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The concept of a focusing monochromator with high energy resolution is

presented. Different from conventional optical schemes, the device exploits not

the angular but the spatial dispersion of synchrotron radiation. The wave theory

of the monochromator is developed; it shows that the monochromator can reach

an energy resolution of about 0.1 meV without significant loss of the spectral

density of synchrotron radiation.
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1. Introduction

High energy resolution is a figure of merit in many synchro-

tron radiation techniques. The level of radiation mono-

chromaticity determines the accuracy of phonon spectra

measured by inelastic X-ray scattering and nuclear inelastic

scattering. A narrow energy bandwidth allows for an accep-

table radiation load on detectors for nuclear forward scat-

tering.

The best relative energy resolution �E/E served today at

synchrotron radiation beamlines is about 3 � 10�8. It is

determined by the quality of the best silicon crystals, in

particular, by the homogeneity of their lattice constant. In

absolute units, this corresponds to an energy bandwidth of

about 0.5–1.0 meV for 14.412 keV radiation (Chumakov et al.,

2000; Toellner, 2000).

Further improvement of the energy resolution down to

0.1 meV is one of the highly desired milestones in the devel-

opment of the third-generation sources of synchrotron

radiation (ESRF, APS, SPring-8). Several successful attempts

to achieve an energy resolution of �0.1 meV have been

reported (Yabashi et al., 2001; Toellner et al., 2001). However,

up to now none of these approaches has developed beyond a

feasibility study. The main problem of the standard approa-

ches is a notable variance of the silicon lattice constant within

a relatively large beam spot on the crystal, which results in a

significant loss of spectral density of the transmitted radiation.

In this paper we consider a new type of monochromator,

which we call a ‘focusing’ monochromator. Different from

conventional optical schemes (Toellner, 2000; Chumakov et al.,

2000; Yabashi et al., 2001; Toellner et al., 2001; Shvyd’ko, 2004),

the device exploits not the angular but the spatial dispersion of

synchrotron radiation.

A conventional monochromator consists of dispersing and

analyzing crystals. The dispersing crystal sorts radiation of

different energy over different angles. The analyser crystal

picks out radiation from a narrow angular range, thus deli-

vering radiation within an extremely narrow energy band-

width.

In the case of the proposed focusing monochromator, the

dispersion of radiation in space is provided by a lens and a

downstream crystal in an asymmetric reflection. The lens

focuses an X-ray beam to a narrow spot, whereas the crystal

sorts out the spots of radiation of different energy over a

spatial coordinate. The analyzer is a narrow slit placed in the

focal plane. It picks out radiation from a narrow spatial region,

thus delivering radiation within an extremely narrow energy

range.

The theoretical analysis, presented below, shows that this

focusing monochromator can reach very high energy resolu-

tion without significant loss of the spectral density of the

transmitted radiation. From a practical point of view, the

focusing monochromator operates with much smaller crystals

than the traditional monochromators of comparable energy

resolution. Therefore, other things being equal, this approach

should be less sensitive to the possible inhomogeneity of the

silicon lattice constant. Another advantage of the proposed

optical scheme is that it solves two tasks at once, i.e. it prepares

a (i) high-monochromatic and (ii) focused radiation beam.

Finally, the focusing monochromator provides an interesting

option for changing the energy bandwidth of the delivered

radiation by a simple change of the slit size. Thus, researchers

obtain the useful option of, for example, a fast preview of

phonon spectra with moderate resolution but high count rate

before longer accurate high-resolution measurements.

The theory of a conventional monochromator treats the

incident radiation as a set of incoherent plane waves with

defined directions and frequencies, and calculates a region of

radiation reflection in the angle–frequency plane. The focusing

monochromator includes a lens, a slit and crystals. It exploits

spatial dispersion and spatial properties of coherent waves.

Therefore, in order to analyze the operation of the focusing

monochromator we develop a coherent theory, which takes

into account phases of the incident radiation components and



transformation of the phases owing to propagation of radia-

tion in space, diffraction by the lens and reflection by the

crystal.

2. Scheme of the focusing monochromator

The scheme of the focusing monochromator is shown in Fig. 1.

The monochromator consists of four elements: a focusing lens,

namely a parabolic refractive lens; a crystal in a symmetric

reflection, which serves to keep the direction of the beam

delivered by the monochromator parallel to the incident

beam; a crystal in an asymmetric reflection to provide spatial

dispersion of radiation components with various energies; and

a slit to select the chosen energy band.

