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An in-vacuum double-phase-plate diffractometer for performing polarization

scans combined with resonant X-ray diffraction experiments is presented. The

use of two phase plates enables the correction of some of the aberration effects

owing to the divergence of the beam and its energy spread. A higher rate of

rotated polarization is thus obtained in comparison with a system with only a

single retarder. Consequently, thinner phase plates can be used to obtain the

required rotated polarization rate. These results are particularly interesting for

applications at low energy (e.g. 4 keV) where the absorption owing to the phase

plate(s) plays a key role in the feasibility of these experiments. Measurements by

means of polarization scans at the uranium M4 edge on UO2 enable the

contributions of the magnetic and quadrupole ordering in the material to be

disentangled.
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1. Introduction

Resonant X-ray diffraction has become in the last decade a

powerful tool for the study of charge, magnetic and orbital

degrees of freedom in a wide variety of physical systems

(Gibbs et al., 1988; Murakami et al., 1998). By tuning the

energy of the incident photons to a given absorption edge it

provides site-specific information and also, in general, an

enhancement of the observed signal of several orders of

magnitude. The most striking examples are the resonances at

the uranium M4 and M5 edges (Isaacs et al., 1989). As a result,

even usually weak signals such as those from X-ray magnetic

scattering can be measured and give precious and comple-

mentary information to that obtained by neutron scattering

(Scagnoli et al., 2006; Fabrizi et al., 2009).

It is not always straightforward to establish the source of the

resonant diffracted intensities, however. Several contributions

might be present at the same time, such as the anisotropy of

the tensor of susceptibility (Templeton & Templeton, 1982). In

addition, different resonant events, e.g. dipole–dipole (E1–

E1), quadrupole–quadrupole (E2–E2) and dipole–quadrupole

(E1–E2), might be present (Paolasini et al., 1999). In order to

extract valuable information and to disentangle different

contributions that might be present at the same time, polar-

ization analysis of the scattered beam and scans of the scat-

tering wavevector, the so-called azimuthal scan, can be used.

Hill & McMorrow (1996) have given a full account of the

polarization dependence of the X-ray magnetic scattering

length.

While azimuthal scans often provide unique information for

disentangling different contributions, they are severely limited

by the set-up geometry and sample environment. In a

conventional set-up the diffraction geometry is limited to only

two of the four polarization channels. Rotating the polariza-

tion of the incident X-rays offers the appealing possibility to

access the other two polarization channels.

Recently, a new method of extracting information by means

of resonant X-ray scattering has been presented (Mazzoli et

al., 2007). It consists of studying the polarization dependence

of the diffracted intensities as a function of the direction of the

(linear) polarization of the X-rays impinging on the sample.

Such a scan is referred to as an incident polarization scan or, in

short, a ‘polscan’. A subtle interference between purely dipole

(E1–E1) and purely quadrupole (E2–E2) transitions, leading

to a phase shift between the respective scattering amplitudes,

was observed. This effect may be exploited to disentangle two

close-lying resonances that appear as a single peak in a

conventional energy scan, in this way allowing the different

multipole order parameters involved to be singled out and

identified. The same method was used in TbMn2O5 to refine

the spin orientation of the terbium ion substructure (Johnson

et al., 2008).

Resonant X-ray diffraction is mostly employed to study 3d

transition ions and 4f systems. Thus the energy range generally

used is between 3 and 10 keV. In this energy range the most

effective way to rotate the X-ray polarization is to use as a

phase plate a perfect crystal close to a Bragg reflection

(Golovchenko et al., 1986; Hirano et al., 1991). Dynamical



diffraction theory predicts that the plate shifts the relative

phases of two orthogonal polarization components. The phase

shift �’ depends on the thickness of the plate and on the

offset from the Bragg position. The main drawbacks are the

imperfect collimation and chromaticity which lead to some

depolarization. This can be reduced by using a thicker plate

which in turn may strongly absorb the beam. Even using

diamond, the lightest perfect crystal, at very low energies the

plate thickness represents a major constraint to the feasibility

of experiments. Absorption might dramatically reduce the

signal below the detection threshold. In an effort to minimize

the plate absorption, two diamonds, instead of a single one,

can be used. The two retarders compensate one another in

some of the depolarizing effects. With the same equivalent

thickness a better rate of rotated polarization is thus obtained

(Okitsu et al., 2001). Therefore, the same rotated polarization

rate can be achieved using two thinner diamonds.

