi-
element systems is investigated. Finally the theory is validated
with respect to the analytic formulae of the spot diagram
(Namioka et al., 1994).

2. Wavefront aberrations
2.1. Definition of reference coordinate systems and rays

For convenience in the following discussions it is necessary
to make clear the reference coordinate systems and rays used
to describe the optical system. Fig. 1 shows a plane-symmetry
optical system with an off-plane object point S,. The coordi-
nate systems, xyz, xoyoZo and xy'yy'zo" corresponding to the

Figure 1
Optical scheme of a plane-symmetry optical system and its reference
coordinate systems, reference rays and meridional and sagittal foci.

aperture stop, the entrance and exit pupils are stipulated to
have a common origin, P, the center of the aperture stop; the
axes of z, zg and z,’ are along the grating surface normal at the
vertex, the incident and exit principal rays, respectively; the
axes of x, xp, xy are all on the horizontal plane. The three
coordinate systems are used to describe the position of the ray
on the optical surface, the wavefronts on the entrance and exit
pupils, respectively. The ray SOPS(; is referred to as the prin-
cipal ray; and the base ray O'OO”, lying in the symmetry
plane, comes from the central field point O’ and is diffracted at
the grating vertex O. In the following, the wavefront aberra-
tion, the positions of the object and image plane and the
parameters of the optical parameters are specified with
respect to this ray. The field ray S,0S; is displaced from the
symmetry plane and specified with a field angle of u and «’ in
the object and image space.

Since there is no optical axis on a plane-symmetric optical
system as in the rotationally symmetric one, the field coordi-
nate is defined with respect to the base ray, and the aperture
coordinate with respect to the principal ray. The basal theory
denotes the aberration terms obtained by using field coordi-
nates. The first- and second-order wavefront aberrations
determine the principal ray and the focal positions on it (i.e.
F,, and F; as in Fig. 1), respectively. The parabasal theory
below discusses the aberrations based on the definite principal
ray and the foci.

2.2. Reference wavefront surface

The wavefront aberration is defined as the displacement of
the wavefront from a specified reference surface. For rota-
tionally lens systems a spherical surface is used, and the
position of its center is determined from the paraxial theory
(Gaussian optics). For plane-symmetric optical systems,
especially grazing-incidence optics, very large astigmatism
exists; the wavefront may be cylindrical. Chrisp (1983a,b)
adopts an astigmatic reference surface to define the wavefront
aberration, but it does not specify the figure of this astigmatic
reference surface. A specific figure is required in order to
obtain the exact information of its focal lines. A toroidal figure
is chosen here because it is relatively simple with different
meridional and sagittal foci.

Fig. 2 shows a toroidal reference surface with its vertex on
the center of the entrance pupil, P; Q(xo, yo, Zo) is any point on
the surface; the z, coordinate of Q is given by the toroidal
equation,

: 2 +2)
20 =Tm —'Inm 1l——7—
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I'm
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where r,, and r, are the major and minor radii of the toroidal
surface, which here mean the distances of the meridional and
sagittal focal lines from the optical element. The direction of
the ray is defined as the normal of the wavefront; thus the ray
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Figure 2
Toroidal reference wavefront surface and its foci on the meridional and
sagittal plane.

equation at point Q, from equation (2), is formulated as
follows,

X~ X _ Y=Y

Z— ZO
= 3
7 sz Yo 1 + Tm—rs -1 ( )
m~ <0 Fm—20 (yg_y(z))l/l
Its projection trajectory F,, on the plane of x = 0 is then
(ry = rm)y
In= 2 I =Tm @
(rs - yO)
and that of F; on the plane of y = 0 is
Z— Zp)X rm — 2
xszxo—w, ZS=ZO+17,m_?S. (5)
T T

F,, and F; are referred to as the meridional and sagittal foci,
and M(0, ym, zm) and S(xs, 0, z5) represent the corresponding
projection points on them to point Q. Expanding y,,, X, zs in
equations (4) and (5) as the power series of x, and y, to the
fourth order yields

(rs_rm) (rs_rm)
m= T Yot 2r3 o
(rw=1r)  (rg—1)
Xy = mr =X + ;rzrsxoy(z), (6)
m m"s
(rm_rs) 2 (rm_rs) 4 (rm_rs) 2.2
Zg=1r,+ 22 X+ 8t Xo + 2 7, XoYo

The above equations show that the meridional focus, F,,, is
related to only y, and it is a straight line perpendicular to the
Zo axis, while the sagittal focus, Fj, is related to both xq and y,
and looks like a curved strip as shown in Fig. 2. The first term
on the right-hand side of the above equations just describes
the meridional and sagittal focal lines given by Chrisp
(1983a,b). However, the remaining terms are found to have
contributions to high-order wavefront aberration coefficients
in the later discussions.

The point O, on the reference surface is defined to be on the
Yo—2o plane with the same y, coordinate as Q. Setting x, = 0 in
(6) indicates that the ray passing through Q, will intersect the
Zp axis at point Sy(0, 0, r;) and the line QS at point M(0, y, rm);
consequently, the lengths of OM, O,M, Q,S,, and PSO can be
found up to the fourth-order accuracy of x, yo,

(ry — ra)(@r2 + 3y5)y5
8r ’ @)

QMZQyMZrm_

0,8, =PS, =r..