As we show below, in order to obtain high energy resolution

the distance z0 from the source to the lens should be as long

as possible. Furthermore, the focal length f of the lens with

effective aperture Ag should be chosen slightly smaller than

the distance from the source. Then the lens focuses the beam

almost to infinity, providing the very long focal distance zf =

f /(1� f /z0). Under these conditions the lens acts as an efficient

collimator, delivering the beam with a narrow angular spread,

which is important for the high energy resolution. In addition,

the long focal distance zf allows one to avoid losses of inten-

sity, because the exit angular aperture of the lens Ag /zf can be

maintained small enough in order to match the narrow angular

acceptance of the asymmetric reflection. The symmetric

reflection does not influence the coherent properties of the

beam under the considered conditions.

The asymmetric Bragg reflection should be chosen with the

incidence angle larger than the exit angle (Fig. 2). Further-

more, this should be a high-order reflection, i.e. with the

largest possible Bragg angle. These conditions provide highest

angular dispersion, i.e. waves with various energies exit the

crystal at most different angles (Souvorov et al., 1999;

Shvyd’ko, 2004). The angular acceptance of the reflection in

the chosen geometry is usually small. However, the narrower

collimation of the incident beam allows intensity losses to be

avoided.

Despite the long focal distance zf, the demagnification ratio

of the proposed focusing scheme is large. This holds because,

as will be shown below, the asymmetric reflection shortens the

distance to the focal point, providing a small focal spot. On the

other hand, owing to the high angular dispersion the radiation

components with various energies are focused at sufficiently

far separated points. The highest possible energy resolution is

determined by the ratio of the size of the focus for a mono-

chromatic wave to the spatial dispersion of the radiation of

different energies. Increasing the slit size beyond the size of

the focal spot of monochromatic radiation allows the width of

the energy band delivered by the monochromator to be

varied. At extreme opening of the slit, the energy bandwidth

of the monochromator is equal to the bandwidth of the

asymmetric reflection.

3. Basic formulae of coherent theory

For the sake of simplicity, we do not consider optical elements

which do not influence the coherent properties of the beam;

for example, the pre-monochromator and the crystal in a

symmetric reflection. We assume that the radiation source is

an incoherent set of point sources distributed within a region

of transverse coordinates according to the Gauss law. Each

point source emits a spherical wave, which is, however,

confined within a finite angular region (a very narrow cone of

radiation). For instance, for the undulator radiation at the

ID18 beamline (Rüffer & Chumakov, 1996) at the European

Synchrotron Radiation Facility (ESRF, Grenoble, France),

typical parameters are 20 mm for the vertical source size S and

20 mrad for the vertical angular width of the radiation cone.

We use the paraxial approximation. It is convenient to

describe an incident wave by the Kirchhoff propagator with a

complex distance. We select an optical axis from the condition

of highest intensity for some energy E. We consider only the

diffraction plane with the coordinate x perpendicular and z

along the optical axis. Because the crystals do not influence the

properties of waves along the coordinate y perpendicular to

the diffraction plane, we do not analyse the dependence of

the radiation field along this coordinate. Propagation of the

radiation field along this coordinate is described convention-

ally: it is divergent upstream of the lens and convergent

downstream of it, if the lens has a circular aperture. In air

the coordinate z is directed always along the beam and x

perpendicular to the beam; in a crystal they go along the

internal normal and the surface of the crystal, respectively. For
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Figure 1
Scheme of the focusing monochromator. Four elements are shown: the
parabolic refractive lens (PRL), the crystal in a symmetric reflection
(crystal S); the crystal in an asymmetric reflection (crystal A); and the slit.

Figure 2
Definition of the coordinates and angles in the case of a crystal in an
asymmetric reflection.



convenience, we choose the directions of the x axes in various

parts of the experimental scheme from the condition of acute

angles between them.

