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Differential EXAFS is a new XAS technique dedicated to directly measuring

the tiny atomic displacements that arise from such strain-inducing phenomena

as magnetostriction, piezoelectricity and thermal expansion. These new

experiments have presented the need for new analysis tools to extract and

quantify the measured atomic strains, a need that has been addressed by the

development of the DEXA code.
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1. Introduction

Established in 2005 by Pettifer et al. (2005), differential X-ray

absorption spectroscopy (DiffXAS or DiffEXAFS when applied to

the extended fine-structure region) is a new approach to dichroism

studies that exploits the high-stability low-noise conditions found on

third-generation X-ray spectroscopy beamlines, to measure tiny

perturbations to atomic structures that are induced by the modula-

tion of some external sample property (Ruffoni et al., 2007a). The

initial experiments were performed on ID24, the dispersive EXAFS

beamline of the European Synchrotron Radiation Facility (ESRF)

(Pascarelli et al., 2006), and showed a sensitivity to mean atomic

displacements of the order of femtometres when measuring the Joule

magnetostriction of a thin film of ferromagnetic FeCo.

Since then, the technique has been extended to the study of

thermally induced strains (Ruffoni et al., 2007b; Ruffoni, 2007), whilst

further magnetostriction measurements have revealed the atomic

origins of strain enhancement in the technologically interesting FeGa

system (Ruffoni et al., 2008), and have proven to be an important tool

for investigating magnetoelastic coupling in 3d metal alloys (Pascar-

elli et al., 2007).

Naturally, this development process has involved the design of new

experimental apparatus and data acquisition procedures, but, equally

importantly, has included the production of a new analysis code for

processing DiffEXAFS signals and extracting quantitative strain

information. This code is the Differential EXAFS Analyser (DEXA),

which is presented here.

2. Concept

DEXA provides an environment in which to analyse DiffEXAFS

signals and quantify the structural modifications observed within. In

essence, it takes the results of ab initio EXAFS calculations obtained

from the FEFF code (Ankudinov et al., 1998), generates the corre-

sponding DiffEXAFS signal for a given set of structural perturbation

coefficients, and fits the resulting theory spectrum to experimental

data.

As is consistent with the nature of DiffEXAFS, the first task in the

analysis process is to define a reference structure from which the

strains observed in the DiffEXAFS are measured. This can be

obtained quite readily from one of the many standard EXAFS

analysis codes1 by fitting the conventional EXAFS signal from the

sample being studied. DEXA then takes the results from this fit, and,

along with the photoelectron scattering phase and amplitude infor-

mation from FEFF, generates a baseline EXAFS spectrum onto

which the DiffEXAFS perturbations may be applied, and then fitted.

To date, the DiffEXAFS experiments conducted on ID24 have

focused primarily on magnetostriction studies, a fact reflected in the

development of DEXA. However, since DiffEXAFS spectra may, in

principle, be taken from the modulation of any given sample prop-

erty, DEXA employs a general approach to modelling atomic strain,

one that is based on Cartesian tensors.

This essentially eliminates the need for any specific case-by-case

information exclusive to the type of DiffEXAFS being undertaken.

All that must be known is the rank of tensor, T, associated with the

property under study. Some examples are given in Table 1, but, within

this framework, any of them may be replaced with measurements of

properties that possess the same tensor characteristics without need

of any modifications to the fitting algorithm (e.g. replacing magne-

tostriction with electrostriction).

With these tensors, the strain, �l, of any photoelectron scattering

path leg is given by

�l ¼
X

ij

�"ij�i�j ¼
X
ijfNg

TijfNg�i�j

�
M0fNg �M00fNg

�
; ð1Þ

where """ is the strain tensor, which gives �l when contracted onto the

leg vector b. On the right-hand side, M describes the modulated

sample property, which is of rank n. These n dimensions then form

Table 1
Some examples of sample properties that could be measured with DiffEXAFS, and
the types of tensors associated with their behaviour.

Since strain is described by a second-rank tensor, the minimum rank of T must also be
two.

Tensor rank Variable rank Sample property (variable)

Second Zeroth (scalar) Thermal expansion (temperature)
Third First (vector) Piezoelectricity (electric polarization)
Fourth First � 2 Magnetostriction (magnetization)
Fourth Second Elasticity (stress)

1 Such as FEFFIT (Newville et al., 1995), EXCURV (Binsted et al., 1992;
Binsted & Hasnain, 1996) or GNXAS (Di Cicco, 1995).



the set {N}, which, when added to the two dimensions of the strain

tensor, gives the rank of T. The two separate sample states used at the

time of measurement are given by M 0 and M 0 0, and their difference

defines the perturbations seen in the DiffEXAFS.