2.3. Wavefront aberration

Chrisp (1983a,b) has defined the wavefront aberration of
a plane-symmetric optical system as given in the following.
Fig. 3 shows ray paths through a plane-symmetry optical
system; P*, P are the centers of the entrance and exit pupils;
the z, axis is along the principal ray S,P*PS}; the x,, x,’ axes
are on the horizontal plane passing through P, P; the yo, v,/
axes are perpendicular to the x,, xo’ and the principal ray.
Parabasal rays in the xo—z, plane pass through the meridional
focus F,’, and the y,—z, plane contains the corresponding
sagittal focus Fy'.

A perfect toroidal wavefront X" enters the system and
emerges as the aberrated wavefront 2. The notation (+) is
used to distinguish the corresponding points, P+, 0,", 0" on
the toroidal reference surface of the object pencil. The aber-
rations of the image pencil cause its rays to be displaced from
the parabasal focal lines, F,' and Fy’, which correspond to an
exit toroidal reference surface X,. The aberrated wavefront X
will be compared with X, to define the wavefront aberration.

The wavefront aberration W of a ray passing through a
point P in the system is defined as the distance along the ray
between the aberrated wavefront and the reference surface.
So for ray SQ*PQS’, the wavefront aberration is

W =(0,0)=(0"0,) - (0" Q) ®)

Using (PtP) = (Q'Q,), since they are the ray distances
between the same wavefronts, then the wavefront aberration
is equivalent to

W = (P*B)— (0" Q). ©)

To obtain the wavefront aberration, an auxiliary ray
S00,70,S¢ is constructed. This ray lies in the sagittal plane
and intersects the four focal lines. It passes Q,", O, as defined

Yo

Figure 3
Ray paths through the plane-symmetry optical system, the wavefronts on
the entrance and exit pupil and their corresponding foci.
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in the last section. Splitting the aberration into the path
difference between the principal and auxiliary ray, and the
path difference between the auxiliary and the general ray, (9)
can be written as

W =[PP (070, +{0/0)-(e"0) (10

The additional ray distances to the focal lines as indicated in
(7) can now be added; thus the first two terms in the above
equation are then converted into

(PP - (070, = (S.PS) ~ (,0,5). ()
and the latter two terms into
(0y0,)—(070) = (Mo,M') - (MOM).  (12)

Substitution of (11) and (12) into (10) gives the final result of
the wavefront aberration of the ray through P,

W = (S,PSy) — (S,0,8¢) + (MO,M') — (MOM').  (13)

Now let us consider the wavefront aberration of a grating.
Referring to Figs. 1 and 3, if P, P, are the intersection points of
rays MO*OM' and S,0,"0,S, with the grating surface, the
replacement of Q,Q, in (13) by P, P, gives the wavefront
aberration of the grating,

W = (SyPS;) — (SoP,S;) + (MP,M') — (MPM').  (14)

To convert from optical path distances to real distances
through the grating, the additional optical path difference
produced by the groove of the grating must be taken into
account. The optical path length of each term equals the
geometrical distance. If the groove number between P and P is
n, equation (14) for the mth diffraction order of the grating is
then

W = S,PSj — S,P,Sy + MP,M' — MPM' — nmA.  (15)

The general form of a plane-symmetric surface can be
expressed, in its vertex coordinate system, by the equation
(Noda et al., 1974; Peatman, 1997)

oo o0 L
= chi,jxln]’
i=0 j=0

Coo=¢10=0, Jj=even.

For the third-order aberration theory, the power series needs
to be kept to the fourth order; thus the figure equation is then
given by
z= cz,oX2 + Co,z’?2 + C3,0X3 + C1,2X772 + C4.0X4
+ 60.4774 + Cz,zerlz- (16)
Peatman (1997) has given the coefficients c;; for a toroid,

ellipsoid and paraboloid. For a toroidal surface, c;; is as
follows,

1

where R and p are the major and minor curvature radii of the
toroid. If R = p, (16) is just a spherical equation, and if R or p
tend to infinity it is then a cylindrical equation.

The last section has given the positions of M(0, y,,, r,) and
S0(0, 0, ry) in the entrance-pupil coordinate system, and y,, is
determined by (6). The optical path lengths in (15) can thus be
determined for the given points P and P, on a specific optical
surface. However, the optical elements discussed here are
usually a mirror or grating with a ray pencil of oblique or even
extremely grazing incidence, so that the principal ray is at an
oblique angle to the optical surface normal. The position of P
or P, can be described conveniently by the figure equation
of the optical surface on the coordinate system xyz or xnz’
(called the vertex coordinate system) as shown in Fig. 1.
Therefore we need to find the mapping relationships of the ray
coordinates from the optical element to the reference wave-
front surface to express y,, by x and y.

Figs. 1 and 2 show an object ray pencil incident on a grating,
the related coordinate systems and foci. Since u or y is usually
very small and r,, and r are large, the following approxima-
tions can be made,

OM, ~ PM, ~r,, 0S, ~ P,S, ~r..

« and B are the angles of incidence and diffraction at the
grating. The distance of P, from O is

y=sy=sy =ul, (18)

where s = OO’ and y is the intercept and angle of the principle
ray with respect to the base ray, and / is a non-physical para-
meter so that the effect on aberrations due to y can be
correlated to wu.

Fig. 4 shows the optical scheme of the field and aperture
rays passing through a system of two elements on the sagittal
plane. The ray geometry gives the proportion relationship

ru s —rg

— = . (19)
y s
Equations (18) and (19) result in
j=2 =y (20)
§—r

Hence the relationships between s, y and /, u are derived as

follows,
[ TS
y=\——1lu=—-Au, [I= ,
, s—r

s 21
/ l/ 1 / A/ ! r;l ( )
= |—— = s s = N
Y rg “ " [+ r;

where A;=1—Il/r¢and A =1 + l/rl.