We assume that the point source has a transverse coordinate

xs, the distance from the source to the lens is z0, and the

angular full width at half-maximum (FWHM) of the wave

amplitude is a0. Then the amplitude A0(x) of the monochro-

matic wave component of synchrotron radiation is described

by the following equation,

A0ðxÞ ¼ i�z0cð Þ
�1=2exp i�

x� xsð Þ
2

�z0c

� �
;

z0c ¼ z0 1� ic
�

z0

� �
; c ¼

4 log 2

�a2
0

:

ð1Þ

Here � is the radiation wavelength. We consider a refractive

lens with biconcave shape and parabolic profile. Because of

the biconcave shape (see Fig. 1), the aperture of the lens is

determined by absorption (Snigirev et al., 1996). The lens is

sufficiently thick that radiation is entirely absorbed beyond

the lens aperture. Then, the amplitude A1(x) of the wave

immediately behind the lens is expressed by the following

equation,

A1ðxÞ ¼ A0ðxÞTPRLðxÞ;

TPRLðxÞ ¼ exp �i�
x2

�f
ð1� i�Þ

� �
; f ¼

R

2�
; � ¼

�

�
:

ð2Þ

Here R is the radius of curvature at the apex of the parabola,

and � and � are the real and imaginary parts of the complex

refraction index of the lens material, n = 1 � � + i�.

Calculation of the transverse profile of the wave propa-

gating through air is conveniently performed in reciprocal

space. We introduce a coordinate of reciprocal space q which

is conjugate to x, and represent the amplitude as a Fourier

integral,

A1ðxÞ ¼

Z
dq

2�
A1rðqÞ expðiqxÞ: ð3Þ

Let the crystal with an asymmetric reflection be at a distance

z1 downstream of the lens. In order to calculate the transverse

profile of the wave in front of the crystal, it is sufficient to

multiply the integrand of (3) by the Fourier image of the

Kirchhoff propagator Pr(q, z1), where

Prðq; zÞ ¼ exp �i
z

2K
q2

� �
; K ¼

2�

�
: ð4Þ

Calculation of the wavefield after an asymmetric reflection by

the crystal is a more complex task. First, the crystal changes

the optical axis. Second, in q-space the crystal can have a finite

width of reflection with a centre at q0 . We need to take into

account a possible rotation of the crystal by angle ’ and a

possible relative shift of energy �E = �E/E. In this case, q0 =

K(�’ + �E tan�B). The highest reflectivity of the crystal

corresponds to q0 = 0. The choice of the direction of rotation

and the sign of the energy shift is consistent with the choice of

the directions of the x and q axes. Then, in order to describe

the reflection, we multiply the amplitude of the plane wave by

the function R(q� q0, b), where b is the asymmetry factor (see

below). On the other hand, from the theory of diffraction of

plane waves (Authier, 2001) it follows that the plane wave with

the wavevector

k0 ¼ K0 1þ �Eð Þ þ q;

K0 ¼ Kðcos �0; sin �0Þ; q ¼ q sin �0;� cos �0ð Þ
ð5Þ

is reflected to the plane wave with the wavevector

k1 ¼ K1 1þ �Eð Þ þ q1;

K1 ¼ Kðcos �1;� sin �1Þ; q1 ¼ q1ðsin �1; cos �1Þ:
ð6Þ

Here we use the coordinate system of the crystal, and �0 and �1

are, respectively, the angles between the surface of the crystal

and the incident or reflected beam as shown in Fig. 2. The

straightforward calculation leads to the following relation

between q1 and q,

q1 ¼ q� q00ð Þb; b ¼
sin �0

sin �1

;

q00 ¼ K
�
� ’ð1þ 1=bÞ þ �E tan �Bð1� 1=bÞ

	
:

ð7Þ

We would like to emphasize that, according to (7), a poly-

chromatic plane wave incident on the crystal at the exact

Bragg angle (q = ’ = 0) provides a set of monochromatic

waves with various wavelengths reflected by the crystal in

different directions. Introducing the variation of the exit angle

��1 = �q1/K, we transform (7) into the form

��1 ¼ �
sin�

d sin �1

��; ð8Þ

where d = �/(2sin�B) is the distance between the reflecting

atomic planes, and � is the angle between the reflecting plane

and the surface. Equation (8) describes the ‘angular disper-

sion’ (Shvyd’ko, 2004) of the initially plane wave reflected by

the asymmetrically cut crystal. In general, using this effect one

could immediately obtain a small energy bandwidth by

selecting a narrow angular range of the exit beam with slits or

a crystal analyzer. This, however, would be unpractical owing

to a significant loss of photons. Instead, with the current

approach, we propose to transform the angular dispersion to a

spatial one, and to select a narrow energy band keeping almost

the entire spectral density of the incident radiation. In the

absence of asymmetry (� = 0), the fan of waves with various

energies does not appear (��1 = 0).