To summarize, for resonant X-ray diffraction experiments

with incident polarization scans it is important to achieve the

best performance out of the phase plates by minimizing their

absorption and enhancing the rotated polarization rate. These

two requirements are both met by the combined use of two

phase plates.

The layout of the paper is as follows. x2 introduces the

Stokes parameters and describes how to perform a polariza-

tion scan by means of diamond phase plates. x3 illustrates the

advantages of using a double phase plate compared with a set-

up with a single phase plate. In x4 we describe the in-vacuum

diffractometer designed to align the two phase plates and to

perform polarization scans. x5 gathers the results obtained at

different energies and quantifies the different performances of

a single- and a double-phase-plate set-up. x6 describes a

practical application: polarization scans, performed with a pair

of 0.05 mm-thick diamonds, are employed at the uranium M4

edge in UO2 to disentangle the magnetic and quadrupolar

ordering which take place below the antiferromagnetic

ordering temperature. Finally, x7 contains our conclusions.

2. Stokes parameters and polarization scans

The polarization state of an X-ray beam is most easily

described in the Poincaré–Stokes notation (Blume & Gibbs,

1988; Born & Wolf, 1999). The Stokes parameters P1, P2 and

P3 describe the rate of linear polarization in the horizontal

plane, in a plane rotated by 45� around the beam with respect

to the horizontal, and circular polarization, respectively. For a

plane wave with electric field amplitudes Eh and Ev in the

horizontal and vertical planes, respectively, the Stokes para-

meters are given by (Fano, 1957; Blume & Gibbs, 1988)

P1 ¼
Eh

�� ��2� Ev

�� ��2
Eh

�� ��2þ Ev

�� ��2 ; ð1Þ

P2 ¼
Eh þ Ev

�� ��2� Eh � Ev

�� ��2
2 Eh

�� ��2þ Ev

�� ��2� � ; ð2Þ

P3 ¼
Eh þ iEv

�� ��2� Eh � iEv

�� ��2
2 Eh

�� ��2þ Ev

�� ��2� � : ð3Þ

We define the density matrix

� ¼ ð1=2Þ I 1þ r � Pð Þ;

where I = |Eh|2 + |Ev|2 is the intensity of the beam, P = (P1, P2,

P3) is the Stokes polarization vector, and r represents the

Pauli matrices

r1 ¼
1 0

0 �1

� �
; r2 ¼

0 1

1 0

� �
; r3 ¼

0 �i

i 0

� �
: ð4Þ

Note that this is not the standard convention for the Pauli

matrices.

The natural horizontal polarization of synchrotron radia-

tion from a planar undulator source is described by

q ¼ I
1 0

0 0

� �
; ð5Þ

i.e. (perfect) linear polarization in the horizontal plane. Let M

describe the diffraction process of an X-ray optical element,

such as a phase plate, a sample or a polarization analyzer. The

density matrix of the scattered beam is then given by

q0 ¼ M � q �My; ð6Þ

I 0 ¼ tr q0ð Þ; ð7Þ

P0 ¼
trðr � q0Þ

trð q0Þ
: ð8Þ

The transfer matrices for Thomson, non-resonant and reso-

nant magnetic scattering have been discussed in detail (Blume

& Gibbs, 1988; Hill & McMorrow, 1996).

We recall that the relative phase shift, �’, in the trans-

mitted beam between the X-rays with polarization perpendi-

cular (�) and parallel (�) to the scattering plane of the phase

plate is given by Giles et al. (1994),

�’ ¼ �
�

2

r 2
e

�2

FhFh

V2

�3 sin 2�B

��

� �
t; ð9Þ

where Fh and �B are the structure factor and the Bragg angle

of the excited reflection, re is the classical electron radius, V is

the unit cell volume, � is the X-ray wavelength, and t is the

thickness of the crystal. �� represents the misalignment

relative to the Bragg condition. It is therefore desirable to use

thin crystals (to minimize absorption), and not to work too

close to the Bragg condition, i.e. at �� much larger than the

divergence of the beam and the mosaicity of the crystal. At a

given wavelength, one thus has to select a crystal with a large

structure factor per unit volume, Fh /V, small mosaicity, and

low X-ray absorption. High-quality diamond crystals perfectly

fulfil these requirements. In particular, the [111] reflection

gives the best results as it has the largest value for the struc-

ture factor.

