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The coherency of the synchrotron radiation at Pohang Accelerator Laboratory

has been investigated using Young’s interferometer. The electron beam size can

be measured precisely using the interferometer. An interferogram using 650 nm

light at the diagnostics beamline at Pohang Light Source (PLS) has been

measured to determine the electron beam distribution and the spatial coherence

length. Interferograms obtained by numerical study are compared with

experimental results in order to understand the measured data. From this

comparison, the electron beam at PLS is revealed to be a Gaussian distribution

with a standard deviation of 210 mm. The spatial coherency length of 650 nm

light at PLS is measured to be 0.57 cm, and that of 0.1 nm light at PLS is

predicted to be 0.88 mm by the same numerical study.
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1. Introduction

During the past several decades, interferometer techniques

have been successfully implemented to measure the size of the

light source at various storage rings (Mitsuhashi, 1999;

Flanagan et al., 2000; Fisher et al., 2001; Sakai et al., 2000;

Masaki & Takano, 2003). Recently, numerical and experi-

mental studies have been carried out to improve the

measurement techniques (Naito & Mitsuhashi, 2006). Pohang

Accelerator Laboratory (PAL) was founded in 1988 at Pohang

University of Science and Technology (POSTECH) in Korea.

Pohang Light Source (PLS), constructed at PAL, is a

synchrotron radiation facility with a 2.5 GeV electron beam.

There is a diagnostics beamline for improving the electron

beam quality in the storage ring (Huang et al., 2007; Huang &

Ko, 1998). The interferometer technique has been imple-

mented at this beamline to measure the electron beam size

with high resolution.

In this paper, the coherency of the light generated from PLS

is investigated using interferograms measured at the diag-

nostics beamline. A numerical study including the phase

calculation of waves from the finite electron beam to the

screen is carried out for comparison with measurements. The

theory of interference is reviewed in x2. The experimental

results are presented in x3, and the numerical study is intro-

duced in x4. Comparisons with experiment and the numerical

study are shown in x5, and a summary is provided in x6.

2. Theory of interference

2.1. Temporal coherency

The famous interferometer invented by Michelson shows

the change in interferograms in terms of the position of a

movable mirror, as shown Fig. 1. The intensity I on the

detector can be calculated as

I hð Þ ¼ K1 ~uuðtÞ þ K2 ~uu½t þ �ðhÞ�
�� ��2D E

t
; ð1Þ

where � is the time delay between the two divided beams of

light, K1 and K2 are the amplitudes of the divided light beams,

and ~uuðtÞ is the complex representation of the light. If K1 and

K2 are given the same value K, equation (1) becomes

(Goodman, 1985; Born & Wolf, 1999)

Figure 1
Michelson interferometer. h is the moving distance of the movable
mirror.



I �ð Þ ¼ 2K2I0 1þ ~�� �ð Þ
�� �� cos 2� ���� þ �ð Þ

� �
: ð2Þ

In the above equation, I0 is the intensity without interference

as given by ~uuðtÞ
�� ��2, ~�� is the complex degree of temporal

coherency, ��� is the central frequency of the light, and � is the

phase of the interferogram. As we can see from (2), the

intensity on the screen will be oscillated by changing the

position of the movable mirror.

From the oscillation pattern, we can calculate the temporal

coherency, i.e. the degree of correlation between the two

divided light beams with a certain time delay. The oscillation

pattern shows an envelope from which we can quantify the

oscillation, named by the visibility V,

V ¼
Imax � Imin

Imax þ Imin

¼ � �ð Þ
�� ��: ð3Þ

There are two assumptions in interference theory for temporal

coherence. One is that the radiating source has no finite size.

The other is that radiation with different frequency from the

same source is a totally random process. The complex degree

of temporal coherency ~�� of the light can be calculated from

the correlation function of the complex signal function ~uu.

From the Wiener–Khinchin theorem of the theory of a

stationary random process (Wiener, 1930; Khintchine, 1934),

the relation between the complex degree of coherency and the

power spectrum density is derived as (Born & Wolf, 1999)

~uuðtÞ ¼
Rþ1
�1

~ccð!Þ expði!�Þ d!; ð4Þ

~��½�ðhÞ� ¼
�
~uu½t þ �ðhÞ� ~uu�ðtÞ

�
¼
Rþ1
0

4Pð!Þ exp½i!�ðhÞ� d!: ð5Þ

Here, ! is the angular frequency of each Fourier component,

~ccð!Þ is the Fourier transform of the complex signal function

~uuðtÞ, and � is the time delay between the two divided light

beams and is given by 2h/c. From (5), the complex degree of

temporal coherency is revealed as the one-side Fourier

transform of the power spectral density P(!) of the complex

signal function.