In order to describe the asymmetric reflection, we need to

introduce the function R, which depends on q � q0 and b, and

to replace the exponential factor exp(iqx) by exp(iq1x).

According to (7), this leads to scaling of the transverse coor-

dinate in the reflected beam by a factor b. Then, we obtain the

amplitude A2(x) of the wave immediately behind the crystal as

A2ðxÞ ¼ exp �iq00xbð Þ

Z
dq

2�
A1rðqÞ

� Prðq; z1ÞR q� q0; bð Þ expðiqxbÞ: ð9Þ
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Let us consider the amplitude A3(x) of the wave at some

distance downstream of the crystal, in particular at the

distance z2 where the wave is focused. Once again we use a

known technique, i.e. we calculate the Fourier image of the

wave, multiply it by the Fourier image of the Kirchhoff

propagator for the distance z2 and then calculate the reverse

Fourier transformation,

A2rðqÞ ¼

Z
dx A2ðxÞ expð�iqxÞ;

A3ðxÞ ¼

Z
dq

2�
A2rðqÞPr q; z2ð Þ expðiqxÞ:

ð10Þ

Substituting (4) and (9) into (10) we obtain a triple integral

including two integrals over q and one integral over x. The

integral over x is equal to a �-function, which cancels one of

the integrals over q. In particular, it is convenient to keep the

integral over q for the incident wave. In this case the result can

be written in the form

A3ðxÞ ¼ exp �iq00xbð Þ

Z
dq

2�
A1rðqÞPr q; z1ð Þ

� R q� q0; bð ÞPr q� q00ð Þb; z2

� 	
expðiqxbÞ: ð11Þ

Taking into account the expression (4) for the propagator, this

function can be rewritten as

A3ðxÞ ¼ C0ðxÞ

Z
dq

2�
A1rðqÞPr q; z1 þ z2b2


 �
� R q� q0; bð Þ exp iq x� x0ð Þb

� 	
; ð12Þ

where

C0ðxÞ ¼ exp �iq00xb� i
Kx2

0

2z2

� �
; x0 ¼ �

q00
K

z2b: ð13Þ

In order to obtain the final expression, we need to substitute

(1) into (2) and to calculate the function A1r(q). The calcula-

tion is based on the known integralZ
dx exp i�xþ i�x2


 �
¼ i�=�ð Þ

1=2exp �i�2=4�

 �

: ð14Þ

We omit the calculation and write only the result,

A1rðqÞ ¼ �
zf

z0

� �1=2

exp i
Kx2

s

2z0

þ i
zfc

2K
qþ qsð Þ

2

� �
;

qs ¼ K
xs

z0

; zfc ¼
fc

ð1� fc=z0cÞ
; fc ¼

f

ð1� i�Þ
:

ð15Þ

Here the imaginary parts of the complex distances are

neglected everywhere except for a multiplier in front of q2.

This is justified if the angular size of the source as seen from

the lens position is much less than the angular divergence of

the incident synchrotron radiation. We substitute (15) into

(12) and perform the change of variable q! q � qs. Then we

obtain

A3ðxÞ ¼ C1ðxÞ

Z
dq

2�
EðqÞR q� q0 � qs; bð Þ

� exp iq x� x0 þ x1ð Þb
� 	

; ð16Þ

where

EðqÞ ¼ exp i
zfc � z1 � z2b2ð Þ

2K
q2

� �
;

C1ðxÞ ¼ �
zf

z0

� �1=2

C0ðxÞ exp i
Kxs

2z0

xs � x1b� 2 x� x0ð Þb
� 	� 


;

x1 ¼
z1 þ z2b2

z0b
xs: ð17Þ

Computer simulation requires an explicit expression for the

function R(q, b). We consider the case of a sufficiently thick

crystal, where a rear surface does not influence the reflection.

In this case we obtain

Rðq; bÞ ¼
pþ p2 � p2

0ð Þ
1=2

K	�h b1=2
;

p ¼ qb sin 2�B � i
0ð1þ bÞ=2; p0 ¼ K 	h	�h bð Þ
1=2:

ð18Þ

Here 
0 = Im(K	0) is a linear absorption coefficient, 	h and

	�h are diffraction parameters, and the square root has a

positive imaginary part.