For an X-ray phase plate with vertical scattering plane, the

matrix is given by
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M0 /
1 0

0 expði�’Þ

� �
; ð10Þ

where �’ is given by (9). Upon rotating the scattering plane

through � around the beam, the matrix transforms as

M ¼ R �M0 � R
�1

¼ 1þ
½expði�’Þ � 1�

2

�
1� r2 sin 2�� r1 cos 2�

�
; ð11Þ

where

R ¼
cos� � sin�
sin� cos�

� �
: ð12Þ

The resulting polarization parameters are

P 01 ¼ 1þ ½cosð�’Þ � 1� sinð2�Þ2; ð13Þ

P 02 ¼ sinð�’=2Þ2 sinð4�Þ; ð14Þ

P 03 ¼ � sinð�’Þ sinð2�Þ: ð15Þ

We note that for all �’ and � the beam is perfectly polarized

[ðP 01Þ
2
þ ðP 02Þ

2
þ ðP 03Þ

2 = 1]. Furthermore, for �’ = 0, ��,

�2�, . . . , the beam is linearly polarized (P3 = 0). In this setting

the phase plate may be used to rotate the plane of polarization

around the beam. The direction of the photon polarization is

rotated by an arbitrary angle � = 2� (Fig. 1). For the

production of circularly polarized X-rays (�’ = ��/2),

following (15) the scattering plane has to be rotated around

the beam to form an angle � = 45� with the plane of the

synchrotron and ��circ ’ 2��, where �� represents the

misalignment relative to the Bragg condition for rotated linear

light.

3. Double phase plates compared with a single one

In this section we show that a double-phase-plate device can

be operated in four modes, one of them equivalent to a single

plate and each of the other three compensating for two of

three defects, which are the divergences in two perpendicular

directions and the achromaticity (energy dispersion).

The double-phase-plate diffractometer can be operated in

different modes: let the angle between the beam and the

lattice planes of a plate be

� ¼ � �B þ��ð Þ: ð16Þ

The sign of the angular offset �� from the Bragg angle �B is

the sign of the phase lag of the � polarization relative to the �
polarization. We observe that rotating �, i.e. the azimuth of the

plate about the beam, by 180� is equivalent to a sign change in

� [but not in �� defined in (16)]; and rotating � by 90�

exchanges the � and � polarization directions. Consider two

phase plates, subscripted 1 and 2, of equal thickness, tuned at

offsets |��1| = |��2| = ��. They produce the same phase lag,

and the signs of ��1 and ��2 should be such that those lags

add. In the first configuration �1 = �2, �1 = �2, then in the three

others �2 is rotated by 90� in sequence while leaving �1, �1, �2

unchanged. Call these configurations (I), (II), (III) and (IV)

(Fig. 2). Configuration (I) is equivalent to one single phase

plate whose thickness is the sum of both.

In configuration (III) (�1 = �2 + 180�), the � and � direc-

tions are again common to both plates, and, with �� being the

same, the phase lags add as in (I), but, when referred to a

common axis, �1 and �2 are now opposite. A ray inclined by 	�
in the common diffraction plane sees the lattice planes at the

angles
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Figure 1
Experimental set-up with a phase plate. X-ray propagation directions are
indicated by blue arrows, polarizations by red ones. Synchrotron light
arrives from the left, horizontally polarized (�). � = 2� is the rotation
angle of the incident polarization. 
 is the rotation angle of the
polarization analyzer crystal; the zero positions of the two angles,
corresponding to � and �0 polarizations, respectively, are represented by
dashed lines. The solid line is the rocking axis of the polarization analysis
crystal �PA . (Reproduced from Mazzoli et al., 2007.)

Figure 2
Configurations of the two phase plates, 1 and 2, as viewed when looking
along the beam. The configuration of plate 1 is drawn, then four possible
configurations of plate 2. Plate 1 is fixed. The difference in azimuths about
the beam, �2 � �1, is set at 0�, 90�, 180� and 270� for configurations (I),
(II), (III) and (IV), respectively. The angle �2 of plate 2 lattice planes with
the beam is set to �1 in configurations (I) and (III) but is different in (II)
and (IV) (see text). In these latter cases the � and � directions are
exchanged from one plate to the other, the diffraction plane being
defined by the beam and the � direction. In these two cases the rays
deviating by angles 	� and 	� from the mean ray, in the planes bisecting
the diffraction planes of the two plates, behave differently (see text).