Summing the �l contributions over all legs in a given scattering

path, and remembering to account for the X-ray polarization

dependence of the EXAFS (Pettifer et al., 2005), gives �sj, the

change in length of scattering path j as seen in the differential fine-

structure function (Pettifer et al., 2005),

��ðkÞ ¼
P

j AjðkÞk cos sjkþ ’jðkÞ
� �

�sj: ð2Þ

This representation of �� is based on a first-order Taylor expansion

of the conventional EXAFS fine-structure function, using a real

photoelectron wavevector, and neglecting the strain of sj-dependent

terms in Aj(k). However, for greater accuracy in modelling

DiffEXAFS spectra, DEXA relaxes these approximations.

Instead it calculates two full EXAFS spectra for the sample, one

with and one without the DiffEXAFS perturbations applied, and

then generates the DiffEXAFS signal explicitly from the difference

between the two. These EXAFS spectra are constructed using the

information in FEFF ’s feffnnnn.dat files as described by equation

(3) of Newville (2001).2 Following the same definitions and nomen-

clature given by Newville (2001) (and noting that sj = 2Rj , and that p

is the complex wavevector), DEXA first groups the constant modu-

lation-independent amplitude factors into a single function,

CjðkÞ ¼
S2

0 jNjFjðkÞ

k
exp
�2Rj

�ðkÞ
� 2p2�2

j

� �
: ð3Þ

A similar function is then defined for those factors that do vary

between measurements at M 0 and M 0 0,

Djð�RjÞ ¼
1

�Rj þ Rj

� 	2
: ð4Þ

Note here that �Rj is the first cumulant for consistency with Newville.

The DiffEXAFS strains will later be defined as �rj. Finally, DEXA

calculates a function for the scattering phase,

�jðk;�RjÞ ¼ 2kRj þ �jðkÞ þ 2p�Rj �
4p�2

Rj

: ð5Þ

S2
0 j , �Rj , �

2
j and possibly Nj are provided to DEXA following a

conventional EXAFS analysis of the sample. All the other terms in

equations (3) to (5) are calculated ab initio from a model structure

supplied to FEFF.

This information is then used to construct �0(k) and �0 0(k), the

EXAFS at each of the two sample states, and their difference

calculated to give ��(k),

��ðkÞ ¼
P

j CjðkÞ Djð�RjÞ sin �jðk;�RjÞ
�

� Djð�Rj þ�rjÞ sin �jðk;�Rj þ�rjÞ
�
: ð6Þ

A comparison between this explicit difference formalism and that

of the Taylor expansion given by equation (2) can be seen in Fig. 1.

Both deviate from a model spectrum at low k since DEXA’s calcu-

lations are not valid in the near-edge region. In the EXAFS region,

equation (6) is the better of the two, though both reproduce the

model signal to within 1% of its amplitude. Neither reproduce the

FEFF result exactly, since the scattering phases and amplitudes are

not recalculated between �0(k) and �0 0(k).

To obtain the strains in a real system, it is necessary to find all the

elements of T in (1). This can be problematic when T has a high rank,

and more so if the sample structure has little symmetry. A typical

DiffEXAFS spectrum obtained on ID24, and Fourier-filtered to

extract contributions from just a few scattering paths, will contain

enough information to fit between four and six parameters, consid-

erably fewer than the possible 81 tensor elements of a fourth-rank

property such as magnetostriction.

However, the number of independent elements in T may be

reduced through Neumann’s Principle (Nye, 1985) with knowledge of

the point group symmetry of the crystal under study. Averaging

effects can also be considered when dealing with amorphous or

disordered samples. In the case of cubic crystals, for instance, just two

parameters are necessary: one to describe strain in the [100] direc-

tion, and one for strain in the [111] direction. DEXA therefore allows

the crystal symmetry to be specified (which includes ‘isotropic’ for

non-crystalline samples) and will then construct T from the subse-

quently reduced set of coefficients.

In addition to this, it is important to remember that, locally, strain

may deviate from some single average value obtained for the sample

as a whole. This is particularly true if the sample contains more than

one atomic species. DEXA does not, therefore, limit the DiffEXAFS

calculation to just one T for all scattering paths. Instead, the sample

may be split into ‘substructures’ and each assigned its own T.