4. Estimation of the energy resolution

For an estimation of the energy resolution, one needs to

calculate the size of the focal spot for a monochromatic wave

and to compare it with the spatial dispersion of synchrotron

radiation monochromatic components of various energies. Let

us first consider the diffraction limit of the focal spot, i.e. the

ideal case of a point source, proper crystal angular position

and monochromatic wave with ’ = �E = xs = 0. In this case the

integrand in (16) is a Fourier image of the product of two

functions; each of them has non-vanishing values only within a

finite region of argument close to zero. We neglect the higher-

than-linear terms in the expansion of zfc over � and write the

first function in the form

EðqÞ ¼ exp i
zf � z1 � z2b2ð Þ

2K
q2

� �
exp �

c2
e

�2
qf

q2

 !
;

ce ¼ 2ðlog 2Þ1=2
¼ 1:665; zf ¼

z0 f

z0 � f
;

�qf ¼ ce

ð2KÞ1=2

zf

�

f
þ

c�

z2
0

� ��1=2

:

ð19Þ

Focusing of the wave takes place if the strong oscillations of

the function vanish. This occurs at the distance z2 = (zf � z1)/

b2, which means that the asymmetric reflection shortens the

distance to the focus zf � z1 by a factor b2. Below we will

consider a radiation field at this fixed distance. In the focal

plane, E(q) is a Gauss function with a FWHM of �qf. Let the

FWHM of the amplitude of reflection by the crystal (18) be

denoted as �qc. The region of integration in (16) �q is equal to

the smaller of the two values. If �qc > �qf, then �q = �qf. Let

us denote the FWHM of the integral (16) as �x. From the

theory of Fourier transformation it is known that �xb ’ 2�/

�q. This is an analogue of the uncertainty principle in

quantum mechanics. Thus, the diffraction limit of the focus is

approximately equal to
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�xf ¼
2�

b�qf

¼
�zf

bAg

;

Ag ¼ A� 1þ
A2
�

z0a0ð Þ
2

� ��1=2

; A� ¼ ce

�f

��

� �1=2

:

ð20Þ

Here Ag is the effective aperture and A� is the aperture of the

lens determined by absorption (Snigirev et al., 1996). As

follows from (20), the size of the beam at the lens position

does not matter if it is larger than the effective aperture. On

the contrary, if the effective aperture is larger than the size of

the beam at the lens position, then the diffraction limit of

the focus is determined by the beam size. In any event, the

broadening of the focal spot originates from the limited

angular region of focusing rays.

At the other extreme of �qf > �qc, the diffraction limit of

the focal spot is determined by the finite angular range of the

crystal reflection. According to (18), in this case we obtain

�xc ¼
2�

b�qc

¼
� sin 2�Bð Þ

2 	h

�� ��b1=2
: ð21Þ

In contrast to (20), the broadening of the focal spot described

by (21) can be regarded as being caused by a finite region of

the Bragg reflection inside the crystal bulk (Afanas’ev et al.,

1971; Kohn & Kazimirov, 2007). In practice, both cases can be

realised depending on the choice of the asymmetry factor b

and the focal length f of the lens.

Let us consider now the spatial position of the focal spot. As

follows from (16), the shift of the focus centre is determined

by the value x0 � x1, which depends on ’, �E and xs. For a

given value of the rotation angle ’ the highest reflectivity of

the crystal corresponds to the energy region around the

relative energy �E = ’ / tan�B as follows from the condition

q0 = 0. Taking this into account we obtain x0 = 2’z2 . Therefore

we have the possibility to select the energy by rotating the

crystal with a simultaneous shift of the slit.

Now we have to take into account the transverse size S of

the source which leads to a broadening of the focus spot since

various point sources give different focal positions. We define

the size of the source projection �s = Sz2b/z0 . The expression

is obtained from (17) under the condition z1 << z2b2 which is

valid in the limit b >> 1. We are interested just in this limit.

The relative energy resolution �E of the monochromator is

determined by the spatial dispersion of radiation components

with various energies provided by the asymmetric reflection.

As follows from (7) and (13), the relative energy shift �E

corresponds to the transverse shift of the focus centre by x0 =

z2(b � 1)tan�B�E. Therefore �E corresponds to the spatial

range �xE = z2(b � 1)tan�B�E. This range has to be

compared with the smaller of two values, namely, of the

diffraction limit of the focal spot �x and of the size of the

source projection �s. Under the condition b >> 1, the

diffraction limit, originated from a limited aperture, takes the

expression �xf = �z2b/Ag . We see that for b >> 1 all three

values of �xE, �s and �xf are proportional to z2b. On the

contrary, the diffraction limit, originated from a finite angular

range of the crystal reflection �xc , does not depend on the

distance z2, and it decreases with increasing b. Therefore, for

large z2b we can neglect broadening the focus spot by the

crystal diffraction.