Actually, the intersection point of the principal ray on the
grating surface, P, is not exactly on the 7 axis like P,, but also
displaced in the axes of x and z owing to the oblique incidence

Co=rms Coa=o—\ C30=0, ¢,=0, of the ray pencil and the sagittal curvature of the grating. The
2R 2p (17) displacement of P from O is
1 1 1 ¥ =ulcytana = x>, y=ul, 7z=u'lc,,. (22)
Ca0 = SR® Co4 = ﬁ Cop = m ’ '
So (16), representing the optical surface, becomes
402 Li-Jun Lu « Plane-symmetric grating systems J. Synchrotron Rad. (2008). 15, 399-410
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Figure 4

Optical scheme of the field and aperture rays passing through a system of two elements on the sagittal plane.

7= cz,o(x + xcu2)2+c0’2(y + ul)2+c3,0 (x + xcuz)3
+ ¢, (x + x %) (v + ul)2+c4!0(x + xcu2)4 (23)
+ oy + ul)4+c2_2(x + xcuz)z(y + ul)z—uzlzcoyz.
Referring to Fig. 1, (xo, yo, 20), (Xp, ¥p» 2) and (0, ym, rm) are
the coordinates of Q, P, M, and z, and z,, are determined by

(2) and (23), respectively. The coordinates of M, from §2.1, are
given by
(rs - rm) 3

x, =0, m = _ + + raAu,
y ] Yo 27 Yo i (24)

To set up the equation of the line QPM, the coordinate
x, y, z of P should be transformed to the entrance-pupil
coordinate system,

X, =xcosa —zsina, y,=y, z,=xsina+zcosa.

(25)
Then the line equation of QPM is
xizyo_ymzzo_rm' (26)
Xp yp ~Vm ip — T'm

Obviously this equation cannot be solved analytically. The
general approach is to use an iterative method. Because all
variables are not numerical but symbolic, it is difficult to judge
whether the result reaches the required accuracy or not. The
polynomial fit can circumvent the difficulty. Assuming that the
mapping relationship of the ray coordinates from the optical
element to the reference wavefront surface is a polynomial
expression,

4 4 4 4

Xo=) Oa;jxiyf, Vo= Zb;jxiyj

i=0 j= i=0 j=0

(i+j=4, @7

the coefficients a;; and bj; can be fitted using (26). With the
same process we can also obtain the reverse mapping rela-
tionship,

4 4

x= > aijxf)yl(')’

i=0 j=0

4 4 _
y=> Zbi;‘xf)yé) (i+j<9. (28)

i=0 j=0

2.4. Wavefront aberration coefficients

The terms related to the optical path length in (15) can be
separated into the contributions from the object and image ray
pencils,

Wy = SoP — SyP, + MP, — MP,

Y (29)
Wina = S¢P — S¢P, + M'P, — M'P.

where S,P = r, and SP = r,. Hence (15) is equivalent to

wW=Ww

o]

bj + VVima — nmA. (30)

The aberration coefficients can now be found from the
pencil coefficients obtained from the expansion of each pencil
contribution. The ray pencils of the image and object differ in
their coordinates with respect to the substrate. So once the
coefficients have been found for one of them, the coefficients
of another can be obtained by substitution of the corre-
sponding optical parameters. Note that the sign convention of
o or B is that they are taken to be positive if positioned at the
positive side of the x axis. In the following we first expand each
term in W, into a power series of coordinates of x, y, wu.

The length MP is calculated by

MP = [(x — 1, sina)’+(y — §,,)*+(z — r,, cos 01)2]1/2

. (3D
where y,, is the coordinate of M in the y axis and, from Fig. 1,
is given by

~ / (rs_rm) (rs_rm)
ym:urm<1_r>+ T Yot 273 (3)

S S

(32)

Substituting y, with (27) and z with (23) in the above equation,
MP is now correlated to only the coordinates x, y, u and can be
developed into the power series form

4
MP =3 tux'yut (i+j+k <4, (33)
ik

where 7, are the coefficients of a power series.

To calculate S,P, and MP, we need to know the position of
P,. Since P, is the intersection point of the ray So0," 0, on
the optical surface, applying the mapping relationship (28) and
setting xo = 0 can derive its position,

]. Synchrotron Rad. (2008). 15, 399—-410
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_ 2 3 4
X,y = dg1Yo + apYy + dgzyy + dudos

(34)
py = bo1yo + boz)’é + bo3)’(3)v

where a; and b;; have been fitted above. Replacing y, in the
above equation by (27) enables x,,, and y,, to be expressed as
the polynomial of x, y, u. Substituting them for x, y and (23)
for z in (31) will give the power series of MP, as in (33).
Concerning S,P,, we only need to replace the related para-
meters of M by those of S, further; that is, to use r; and y, =
u(rs — 1) instead of r,, and y,, in (31).

Adding the corresponding t;; of each ray pencil of the same
index i, j, k, Wy can be expressed as the power series

ob] Zszkx y,u (l +] +k = 4)’ (35)
where M, are the wavefront aberration coefficients of the
object pencil. The resultant 16 coefficients are listed in
Appendix A: equations (78)-(85) for in-plane aberration
(u = 0) and equations (86)—(93) for off-plane aberration,
depending on the parameters of o, ry, r, I: My = My(a, 1,
rs D).