� 01 ¼ �B þ ð�� � 	�Þ and � 02 ¼ �
�
�B þ ð�� þ 	�Þ

�
: ð17Þ

The offset errors �	� are opposite and so are the phase lag

errors, which cancel to first order. A ray inclined in the

perpendicular direction has no � offset to first order. There-

fore all angular deviations are ineffective to first order. If a ray

with the correct direction has an energy with a Bragg angle

� 0B = �B + 	�, we may substitute for �B in (16),

�1 ¼ �
0
B þ ð�� � 	�Þ and �2 ¼ �

�
� 0B þ ð�� � 	�Þ

�
: ð18Þ

This defect produces phase lag errors from both plates, which

add. It is not compensated for.

In configurations (II) and (IV), in order to add phase lags,

and because the � and � directions are exchanged between the

two plates, the signs of angular offsets should be opposite,

�1 ¼ �B þ�� and �2 ¼ �B ���: ð19Þ

Now a ray at a different energy undergoes two opposite phase

lag errors which compensate to first order. In (II) a ray

deviating by 	� in the horizontal plane in Fig. 2 travels at �
angles

� 01 ¼ �B þ ð�� � 	�=
ffiffiffi
2
p
Þ and � 02 ¼ �B � ð�� þ 	�=

ffiffiffi
2
p
Þ;

ð20Þ

so that the errors in offsets are opposite and compensate each

other. A ray deviating by 	� in the perpendicular direction

travels with angular errors whose relative signs are changed

from the above and do not compensate. In (IV) the role of

both directions is exchanged: compensation is therefore a

deviation as 	� but not for one as 	�. The results are

summarized in Table 1, where a (+) sign indicates a compen-

sation and a (�) sign indicates no compensation.

The discussion began with �2 = �1 in configuration (I). If

instead the initial setting is �2 = ��1, the properties of (I) and

(III) are simply exchanged, as those of (II) and (IV). A further

effect should be accounted for, the correlation between

chromaticity and angular deviation in the vertical plane,

produced by the monochromator. This correlation is modified,

and its sign possibly inverted, by any focusing element inserted

between the monochromator and the phase plates. This is not

discussed here.

The compensation of defects was demonstrated as effective

(Okitsu et al., 2001). A preliminary experiment was also

performed on ID20 (Giles et al., 1997), showing at 10.44 keV

an improvement of the polarization, in the extreme case, from

P 01 = �0.6 to P 01 = �0.8.

4. Double-phase-plate in-vacuum diffractometer

To maximize the amount of rotated and transmitted light, we

have developed an in-vacuum double-phase-plate diffract-

ometer, following the results of Okitsu et al. (2001). It is

currently installed at the magnetic scattering beamline ID20

(Paolasini et al., 2007) of the European Synchrotron Radiation

Facility, Grenoble, France.

Fig. 3 shows a schematic view of the diffractometer. It is

composed of six circles (�1, �2, �1, �2, � and 
) plus two

motorized translations (x and z) in order to align the two

retarders with suitable accuracy.

The fine positioning of the two diamond phase plates (to

ensure the correct phase shifts, ��1 and ��2) is obtained by

use of two Newport Microcontrole URS100 rotation stages

with resolution 0.2 mdeg (0.72 arcsec). The rotation stages are

equipped with Renishaw encoders having a resolution of

0.1 mdeg (0.36 arcsec). The rotation of the direction of the

polarization is obtained by two concentric Huber rotation

stages (model 410 for the first phase plate and 408 for the

second). Therefore, the two phase plates can be rotated about

the beam direction independently by sweeping angles �1 and

�2. This degree of freedom plays an important role as different

double-phase-plate configurations are possible in order to

correct, for each configuration, some but not all of the aber-

rations present in the X-ray beam (see x3). The �, 
, x and z

degrees of freedom are needed in order to have the �1, �2 axes

of rotation exactly parallel to the beam direction. There are

two translations (x and z) which form a left-handed ortho-

gonal reference system with the beam direction (y). Finally

two rotations, combined with the translations, enable the

rotation axis defined by the two Huber rotating stages to be

placed parallel to the beam direction.
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Table 1
Errors compensated for in configurations (I)–(IV).

(+): compensation; (�): no compensation. 	E is the energy error, 	� and 	� are
angular deviations (Fig. 2).