Therefore, if S > �z0 /Ag , then the relative energy resolution

is determined by the source size as

�E ¼
S

z0 tan �B

b

ðb� 1Þ
: ð22Þ

In the opposite case, if S < �z0 /Ag , then the energy resolution

is determined by the diffraction limit as

�E ¼
�

Ag tan �B

b

ðb� 1Þ
: ð23Þ

In order to avoid losses in the spectral density of delivered

radiation, the angular acceptance of the asymmetric reflection

should be larger than the angular size of the radiation source

as seen from the lens position, i.e. KS/z0 < �qc . The angular

acceptance of the asymmetric reflection is given by

�qc

K
¼

2 	h

�� ��
sinð2�BÞb

1=2
: ð24Þ

Finally, we note that the performance of a multicrystal

monochromator is often characterized by a DuMond diagram,

which illustrates the energy and angular properties of the

monochromated beam. In our case, however, this approach

would not be useful because it is not relevant to focusing.

Indeed, the ultimate energy resolution is described by quite

different parameters, namely, by the angular width of the

source size, equation (22), or by the diffraction limit of the

focal spot, equation (23).

5. Specific example

Let us consider a specific example of the focusing mono-

chromator with the parameters adapted for the nuclear reso-

nance beamline ID18 at the ESRF. The beamline is optimized

for the most frequently used nuclear isotope 57Fe with energy

E = 14.412 keV (wavelength � = 0.8602 Å). The vertical source

size is S = 20 mm, the vertical angular FWHM of the wave

amplitude is a0 = 30 mrad. We choose the source-to-lens

distance z0 = 60 m and the distance between the lens and the

asymmetric crystal z1 = 0.1 m. Then, the vertical FWHM of the

wave amplitude at the lens is equal to a0z0 = 1.8 mm. If the

effective aperture of the lens A� is larger than that, then

according to (20) Ag = 1.8 mm. Further, the condition S >

�z0 /Ag is fulfilled; and the energy resolution of the mono-

chromator is determined by the vertical size of the source

according to (22). We consider a silicon crystal, reflection

(975), �B = 80.39�, K|	h| = 2.408 � 10�2 mm�1. With these

parameters we obtain from (22) �E = 5.6 � 10�8. This means

that within the analyzing slit of width less than or equal to the

size of the source projection for a monochromatic beam, the

focusing monochromator provides synchrotron radiation with

an energy bandwidth of 0.81 meV. This energy resolution is

comparable with that of the best currently used multi-crystal

monochromator (Chumakov et al., 2000; Toellner, 2000).

Unlike the conventional devices, however, in this case the
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energy resolution is determined by quite different parameters,

in particular by the angular size of the source. Also different

from the conventional schemes, the size of the beam spot on

the crystal surface is very small, less than 4 mm. Thus, the

performance of the monochromator should be less affected by

the possible inhomogeneity of the silicon lattice constant.

The other parameters can be chosen from practical

considerations. One of the important requirements is to avoid

losses of spectral density of synchrotron radiation in order to

maintain the highest possible count rate in experiments. For

this reason the exit angular aperture of the lens Ag /zf should

not be larger than the angular width of the crystal reflection.

Because the latter is very small, the focal length f has to be

only slightly smaller than z0 . Therefore, for the estimation of

the effective lens aperture we can replace f by z0 . For a Be lens

(density 1.845 g cm�1) the optical parameters are � = 1.637 �

10�6, � = 3.432 � 10�10 and � = 2.097 � 10�4. Then the

effective lens aperture is A� = 4.65 mm. This value is larger

than a0z0 . For an Al lens (density 2.694 g cm�1) we obtain � =

2.613 � 10�6, � = 1.546 � 10�8, � = 5.917 � 10�3 and A� =

0.88 mm. In this case the effective lens aperture is two times

smaller than the halfwidth of the beam. Nevertheless, the

condition S > �z0 /A� is still fulfilled; and the energy resolution

is determined by the vertical source size. Therefore an Al lens

can also be considered for use in a focusing monochromator.