Similarly, the contributions from the image pencil can be
derived in the same way as above, and W, is expressed by

4
_ (A N/ o
Wma - ZMijkxy u

ijk

(i+j+k=<4). (36)

The coefficients of the image-pencil aberration can be
obtained only by substitution of 8, r,/, r¢, !’ of the image pencil
for a, rm, 1, [ of the object pencil in each M, respectively:
M = Mi(B, o, 16, 1).

The groove function n = n(y, n) in (30) for holographic and
mechanically ruled gratings has been derived by Namioka et
al. (1994),

I" /n n
X+ (;0)(24‘ 02772+ X +*X’I
n n
40 4 f X2 ’72 04 774 ) (37)

where the effective grating constant o is defined by
o =1/(0n/3x),—y—0 (38)

and I" and n; are given by equations (20)—(22) of Namioka et
al. (1994). With the coordinate transformation x = x + x4,
n =y + ul, n can be expressed as

4
n=73 (F/U)Nijkxiyj”k, (39)
ik
where N;; are given in Table 1.
Consequently, the wavefront aberration W of (30) in terms
of the pencil coefficients can now be represented by
4
W =3 wyxyu* (i+j+k<=<4). (40)
ijk
wiik, referred to as the wavefront aberration coefficients, are
given by

Table 1

Nj; as a function of n;;.

In-plane Off-plane

Ny =1/T Ny = ny,/2 Nyt = ngyl Ny = ”1212/2 + nyX,
Nagy = 1y/2 Nygo = n4o/8 Ny =ny,l Ny =yl 44 + 3n50x./2
N = npp/2 Ny = np /4 Nzt = ngyl/2 Nop = 3”04{ /44 npx /2
Nigo = n3p/2 Nogo = nps/8 Noy = npl/2 Noz = nyl’/2 + nypxl

Wijk:Mijk(a’ T Tso D) + (= 1) Ml/k(:B9 P Tor 1) — ANt/k’
(41)

where A = (mA/o)T" and the factor (—1)* results from «' = —u
since the field ray is displaced from the base ray only on the
sagittal plane without the effect of the groove diffraction of
the grating.

The direction of the base ray after diffraction must be such
that the meridional tilt of the wavefront is zero, i.e. wiy = 0.
This directly leads to the familiar grating equation,

sina +sin 8 = mA/o. (42)

To determine the direction of the principal ray, an addi-
tional condition, wy;; = 0, should be satisfied,

1 1
l(2cozcosa ——) - l/<2cozcosﬂ——/> =nypAl  (43)
’ T ’ Tl
The position along the base ray of the meridional focal line is

given from wygy = 0, i.e.

cos’a  cos’ B

2¢, o(cosa + cos ) — ( ) = nyA. (44)

J
rm rm

Similarly for the sagittal focal line position, wy,, = 0, and

S

1 1
2¢y5(cos o + cos B) — (r_ + 7) =npA. (45)

Equations (43) and (45) directly lead to I’ = —L
From the above discussions, the explicit expression of the
wavefront aberration for parabasal theory will be

_ 3 2 4 2.2 4
W = WipX” 4 WingXy™ + WygoX" + WX Y™ + Wosgy
2 3 2.2 2.2
+ WigpXU” + Wy YU+ Wy XU + Wopy U

+wyxyu + w031y3u + wmxzyu. (46)

The former five terms give the wavefront aberration for an in-
plane object and the latter seven terms give the additional off-
plane wavefront aberration for an off-plane object.

3. Transverse aberration on the image plane

The issue of determining the position of an aberrated ray on
the image plane is to find the diffraction direction of the ray. If
the mapping relationships of the ray from the optical surface
to the aberrated wavefront can be obtained, the direction of
the aberrated ray will be determined. Equation (27) is used to
calculate the position of the rays on the incident wavefront for
any point P. But it does not apply to the case of an aberrated
ray because aberration from the optical surface takes place.

404 Lijunlu - Plane-symmetric grating systems
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Figure 5

Ray diffracted from point P of the grating surface intersects point B on
the image plane X; on the meridional plane, with the incident and exit
wavefront as well as the focus.

Figure 6

Ray diffracted from point P at the grating surface intersects point B on
the image plane X; on the sagittal plane, with the incident and exit
wavefront as well as the focus.

The effect of aberration must be considered. A toroidal
surface is also employed as the reference surface for the
aberrated wavefront.

As shown in Figs. 5 and 6, Xy and X; denote the exit
wavefront surface at the exit pupil and the image plane at a
distance ry’ from the optical element. The reference surface
normal at Q' intersects the principal ray SPS’ at M’ and S’
displaced from the optical element by r,,, and r’, meridionally
and sagittally. The direction of the aberrated ray in relation to
the normal is given from the slope of the wavefront with
respect to the reference surface. The wavefront aberration
measures the separation between these two surfaces; its
differentials in the two pupil coordinates will give this slope in
the meridional and sagittal direction. So the angular displa-
cement of the aberrated ray from the reference surface normal
in the meridional and sagittal directions, 6./, 8/, are

dw dw
0, = —, 0 = —, 47
todyg Y dyg “7)

where x(/, y,' are the coordinates of the ray on the aberrated
wavefront at the exit pupil. Consequently, the actual inter-
section points, M, and S/, of the aberrated ray with the
principal ray are at distances of r,,, and r,;/ from the optical

element. This aberrated ray finally reaches point B on the
image plane.