Configuration 	E 	� 	�

(I) (�) (�) (�)
(II) (+) (+) (�)
(III) (�) (+) (+)
(IV) (+) (�) (+)

Figure 3
Schematic of the double-phase-plate diffractometer. The two phase plates
can be mounted on the rotating stages �1 and �2 . The �1 and �2 circles
provide rotation about the X-ray beam. � and 
 enable the �1 and �2

rotation axes to be parallel to the beam. Finally, x and z (which coincides
with the � rotation axis for 
 = 0) allows the diffractometer to shift rigidly
along the respective directions.



The diamond phase plates have polished (110) faces. They

are aligned in the sample holder in a (110)–ð1�111Þ zone, so that

the ð1�111Þ reflection can easily be used in the symmetric Laue

geometry.

Diamonds of different thickness are currently available: 2�

0.05 mm, 2 � 0.1 mm, 2 � 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm,

0.72 mm, 1.2 mm. The phase plates (except 0.72 mm and

1.2 mm) were made from locally dislocation-free highly pure

(nitrogen content less than 0.1 p.p.m.) type-IIa high-pressure

high-temperature material, manufactured by Element Six

Technologies, Johannesburg, South Africa.

Fig. 4 shows white-beam topography of the new high-quality

diamond compared with an old phase plate.

4.1. Thickness of the phase plate

When selecting the material, thickness and Bragg reflection

of the phase plate for a given working energy, one has to

compromise between absorption and the quality of polariza-

tion. The absorption depends on the photon energy and

material only and is thus straightforward to calculate. The

quality of polarization depends on more parameters: the use

as quarter- or half-wave plate (i.e. phase shift �’ = �/2 or �),

the divergence and bandwidth of the incident beam, and the

crystal quality, see (9). One way of quantifying this problem is

to specify the desired working point ��, and to calculate the

corresponding thickness,

t ¼ �
2

�

�2

r 2
e

V2

FhF �hh

���’

�3 sinð2�BÞ


 �
; ð21Þ

and compare it with the attenuation length. Modifying the

working point �� or the required phase shift �’ multiplies

the entire curve by a corresponding factor, but does not

change the energy dependence.

As an example, we compare diamond, silicon and germa-

nium quarter-wave plates (�’ = �/2), choosing a working

point at �� = 0.02� (see Fig. 5). Except for the lowest photon

energies E < 3.5 keV, C* (diamond) offers the best perfor-

mance. At 4.35 keV, a phase plate of thickness 80 mm gives an

X-ray path length in the crystal of 	120 mm, compared with

an attenuation length of 	100 mm. Note that the optimum

thickness for a silicon or germanium phase plate below

3.5 keV is well below 10 mm. Beryllium has a high potential as

phase plate material (Giles et al., 1995). To date, however,

single crystals of sufficient quality are not widely available. For

a given material, e.g. diamond, the choice of the Bragg

reflection remains. We find that for low energies the (111)

reflection gives the best performance, whereas for higher

energies the (220) reflection performs slightly better, as the

smaller structure factor is compensated by the larger Bragg

angle.

5. Results

In the present work we present systematic checks with various

energies and plate thicknesses. Three different X-ray incident

energies were chosen: 3.720, 5.570 and 7.200 keV, which lie

close to the uranium M4 , vanadium K and iron K edge,

respectively. In order to measure the rotated polarization rate

for each energy the appropriate polarization analyzer crystal

was selected [Au(1 1 1), graphite (0 0 4), MgO (2 2 2),
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Figure 5
Ratio of the effective path to attenuation length for selected materials as
a function of the incident X-ray energy. The effective path is evaluated
assuming the phase plate is used under symmetric Laue reflection
conditions. C*, Si and Ge stand for diamond, silicon and germanium,
respectively.

Figure 4
White-beam topography of the (220) reflection for two typical phase
plates made from synthetic diamonds produced by the high-pressure
high-temperature method. The top panel refers to an older plate made
from type-Ib material (nitrogen-rich, 100 p.p.m.); it shows mainly images
of dislocations and strain fields related to growth sector boundaries. The
lower panel shows a recently produced plate made from type-IIa material
(very low nitrogen concentration, less then 0.1 p.p.m.). Only a few
dislocation lines, related to stacking faults which are out of contrast, are
present.



respectively]. Incoming X-ray energies match Bragg’s law for

the polarization crystal d-spacings in order to have the Bragg

angle equal to 45� to fully suppress the polarization compo-

nent in the polarizer scattering plane.