From a practical point of view, the distance z2 should not

exceed the length of the experimental hutch. Therefore, it is

convenient to define, first of all, this distance and to determine

the rest of the parameters through z2 . In such a way we find

the asymmetry parameter b. The above discussed requirement

to avoid losses of spectral density of synchrotron radiation can

be expressed as �xf = 2�xc or �qc = 2�qf. Then using (20) and

(21) we obtain

b ¼
A� sinð2�BÞ

z2 	h

�� ��
" #2=3

: ð25Þ

Finally, we find the focal distance of the lens from the condi-

tion (19) within the approximation zf = z2b2. It is sufficient to

use an approximate formula

f ¼ z0 1�
z0

z2b2

� �
: ð26Þ

Thus, for z2 = 6 m from (25) and (26) we obtain b = 28, f =

59.2 m. The slit size has to be equal to 56 mm which is tech-

nically easy to fulfil.

Fig. 3 shows the distribution of the intensities of mono-

chromatic radiation from various points of the radiation

source observed at the focal plane calculated for the para-

meters discussed above, i.e. E = 14.412 keV, z0 = 60 m, z1 =

0.1 m, z2 = 6 m, Si (975), b = 28 and an Al lens. The curves

correspond to various points of an extended Gaussian source

with vertical size of 20 mm (FWHM). As follows from Fig. 3,

the beam spot is significantly extended because of the finite

size of the source. The reason for the small difference in the

relative intensity of the curves to the left and to the right of the

central peak is the change of the reflection amplitude as a

function of the coordinate of the source point [equation (16)].

In order to improve further the energy resolution of the

monochromator for radiation with a given energy, one can

increase the distance z0, which results in a decrease of the

angular size of the source. However, because the effective

aperture of the lens A� scales only with the square root of this

distance, for a large enough distance z0 the energy resolution

will no longer be determined by the source size but by the

diffraction limit according to formula (23). In this case one

should use a Be lens because it has a larger effective aperture.

According to (23), at longer distances the energy resolution is

independent of the angular source size. At the crossover

distance SAg /� = 1200 m, the relative energy resolution is

equal to �E = 3 � 10�9, which corresponds to an energy

bandwidth of 0.04 meV.

Another way to improve the energy resolution is to use a

reflection with the Bragg angle closer to 90�. For radiation

with energy E = 14.412 keVand a Si crystal the reflection (975)

is the last allowed one. The availability of high-quality single

crystals other than silicon could solve the problem. For

example, a sapphire (Al2O3) crystal offers useful reflections

(30 0 0) with �B = 83.33� and (22 6 1) with �B = 88.02�. With

z0 = 60 m, the use of these reflections would improve the

energy resolution from 0.81 meV down to 0.56 meV and

0.17 meV, respectively.

For radiation of some other nuclear isotopes, reflections

with �B
<
� 90� are available even with a Si crystal. For

example, for the nuclear resonance in 161Dy with energy E =

25.651 keV the last allowed reflection (18 12 6) has �B = 87.44�.

With z0 = 60 m, this corresponds to an energy bandwidth of

0.38 meV.

Furthermore, if there are no restrictions on the choice of the

energy as, for example, in the case of inelastic X-ray scattering,

then a reflection with �B = 89� would allow one to obtain

a bandwidth of 0.1 meV. In this case, however, note that

although the design does offer the monochromator solution,
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Figure 3
Distribution of intensities of monochromatic radiation from several
equidistant points of the radiation source observed at the focal plane. See
text for details.



most probably it cannot be applied for the energy analysis of

the scattered radiation.

6. Conclusion

We have analyzed the concept, the theory and several specific

examples of a new type of a monochromator, i.e. a focusing

monochromator. Different from conventional optical schemes,

the device exploits not the angular but the spatial dispersion of

synchrotron radiation. The monochromator solves two optical

tasks, monochromatization and focusing, within a single

optical scheme. The numerical estimations show that the

monochromator can routinely reach an energy resolution of

better than 1 meV and in special cases down to 0.1 meV.

In comparison with the conventional schemes, a smaller

crystal size makes the focusing monochromator less sensitive

to possible crystal imperfections. On the other hand, the

highest achievable energy resolution depends on the effective

angular size of the radiation source. This demands a high

quality of other optical elements used in the beamlines, for

example, the pre-monochromator.
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