In (47), x¢, yo' are correlated to the wavefront aberration
but the relationships between them are unknown. This is one
difficulty in wavefront aberration. However, the aberrated ray
equation can be set up based on the ray geometry. Assuming
the mapping relationship of the ray from the optical element
to the aberrated wavefront surface is as follows,

4 4 o
= ZZAijxlij

i=0 j=0

4 4
Yo=2_2 By (i+j<4), (48

i=0 j=0

where Ay = 0 and B, = 0, then differentiating both sides of
the above equations with respect to xy/, yo’ will result in the
following equations,

3 (5

]

- 10-

SAXTY ,L,')”>
Xo

4
_ l 1 i j—1
- —()Zo:< . )ﬂ+]3y a 4 )
i=0 j=
(49)
4 4 ox -
1:;; <la)/6 y’—l—]foy’ )
i=0 j=0
4 4
ox i—1
0= <z/Bx ’+]—Bxy’ )
i=0 j=0 9

From these linear equations, the four derivatives, dx/dx,
ax/dyy’, dy/oxy’, dy/dyy’, can be solved with the coefficients A
and B; to be determined. Thus 6/, 6, will be correlated to
x, y, u by the following expressions,

oW ox oW dy ,  OW ox
ox 0x)  dy ax}’ YT )

ow 8y

0, = .
88’

X

(50)

On the other hand, as shown in Figs. 5 and 6, the auxiliary
line equations of P’Q’'M’ and P'Q’S’ can be written as

_Z/

X — ﬁ [x, + (z, — z0)0,] =

m 61
Yo = 5=y, + (2, — 20) (6, + Au)] =0,

%L -z,

where xo', y¢, zo’ of Q" and 6/, 6,” can be expressed by the
coordinates of x, y, u; (x,, y,, z,), the coordinate of P in the
exit-pupil coordinate system, is calculated by (25) with the
replacement of « by . z,' and z|’ are well approximated by

2 /4 4 /2 2
/ xo Y() Yo X0 Yo
= + + , 52
‘0 2 e T an tan, G2
U =7) o =7 4 U —7) 1 »
(= / x Lxpye. (53
< rs + 2 r,zn 0 + 8r;ﬁ 0 + 2 gré XOyO ( )

After substitution of the above parameters into (51), the
coefficients A;, B; can be fitted, leading to the determination
of 6., 6,.

For a plane-symmetric system, the position of an image
plane is usually specified with the distance from the grating
vertex along the base ray, so the origin of the image coordinate

ij>
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X, ¥, Oy,is set at the intersection point of the image plane with
the base ray, as illustrated in Figs. 5 and 6. Second, the
displacement of P from O causes the principal ray to displace
the base ray both horizontally and vertically. From (22) the
displacement in the x’ and y’ directions is determined by

sinfl — B)x. 5
=——u

H, N
Sin o

X

. Hy=ul (54)

Consequently, the position of image B is calculated by

/ / /
X, — X Z,X) — 20X
X/ — ZP Z/ r6 ( PZ Z/ P) + Hx/’
<0 <0
3 / ( [/) / ) (55)
Yo = Yo ZpYo — Z0¥
’ P / p P
y = -1y + y + Hy,,
Zp - Z(] Zp - ZO

Thus the expressions on the right-hand side of (55) are
expanded into the power series,

k\

Il
M-
M-
M«

I
(=]
S
Iy
=
i
o

ik
di]-kxyu,

(56)

\<\
Il
M-
M-
M«

I
(=]
=

Il
(=]
~

Il
(=1

hpx'yu*  (i+j+k<4).

As a result, 32 non-zero coefficients d;; and hy, called
transverse aberration coefficients, yield; 13 of them are fourth-
order terms and 19 terms for first- to third-orders. {d400, do40,
dao0, h310, h1zo) of the fourth-order terms pertain to in-plane
aberrations and {d11, doz1, do13, dozz, d202, M301, P121, Ay12) to off-
plane ones. The fourth-order terms are quite complex but with
much smaller contributions to the aberration than those from
lower-order terms. They, in principle, should include the fifth-
order wavefront aberration coefficients like wsgg, W39 and so
on, but it is found that the results will no longer be correct
if they are included. The resultant fourth-order aberration
coefficients removing only the term related to the fifth-order
wavefront aberration still have a positive contribution espe-
cially when a large aberration of the optical system exists.

In Appendix B, only the transverse aberration coefficients
from the first to third order are listed. The imaging formulae of
the third-order aberration will be

X = dygox + dzoo)‘2 + dozo)’2 + d300x3 + dlzox)’2 + dooz”2
+ dopyu + dyyxyu + dmzx“z»

V' = hgoy + hyexy + h210x2y + hosoy3 + hooau3 + hoou
+ hygxu + hzmxzu + h021y2u + houyuz'

(57)

The expressions of dj and h;, show that the contributions
to the transverse aberration consist of two parts: wavefront
aberration and the effect caused by the displacement of the
image plane from the focus (i.e. defocus). Because we have
Waoo = 0, woyo = 0 in parabasal theory, the effect of defocus
cannot be obtained from the wavefront aberration itself. The
previous aberration theories developed with the optical-path
function or wavefront aberration cannot include the defocus
effect, so they are limited only to dealing with imaging close to
the focal position. The limitation is now removed.

Secondly, the position of the principal ray is determined by
the terms of dgoyu® and hggu + hgosu” because they specify the
diffraction ray from the center of the exit pupil.