Take a binary system AB at an A absorption edge, for example.

One set of parameters may be used to calculate TA for bonds of type

A—A, and another set to make TB for bonds of type A—B. There are

no restrictions as to how a structure is decomposed in this way, as long

as the total number of fit parameters does not exceed the number of

independent points in the experimental spectrum.

One final situation to consider is that posed by polycrystalline

samples. Equation (6) describes the strain developed by a single

crystal or crystallite based upon its orientation with respect to P (the

X-ray polarization vector), M 0, M 0 0 and the direction of beam

propagation. To model the DiffEXAFS for a polycrystalline sample,

DEXA solves (6) for multiple crystallite orientations and performs a

configurational average of the results. This must take into consid-
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Figure 1
The differences between a model FEFF calculation and DEXA calculations using
the explicit difference (solid line) and Taylor expansion (dashed line) formalisms in
the k-range commonly measured on ID24. The explicit difference formalism yields
smaller residuals, though in absolute terms each plot is less than 1% of the model
spectrum amplitude. The model consisted of three Fe atoms spaced equidistantly at
3 Å intervals along a line parallel to the presumed X-ray polarization vector P (a
spacing comparable with the Fe lattice parameter). The central atom was taken to
be the absorbing atom, with the outer two then forming a single scattering shell.
Three calculations were performed with FEFF: one for the unstrained case, one for
a strain of 1000 p.p.m. parallel to P, and one for a 1000 p.p.m. strain perpendicular
to P. The difference between these last two spectra gave the model DiffEXAFS.
The information from the unstrained case was supplied to DEXA as a reference
structure.

2 The third and fourth cumulants are neglected.



eration the real distribution of crystallites within the sample, such as

whether or not any preferential orientations exist and, if so, what

fraction of the total number of crystallites are orientated as such.

The complete fitting prescription is therefore as follows.

(i) Establish all the modulation independent factors in (6) from a

combination of ab initio calculation and conventional EXAFS fitting.

Once loaded into DEXA, these define the sample reference structure,

from which the perturbations seen in the DiffEXAFS are measured.

(ii) Declare basic information concerning the geometry of the

sample. This includes its orientation with respect to P, M 0, M 0 0 and the

direction of beam propagation, and the arrangement and distribution

of crystallites if it is polycrystalline. The type of sample must also be

declared, and, if it is crystalline, its point group symmetry.

(iii) Contract T onto each photoelectron scattering leg and sum the

contributions to obtain �rj for each full path. Then equation (6) is

solved to obtain the differential fine-structure, ��(k).

(iv) Compare the calculated ��(k) with that obtained experi-

mentally, modify the fitted parameters in an attempt to reduce the

differences between theory and experiment, and iterate until no

further improvements can be made.

3. Interface

Fitting DiffEXAFS, as with conventional EXAFS, can be a subtle

process based on trial and error. It is therefore important that it

be approached in a systematic way. For that reason, DEXA fits

DiffEXAFS spectra according to instructions in an input script. This

script must prepare the fit environment, as described in the previous

section, and then indicate which parameters should be fitted to the

experimental DiffEXAFS.

Such an interface, which executes commands in a simple sequential

fashion, has been selected over, for example, a graphical interface,

since it is easier to see exactly how DEXA will approach the analysis

of a given DiffEXAFS spectrum. This clarity is retained for both

simple analyses, requiring just a few commands, or for complex larger

scripts potentially involving the analysis of a number of spectra

simultaneously. It also provides a means to quickly modify a fit, and

ensures a clear record of a given fit is maintained. Multiple experi-

mental spectra may also be analysed in a consistent fashion simply by

distributing one script between them.

A full description of all the valid script commands, along with

examples for their usage, is given in the manual accompanying the

DEXA package. Fig. 2 shows an example of a typical script that might

be used for the analysis of a magnetostrictive DiffEXAFS spectrum

in order to show the usage of the most important commands.

The configuration of the sample environment at the time of

measurement is typically given first. In the case shown here, M 0 and

M 0 0 are defined as two sample magnetization vectors, (x1, y1, z1) and

(x2, y2, z2), which are set with the magnetization command. The

X-ray polarization vector (x, y, z) is then defined with the polar-

ization command. All three vectors are unit vectors given with

respect to the beamline frame, where +x is horizontal towards the

storage ring, +y is vertical from the floor up, and +z is the direction of

beam propagation.