2.2. Spatial coherency

There are also two important assumptions in interference

theory for spatial coherence. One is that all infinitesimal parts

of the finite-size light source are assumed to be statistically

independent which means there are no correlations between

individual infinitesimal parts. The other assumption is that the

light from the infinitesimal part has a very narrow spectral

bandwidth, which is called quasi-monochromatic light

(Goodman, 1985). With Young’s interferometer, as shown in

Fig. 2, the degree of correlation between two points in a

wavefront can be investigated. The degree of correlation is

called the spatial coherency of the light. Using the inter-

ferometer, we can measure an interference pattern

constructed of two waves passing through two slits,

I Pð Þ ¼ K1 ~uu S1; t �
r1

c

� �
þ K2 ~uu S2; t �

r2

c

� ���� ���2
	 


t

; ð6Þ

where P is a point on the screen in Fig. 2, S1 and S2 are the

representations of the two slits, and r1 and r2 are the distances

from the two slits to the point P. If K1 and K2 are given by the

same value K, the evaluation of (6) reads

I Pð Þ ¼ 2K2I0 1þ ~��
r2 � r1

c

� ���� ��� cos 2� ���
r2 � r1

c
þ �

� �h i
: ð7Þ

In the above equation, I0 is the intensity without interference

as given by j ~uuðtÞj2, ~�� is the complex degree of spatial coher-

ency, ��� is the central frequency of the light, c is the speed of the

light in air, and � is the phase of the interferogram. Along the

screen, the intensity will be oscillated by a change in distance d

of the slits, because a change in d causes a variation of (r2� r1)

in (7). From the oscillation pattern, we can calculate the

spatial coherency, i.e. the degree of correlation between the

two light beams through the slits. The visibility is given by

V ¼
Imax � Imin

Imax þ Imin

¼ ~��
r2 � r1

c

� ���� ���: ð8Þ

The spatial coherency of the light from a finite-size source can

be estimated from the van Cittert–Zernike theorem as shown

(van Cittert, 1934; Zernike, 1938),

~uuðP1; tÞ ¼

Z
�

~AA�1

exp i 2� ��� t � R�1=c
� �� � �
R�1

d�; ð9Þ

�12ðdÞ ¼
�
~uuðP1; tÞ ~uu�ðP2; tÞ

�

¼

Z
�

Ið�Þ
exp i 2� ��� R�1ðdÞ � R�2ðdÞ

� �
=c

 �� �� �
R�1R�2

d�: ð10Þ

In the above equations, P1 and P2 are the slit positions, � is the

position of the infinitesimal light source, ~AA is the amplitude of

the radiation from the infinitesimal source, R�i is the distance

from the infinitesimal source to the slit i, ��� is the central

frequency of the light, and c is the speed of light in air. Let Y1

and Y2 be the coordinates of the slit positions P1 and P2. We

also set
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Figure 2
Configuration of the interference with a finite light source. The point O is
defined as the centre of the slits. d is the distance between the two square
apertures. R is the distance between points O and P on the screen. L is the
distance between the source and the diffracting mask. D is the distance
from the diffracting mask to the detection screen.



p ¼ ðY1 � Y2Þ=L; ð11Þ

 ¼ k Y2
1 � Y2

2

� �
=2L: ð12Þ

Then, (10) is reduced to

�12ðdÞ ¼ expði Þ
R
�

Ið�Þ expð�ikp�Þ d�; ð13Þ

where the wavenumber k equals 2�/	, and L is the distance

between the source and the slit. From (13), the complex

degree of spatial coherency is revealed as the Fourier trans-

form of the intensity distribution I of the light source.

The spatial variable � of the light source distribution in the

spatial coherency has the same role as the frequency � in the

power spectral density for the temporal coherency of the light.

The time delay between two wavefronts is changed by the

distance d between two slits in Young’s interferometer and by

the distance h in the Michelson interferometer. Each infini-

tesimal part of the source radiates light with each initial phase

and a finite spectral width in nature. However, the wavefront

generated from the collection of the infinitesimal parts shows

some correlation at certain distances in a wavefront, and is

known as partially coherent light. The spatial coherency is a

statistical effect of the source distribution, not a property of

each infinitesimal part.