4. Wavefront aberration of multi-element systems
4.1. Transfer equations of field and aperture rays

For plane-symmetric multi-element optical systems, all the
optical elements have a common symmetry plane; the base ray
passing through the center of each element lies in this plane
and its direction is determined by the grating equation. The
principal ray is displaced from the base ray on the sagittal
plane and governed by wg;; = 0 besides the grating equation.
The parabasal foci are found by applying the equations wygy =
0 and wgyo = 0 repeatedly throughout the system.

To calculate the wavefront and transverse aberration coef-
ficients of a multi-element system, information on the field and
aperture rays of each element are required; thus their transfer
equations between successive optical elements are needed.

Fig. 4 illustrates the transfer scheme of the field and aper-
ture rays between the mth and (m+1)th elements on the
sagittal plane. A prime (') is used to distinguish F{, r{, s', ¥/, v
of the exit ray pencil from the corresponding parameters, Fy, 1,
s, v, u of the incident ray pencil.

Obviously the transfer equations of u are

u(m+1) = r u(m) - r u(m)
s(m+1) s(m+1)

r v
m) (m)
Uiy = Uy S Uy = — (58)

From (21), [, is determined by

- Ts(m)S(m)
" Semy = Tstm)

Calculation of [, requires the value of s(,). The sagittal
focusing equation (45) leads to

1 1 1 1
—t—=—+= 2c0,2(m) [cos Q) + COS ﬂ(m)]
Tsmy  Tsomy Som)y - Sem)

—ngpA, (60)
S(m is thus calculated by

1 1 1 1
e T (61)

Sém) rs(m) r;(m) s(m)
and its transfer equation is simply given by
S(m+1) = r;(m) + rs(m+1) - Sém)' (62)

As discussed in §3, dooz(m)u(m)z and Ao 1 gmylm) [h003(m)u(m)3
is neglected here] give the position of the principal ray on the
image plane. If the image distance equals 7y, + 75 + 1), the
position of the aperture-stop center on the (m + 1)th element,
Py,.41), will be given by
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Figure 7
The coordinate system of two-element optics: the upper one arranged
with the figure of ‘Z’ and the lower one arranged with the figure of ‘U’.

dooam) ”(Zm)

X, =P ¢ tan o u? -
(m+1) (m+1)€0,2(m+1) (m+1)U(m+1)

— 2
= Xe(m+1)Um+1)

— rs(m+l)l(m)
Ym+1) = hOOl(m)u(m) = - |:r’7

+ Fimy + rs(m+1):| Uy
s(m)

(63)

The first term in X, ;) comes from xc(m)u(m)z of (22). The

coordinate system for two-element optics is shown in Fig. 7.
With equations (58)—(62), y,,+1, in (63) can be, as expected,

simplified 0 u(u11)l(me1y; @nd X1y is nOoWw derived,

2
1 . rs(m-H)
X = 12 C, SIn ¢, — |—|d
c(m+1) cos a(m+1){ (m+1)©0,2(m+1) (m+1) [r/ 002(m)

s(m)

J .
[’ som) T Tsm+1 )]sz(m) N Xe(m) s1n[a(m) — ﬂ(m)]
cos B

dO()Z(m) = -

)

sin o/,
(64)

and dyg 0y = 0 is assumed for the case of the first element.
Taking the first-order approximation, (57) gives the position

of an aperture ray at the entrance pupil of the (m + 1)th
element,

rm(m+1) cos ﬂ(m)

Xoem+1) = _xém) = _d100(m)x(m) = - X(m)»
o - _ rs(m+1)
Yom+1) = Ym) = Morom)Ym) = T Y(m)-

s(m)

Mapping it onto the aperture-stop coordinate system, the
transfer equation of aperture ray will then be

x _ Tm(m+1) COS IB(m) .
(m+1) — (m)>
" Tt €OS Uty

. rs(m+1)
y(m+1) - 7

s(m)

4.2. Wavefront aberration of multi-element systems

For multi-element optical systems, the total wavefront
aberration is the sum of the contribution from each optical
element in the region of the third-order aberration. Thus, for a
system of n gratings the wavefront aberration should be

n 4 X
W=Wuy+Wo+...+W, = m; % Wik m X on)Y o) )
(i+j+tk=<4), (67)

where w;; is given by (41), and x(,,), Y(my, Uy are the coor-
dinates of the ray and the field angle of the mith element. To
derive the wavefront aberration coefficients of a multi-
element system, we need the corresponding relationships
between Xy, Yimy, Uy (M =1,2...,0 — 1) and Xy, Yy, Ugn-

From (66) the relationship between X, Y(ny and X(,y, Yo
can be obtained,

Xm) = A(m)x(n)» Ym) = (—l)nimB(m))’(ny (68a)

P m(m41) - Fin(n—1) €OS Ay 1) COS A1) - - - COS Q)

A,y =
(m) >
N Pty m(m2) - - Ty €O By €08 Bippa) - - - €08 By

By = ré(m)”;(mﬂ) e r;(n—l)
o = .