Assuming the sample under study is not amorphous, it is also

necessary to use preforientation to define the one or more

rotations that are required to orientate the sample crystallites

correctly within the beamline frame. In the case of a single crystal, for

example, one rotation alone is sufficient: (�1, �2, �3) in radians about

x, y, z, respectively, from the nominal orientation of the atomic cluster

in FEFF’s feff.inp to the orientation in which the crystal was

actually mounted during the experiment.

With the sample environment defined, it is then necessary to create

at least one spectrum object with the create command and load the

appropriate data into it. The experimental DiffEXAFS is specified

with the .spectrum property, FEFF’s feff.inp and paths.dat

files via the .feffinp and .pathsdat properties, and all the scat-

tering paths to be considered in the fit loaded from their

feffnnnn.dat files with .addpath. It may also be desirable to

Fourier-filter the experimental DiffEXAFS prior to fitting, which can

be done using a spectrum’s .filter property. Currently, filtering is

performed with a Hann window. This will then define everything

needed to construct an ab initio DiffEXAFS spectrum.

It is then necessary to refine FEFF’s parameters by inserting the

results from a conventional EXAFS fit (performed for the same
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Figure 2
An example of a typical script that might be used for the analysis of a
magnetostrictive DiffEXAFS spectrum in order to show the usage of the most
important commands.



FEFF calculation). .updatepath may be used to modify the prop-

erties of specific scattering paths, or .setparameter when changing

a globally applied parameter. .setparameter may also be used to

define a first guess to the optimization of the DEXA fit parameters.

With the DiffEXAFS theory spectra fully defined, .fitpara-

meter is used to instruct DEXA to fit specific parameters. The names

of these vary depending on the system under study. For magneto-

striction in a cubic system, as shown here, lambdaG2 and lambdaE2

refer to the ��,2 and �",2 coefficients, respectively (de Lacheisserie,

1993). If multiple spectra are being considered within a single

execution of DEXA, parameters that affect more than one spectrum

may be linked by assigning them the same name. For instance,

entering

FeSpectrum:fitparameter lg2 lambdaG2

CoSpectrum:fitparameter lg2 lambdaG2

will cause a single parameter, named lg2, to be fitted to the ��,2

property of both FeSpectrum and CoSpectrum.

Finally, startfit is called to initiate the fit, with saveparams

and .savespectrum also being called, either before or after this

command, to save DEXA’s initial or optimized states, respectively.

4. Summary

DEXA has been used to analyse magnetostrictive DiffEXAFS data

sets acquired from various materials measured on ID24 at the ESRF.

Most notable amongst these are recent measurements on the tech-

nologically important Fe(1�x)Gax system, which revealed the atomic

origins of the strain enhancement observed when Ga atoms are

inserted into the Fe lattice (Ruffoni et al., 2008). Further results will

be published elsewhere shortly.

Since DiffEXAFS is a technique that is constantly expanding and

diversifying into new areas with time, DEXA must also develop in a

similar fashion. To aid this, the DEXA code has been written in a

modular style with cross-platform compatible C++, enabling it to be

easily built upon or modified in the future. The code is also available

free of charge via SourceForge (http://www.sourceforge.net/) under

the terms of the GNU General Public License to enable users to

make their own changes as necessary.

To date, the author has focused primarily on magnetostriction

measurements and, as such, the greatest functionality exists when

dealing with fourth-rank tensor properties in cubic or tetragonal

systems. This will shortly be extended to permit analysis of systems of

any symmetry, and of other types of DiffEXAFS measurements.

The author would like to thank S. Pascarelli and O. Mathon for

their ongoing support for DiffEXAFS experiments on ID24 at the

ESRF.
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Pascarelli, S., Mathon, O., Muñoz, M., Mairs, T. & Susini, J. (2006). J.

Synchrotron Rad. 13, 351–358.
Pascarelli, S., Ruffoni, M. P., Trapananti, A., Mathon, O., Aquilanti, G.,

Ostanin, S., Staunton, J. B. & Pettifer, R. F. (2007). Phys. Rev. Lett. 99,
237204.

Pettifer, R. F., Mathon, O., Pascarelli, S., Cooke, M. D. & Gibbs, M. R. J.
(2005). Nature (London), 435, 78–81.

Ruffoni, M. P. (2007). PhD thesis, Warwick University, UK.
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