3. Experiment

A schematic drawing of the interferometer at beamline 1B1 of

PLS is shown in Fig. 3. The radiation generated from the

electron beam in the storage ring propagates to the end of the

beamline. There are three optical mirrors which reflect only

visible light in the transport path of the radiation to the

interferometer. A commercial band-pass filter is used between

the slit and the detector in the interferometer. The FWHM

bandwidth of the optical band-pass filter is 10 nm. In the

experiment, 650 nm is selected by the band-pass filter in the

interferometer for producing the interferograms. A focusing

lens is used to overlap two light beams passing through each

slit in the CCD plane. The measured interferogram is shown in

Fig. 4 (diamonds). In the measurement, a diffracting mask with

two square apertures is used, and the width and length of the

apertures are both 3 mm. The distance L between the source

and the slit is 24.5 m, and the distance d between the two

apertures is 1.3 cm. To extract the source distribution infor-

mation from the interferogram, we need to compare the

measured result with a theoretical model. The formula for an

interferogram with a uniformly distributed source and two

rectangular apertures is proposed here as follows,

I ¼ 2
sinðuÞ

u

� �2

1þ
2 J1 vð Þ

v

����
���� cos �ð Þ

� �
; ð14Þ

with

u ¼ kax=R; v ¼ k�maxd=L; � ¼ kdx=R;

where the wavenumber k is 2�/	, a is the half width of the

square aperture, R is the distance between the centre (O) of

the slits and a point (P) on the screen, x is the distance of the

observation point from the screen centre, �max is the size of the

uniformly distributed source, L is the distance between the

source and the diffracting mask, and d is the distance between

the square apertures.

The solid line in Fig. 4 shows the theoretical prediction of

(14) for the uniformly distributed source from � = �336 mm to

� = 336 mm. To determine the effective half aperture width a

for the theory in (14), three lines are plotted using (14) in Fig. 4

with three different values of a. The dashed line in Fig. 4 is

plotted for a = 1 mm, the dashed-dot line is for a = 3 mm and

the solid line is for a = 1.5 mm. As may be seen, the experi-

mental result is well matched for a = 1.5 mm.

4. Numerical study and analysis for spatial coherency

The electron beam in the storage ring is thought to be a

Gaussian distribution (Naito & Mitsuhashi, 2006). However,

equation (14), derived for a uniformly distributed source, also

gives a good agreement with the experimental result obtained

at PLS. To determine the distribution of the electron beam,

numerical models of the electron beam are reported in this

section. The configuration for the interference with a finite-

size light source is given in Fig. 2. As shown in the inset of the

figure, the light source can be thought of as a collection of

many infinitesimal parts, which all radiate statistically inde-

pendently. Each source will form its own interferogram; they
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Figure 3
Schematic drawing of beamline 1B1 at PLS.

Figure 4
Measured interferogram (diamonds) at PLS and the theory (lines). The
solid line is plotted with a = 1.5 mm, the dashed line with a = 1 mm and
the dash-dotted line with a = 3 mm.



do not interfere at all. Thus, the final interferogram should be

summed in terms of its intensity, not its amplitude. The

intensity is always calculated as the square of the amplitude of

the light. For the numerical study of the interferogram, the

intensity on the screen should be calculated with the consid-

eration of all phase changes owing to the path difference from

the infinitesimal fragment of the light source to a point P on

the screen as given by

I�ðxÞ ¼
���X




exp 2� ð� � 
Þ2 þ L2
� �1=2
n�

þ ðx� 
Þ2 þD2
� �1=2

o
=	
����2; ð15Þ

where x is a point on the screen, � is the variable for an

infinitesimal fragment in the light source, 
 is the virtual point

in the finite size slit, L is the distance between the slit and the

source, D is the distance between the slit and the screen, and 	
is the wavelength of the light. In this numerical study, the

distance L between the source and the slit is 24.5 m, the slit

distance d is set to be 1.3 cm, the slit aperture a is 1.5 mm, and

the distance D between the slit and screen is 12 km. For short

distances D < 12 km in the numerical study, the diffraction

patterns from each slit do not overlap well on the screen. In

the theory, this distance is assumed to be an infinitely long

distance (Born & Wolf, 1999). In the experiment, a focusing

lens is needed to realise this infinitely long distance and make

the two light beams from the two slits overlap within a finite

distance in the beamline, as shown in Fig. 3.