Tsm+1)Ts(m+2) - - - Vs(n)

(68b)

Equation (58) gives the relationship of the field angle u
between two adjacent elements, and thus leads to

14 14 R
u(m) — (_1)",," s(m+1)" s(m+2) s(n) u

/ (n)
rg(m)rs(mﬂ) B r;(nfl)

= (=1 2o (69)
B

Replacing Xy, Y(m)> Uomy in (67) by (68a) and (69) gives

n—1 4 4
_ i pi—ki ok ik
W= 20 2 Wiiktm Al Bl X Yoy iy T 2 Wik XYy Yoy
m=1 ijk ijk
4 . . i
= UXk: ijkxfn)y](n)”(n)v (70)

where Wy, called the wavefront aberration coefficient of the
multi-element system, is then given by

n—1

i j—k
Wijk = Zl Wijk(m)A(m)B](m) + Wiik(n)- (71)
e

Equation (57) applies likewise to calculations of the trans-
verse aberration of a multi-element system; only in calcula-
tions of d;j; and Ay, all the related parameters are those of the
final optical element, and W, should be used instead of wy.

5. Comparison of the theory with analytic formulae of
the spot diagram

It is of practical interest at this point to examine the validity of
the theory. One way is to use ray-tracing calculations, but this
cannot check single terms of the aberration. Namioka et al.
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(1994) have derived the analytic formulae of the spot diagram
following exact ray-tracing formalism, and given the following
equations for image calculations,

x = rysec(B + ¢)(1 — tan Btan ¢)
X [xfloo + xzfzoo + yzfozo +yzfou + 22fooz
+X3f300 + x)’zfuo +xyzfin + XZ2f102 + O(x4/R3)],
y = ’6[18001 + Y8o10 + XY8110 + X28101 + xzygzm
28000 + ¥ 8os0 + ¥ 2801 + Y2 8012 + 2803
+0(x*/R%)].

(72)

where z is the field parameter (u = z/r, if r is the object
distance); the aberration coefficients fj, g;x are determined
by equations (25N)—(28N) [note: N after the equation number
means the equations from Namioka et al. (1994)]. The above
equations are similar to (57) and comparable between them.

Namioka et al. (1994) discuss the imaging for an ellipsoidal
grating with varied spacing and curved grooves; its figure
equation (17N) has a different form from (16). They will be
identical if we assume, in (17N) and (19N), that

R 1 1 1 0
= ) p = ) — =Y,
2¢y 2¢y5 A
(73)
&30 = C30, E1p =Crp, €49 = C4p»
€ =0Coy o4 = Co4s

Second, it is reasonable to assume that ry = r, = r. From (44)
and (45), equations (27aN) and (27bN) will become

Fyo =Ty + Ty +ny/A

_cos’B cos’B A, cos’f

/ / / ? (74(,1)
To T'm To
- - 1 1 A
Foog =84+ Sp+nphA =———=—, (74b)
ORI S )

where A, and A are defined by equation (94) of Appendix B.
Third, in the study of Namioka et al. (1994), the aperture-
stop center is coincident with the grating vertex, so we set / =0
in the calculations of d;; and h.
Now we can compare their 19 transverse aberration coef-
ficients from the first to third order according to (57) and (72)
by examining the differences for the case of ¢ = 0,

J

o
Adye = fii m’k = i (75a)
Ahi}‘k = gijkré)rk - hi/‘k' (75b)

Substituting the expressions of fiy, gk, dijjx and hyy into the
above equations, the results show that only two terms are non-
Z€ero,

7} cos’ B 7
Ahyy = _Ova Ahgy,y = _?0,2. (76)
m S

The two terms do not contain the parameters of the object ray
pencil, i.e. r, o and the figure coefficients c;;, so the differences
are not caused by wavefront aberration but by the approx-

imation of some geometry relationships in finding the trans-
verse aberration in §3.

The error of the image coordinate y' owing to (76) is
approximated to

0;2 +9/2 4
AY = Ahyy x*u + Ahgy y'u =~ —%, (77)
where s,/ = rj'u means the half sagittal image size without
aberration, and 0,’ and 6, are the exit converging angles of the
ray, which are ~0.01 rad for a marginal ray in synchrotron

radiation optics; thus Ay’ is about 0.0001s,” and negligible.

6. Summary

The third-order aberration theory developed here is applic-
able to aberration analysis of the usual plane-symmetric multi-
element mirror or grating systems. The surface figure of the
element can be plane, spherical, cylindrical, toroidal, elliptical,
parabolic and so on. The wavefront and transverse aberration
coefficients are derived as listed in Appendices A and B.

The previous aberration theories based on the optical path
function or wavefront aberration can only deal with the
aberration analysis when the image plane is at the foci on
both the meridional and the sagittal planes. Now the theory
removes this limitation. This is especially important for
synchrotron radiation instrumentation because the meridional
and sagittal foci of each optical element are often not coin-
cident, leading to the image plane, at least, displaced from
either the meridional or sagittal focus.

Equation (28) is used to calculate the ray distribution on the
optical surface. The accuracy of the first-order approximation
depends on the acceptance angle of the light beam, the angle
of incidence and the curvature radius. In synchrotron radia-
tion optics, the source size (~1 mm) and the acceptance angle
(~several mrad) are usually small, so we can even use the
first-order approximation with u = 0 to calculate the aperture-
ray coordinates whereas the image can be obtained with a high
degree of accuracy. Anyway, the aberration theory is mainly
used for the initial choice and optimization of the parameters
of optical systems not for replacement of ray tracing; thus the
simplicity of aberration expressions is emphasized. The theory
with the first-order approximation of the aperture ray has
simple aberration expressions while remaining quite high in
accuracy in most cases so far; moreover, the expressions of the
aberration coefficient clearly show the dependence of the
wavefront aberration. At this point it is advantageous over the
other methods, especially in studying multi-element systems.