The intensities with infinitesimal light sources should be

summed because all infinitesimal fragments of the source are

statistically independent. For example, there is no physical

reason why the radiation from an electron in the electron

beam circulating around a storage ring should be correlated

with the radiation from another electron. Thus, the final

intensity can be calculated as

I Xð Þ ¼
P
�

I�ðXÞ: ð16Þ

Final interferograms using 650 nm wavelength light generated

from a Gaussian distribution source and from a uniform

distribution source are shown in Fig. 5. Dots in Fig. 5 repre-

sents the result with the Gaussian source, and circles show the

uniformly distributed source. The solid line is the same as in

Fig. 4. In the inset of Fig. 5, the two source distributions used in

this numerical study are shown, with the Gaussian distribution

with a standard deviation of � = 210 mm (dots), and the

uniformly distributed source from x = �336 mm to x = 336 mm

(solid line). For both source distributions, the theory from (14)

is quite well matched with the interferograms from the

numerical models. An interferogram obtained from a source

with a Gaussian distribution of standard deviation � is similar

to that obtained by a uniformly distributed source of 3.2�
FWHM. As shown in Fig. 5, two different radiation source

shapes give almost the same interferogram, and it is difficult to

identify the shape of the source from one interferogram taken

at only a double slit with separation d. In the next section, we

will demonstrate a method of identifying the source shape

from several measurements with several double slits with

variable d.

5. Spatial coherency and beam size

5.1. Spatial coherency of synchrotron radiation at PAL

To investigate the spatial coherency of the light, the visi-

bility is measured using several diffracting masks with

different aperture distance d and the result is represented in

Fig. 6 (diamonds). The results obtained with the numerical

models for the visibility in terms of the distance d are also

shown in Fig. 6. The visibility with a Gaussian distribution is

represented by dots and that with the uniformly distributed

source by circles. All parameters except d in the numerical

study are the same as in Fig. 5. The coherency of the light from

the Gaussian distribution of the source shows a different

behaviour from the uniformly distributed source as shown in
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Figure 5
Interferograms obtained using the numerical model with Gaussian
distribution (dots) and uniform distribution (circles). The theory of the
interferogram is plotted with the solid line using equation (14). L =
24.5 m, D = 12 km, d = 1.3 cm. The half slit width a is 1.5 mm. The inset
shows the source distributions. The standard deviation of the Gaussian
source distribution (dots) is 210 mm and the region from x = �630 mm to
x = 630 mm is used in this numerical study. The uniformly distributed
source (solid line) has a FWHM of 672 mm.

Figure 6
Visibility versus d. The wavelength of light is 650 nm. Experimental
results are represented by diamonds. Results are shown from the
numerical study for the Gaussian (dots) and uniform distributions
(circles).



Fig. 6. The uniformly distributed source shows a bouncing

behaviour of the visibility (Born & Wolf, 1999). The measured

visibility shows no bouncing behaviour. Even though the

uniformly distributed source explains the interference pattern

well, the d dependence in the visibility rules out the uniformly

distributed source. The spatial coherency length is defined by

the slit distance with a visibility value of 0.88 (Born & Wolf,

1999). In Fig. 6, the spatial coherency length of 650 nm light at

PLS is obtained as 0.57 cm. For an X-ray beam, the direct

measurement of the spatial coherence length is difficult

because the order of the length is smaller than micrometres.

The spatial coherency of X-rays can be predicted using the

code used in this study. In Fig. 7, the spatial coherency of

0.1 nm X-rays is predicted to be 0.88 mm by the same

numerical model.

5.2. Evaluation of beam size

The remaining issue is to determine the standard deviation

� of the Gaussian distribution. As shown in Fig. 8, the beha-

viour of the visibility for different standard deviations of

Gaussian distribution sources is different. Results for Gaus-

sian distributions are presented for different standard devia-

tions of 160 mm (inverse triangles), of 210 mm (dots) and of

260 mm (triangles). The visibility in Fig. 8 for a larger source

decreases faster with the increase in the distance d. The

measured visibility of the interferogram is well matched with

the numerical result obtained with a Gaussian distribution

with a standard deviation of 210 mm. In conclusion, the elec-

tron source distribution at PLS is revealed as a Gaussian

distribution with a standard deviation of 210 mm.

6. Summary

The theory of interference is reviewed in order to understand

the temporal coherency and the spatial coherency of the light

generated from a collection of independent infinitesimal

sources. From the measurement results and numerical study,

the electron beam at PLS is revealed to be a Gaussian

distribution with a standard deviation of 210 mm. The spatial

coherency length of 650 nm light at PLS is measured to be

0.57 cm; that of 0.1 nm light is predicted to be 0.88 mm.
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Figure 7
Visibility versus d. The wavelength of light is 0.1 nm. Results for the
Gaussian distribution with a standard deviation of 210 mm (dots). All
simulation parameters are the same as in Fig. 5.

Figure 8
Results for the Gaussian distribution with different standard deviations:
160 mm (inverse triangles), 210 mm (dots) and 260 mm (triangles). All
simulation parameters are the same as in Fig. 5.
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