APPENDIX A
Wavefront aberration coefficients of the object pencil

M,po(et, 1y, 1, ) = sin(@), (78)

cos o cos o
Mg (@, Ty, 7, 1) = B (262,0_ ; )» (79)
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sin o cos o cos o
Mayyo(a, 1y, 1, 1) = 2c; 0Cosa + — 2¢, — . ,

(80)
1
My(ot, 1y 1, 1) = = <2c0,2 cosa — —), (81)
rS
1([sina T
M y(a, T, == 2¢y,cosa —— | +2¢;,cosa |,
A ' r? '

(82)

cos’ a(Scos’a —4) ¢, cosa(2 — 3cos’ )

Mot 1y 7, 1) =

1 (cos’a sin*a
My (o, ry, 1, 1) = —— —————gcosa | A,
2ry T
¢p ol cos o
- ——(2—3cos’ )
72
m
_ 2c2,0c0’zlsin2 a ¢, lsin2a
rm rm
+ 2¢, ,lcos a, (92)

A,  c¢y,cosa 21
M031(a9rmsrsvl): _2—’,é+0,2r7<1 _r_>
s

S N

2¢2,1sin’ o
-2 4 dcyylcosa.  (93)

8r3, 212 r
2 .2 in?2 m
Cosin“ o cyqsin 20
o + 2 +cycosa,  (83)
Mo po L acose dp sin*a | APPENDIX B
A Ty Py ) = =— — — Co.4 COS L, . . .
GORT Tme s 8r3 22 2r, 04 Transverse aberration coefficients
(84)
J J J 4
1 (cos’a sin*a A :rm_’jO A="N A/_rs_lzl L
Mayo(t, 1y, 1, 1) = 2_’%(?_’,—8_02,0 COSO‘) m o : v rl +r;’
€0z cOs (2 — 3 cos’ o) (4)
2r2,
. 9 . dygg = Ay, cos B, (95)
Cr0Co2SIN°“ @ ¢y, 8in 2
Tm 2ry 3ryWago ) cos
dyy=———+A — = 96
+¢,,c080, (85) 200 cos B + Ay sin g " G0 ) (96)
1 . / 2 /
My, 1, 1, 1) = — 3 Ajsina + 61,212 cosa + 2¢, gx. cos a, dyy = — 4’0”’400 + 3tan ’3<1 +h rocz,o) Wi
86) cos r, cosf
cos(2)c cos fBsin’ .
Am< ( ,’3) 204 ﬁa ﬁ—smﬂcw), (97)
cos’a  sin’a 5 T "
Moy (et 1y, 571)_ 5 ———— —gcosa |A;
Zl’m rg /
row
¢, % sin2a dyo = —~—2 — A sin Bc, 5, 98
1,2 - + ey, cosar 020 cos B Beo (98)
€2,0%, Sin 2 2ryw ry 2ry,  2rye
+ ————+3c3 ¥ . cosa, (87) _ _ “oWa _0 2020720
o diy cos + tan Bwyy | 1+ - + 7 cosp
cos(28)c .
My, (a,r,r 1):iA2_w 1_ﬂ Am<%0,2_51nﬂcl,2 ) (99)
022\ Tm> Tso 4rs 1 2 T m
2¢2, 1% sin® /
e w .
" dyy, = 0051;31 2, sin Beg L, (100)
+ 6¢o4I* cosa + ¢, yx. cosa,  (88)
_ Wi | X.sin(a — f)
My (a, 1, 1) = A+ 2¢ 5l cos a, (89) doy = cos B + sino ’ (101)
1
Mys(et, 1, 1 1) = — = (A, +2¢ 51 cos @) A] + 4c 4’ cos do — 2r6w211 1 Sy 1 2¢,
2 Y Y i cos ﬂ an firg 6 ¥ r. cos ,8 m
+ 2¢, ,Ix, cos a, (90) "o
+ 2 tan BryAjwy
A;sina ¢y ,lsin2a cos(28)c .
My (e, roy v, 1) = =2 ; + 02 . +2¢,lcosa, (91) + 2Aml<& — sin ,3c1,2>, (102)
S m m
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2rw
dip = — Cooszgz + tan Bry Ajwyy,
7, 2rc
+ tan /3(1 + 70 -=0 2’0> Wigo
r, cosf
— Ay sin B(2¢, 0x, + ¢ ,1%), (103)
hoo = A, (104)
A sin
hyyg = —2rgwip) + 57//37 (105)
hyjg = — 2rgWyyy + 28in Bwy,, — 6 tan ﬂrf)co,zwwo
A sin?
+ r_/s (cos Beyo + ” ﬂ)
(Am B As) COSZ :8
= 106
+ 2r 1 (106)
hooyy = —1ry + A, (107)
hygy = —rowin + A Ajsin B, (108)
hyy = — 1wy +sin fwy;; — 6tan ,3"660,2[“’300
.2 2
n ASA;(Sm P B | cospe, 0), (109)
T 2r, ’
hpy = — 3r6w031 — 2tan ﬂ”f}co,z(lwlzo +wi)
3] A
+ A, |:cos By, (1 + —) - —[i| (110)
) ’ 7 27,

hoyy = — 2rgwyy, — 2tan :3”660,2(1‘4’111 + Wip)
+ 2A cos Bcy A}, (111)
A, cos Bc
hozy = —4rywoy — 2 tan 5’6%,2“’120 + ‘—/130‘27 (112)
hogs = —ToWoi3 — 2tan Brcg ,wyg,. (113)
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