The polarization state of the X-rays after the phase plate(s)

is evaluate by means of

I 0ð
Þ ¼ I0=2ð Þ 1þ P 01 cos 2
þ P 02 sin 2
ð Þ; ð22Þ

where I0 and I 0 represent the intensity of the X-rays before

and after the phase plate(s), 
 represents the rotation of the

analyzer crystal scattering plane about the incoming beam

direction (Fig. 1). P 01 and P 02 are two of the three Stokes

parameters introduced previously (primes here indicate that

they are evaluated after the retarders). Several rocking curves

of the polarizer crystal are collected as a function of 
. The

integrated intensities are then used to estimate I0, P 01 and P 02.

The estimated values of the rotated linear polarization (so-

called half-wave mode) for the different photon energies and

phase plate configurations are given in Tables 2–5. Config-

uration (I), equivalent to a single phase plate, gives the

poorest rotated polarization rate for all the different incident

energies. Configurations (II) and (IV) provide the best results

with an improvement in the transmitted polarization rate of

roughly 10%. The main error corrected by the presence of the

two phase plates is the energy spread of the X-rays coming

from the monochromator (see Table 2).

This is illustrated in Fig. 6. Plate 1 is fixed as out-phasing by

�/2 and transforming the linear polarization into circular. The

� angle of plate 2 is scanned. When it passes through positions

out-phasing by ��/2 the linear polarization is either rotated

by �/2 (at the minimum of P 01) or restored to its initial direc-

tion (at the maximum). The data are intensities measured in

the unrotated channel, see (22) with 
 = 0, suitably normalized

and shifted. Cases (I) and (IV) are shown, together with fitted

curves. The fitting function is obtained from P 01, which depends

on �� through (9) and (13), by the following procedure.

Equation (9) is extended to represent the total out-phase from

plates 1 and 2, so that P 01 is now a function of ��1 and ��2 (see

details in Appendix B). That function is convoluted with two

resolution functions in (��1 + ��2), (��1���2). Two angular

spreads are then used, just one being compensated. Since this

calculation goes beyond the first order considered in x3, some
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Table 2
Polarization rate (in terms of the Stokes parameters P 01 and P 02) obtained
at E = 3.720 keV with double-phase-plate configurations as illustrated in
Fig. 2.

Each phase plate has a thickness t = 0.05 mm. Explicit values for the angles �1,
�2, �1 and �2 are also given. The total effective thickness t 0 = t/cos� = 0.17 mm.
The transmitted beam is 6% of the incident one.

Energy (keV) �1 �2 �1 �2 P 01 � 0.2 P 02 � 0.2

3.720 (I) 45 45 +55 +55 �0.87 0.00
3.720 (II) 45 135 +55 �55 �0.95 0.02
3.720 (III) 45 45 +55 �55 �0.91 0.01
3.720 (IV) 45 �45 +55 �55 �0.97 0.03

Table 3
Polarization rate (in terms of the Stokes parameters P 01 and P 02) obtained
at E = 5.570 keV with double-phase-plate configurations as illustrated in
Fig. 2.

Each phase plate has a thickness t = 0.1 mm. The total effective thickness t 0 =
t/cos� = 0.24 mm, resulting in a transmitted beam which is 32% of the incident
one.

Energy (keV) �1 �2 �1 �2 P 01 � 0.2 P 02 � 0.2

5.570 (I) 45 45 +33 +33 �0.89 0.01
5.570 (II) 45 135 +33 �33 �0.96 0.03
5.570 (III) 45 45 +33 �33 �0.92 0.01
5.570 (IV) 45 �45 +33 �33 �0.99 0.03

Table 4
Polarization rate (in terms of the Stokes parameters P 01 and P 02) obtained
at E = 7.200 keV with double-phase-plate configurations as illustrated in
Fig. 2.

Each phase plate has a thickness t = 0.2 mm. The total effective thickness t 0 =
t/cos� = 0.44 mm. The total transmitted beam is 39% of the incident one.

Energy (keV) �1 �2 �1 �2 P 01 � 0.2 P 02 � 0.2

7.200 (I) 45 45 +24.5 +24.5 �0.76 �0.06
7.200 (II) 45 135 +24.5 �24.5 �0.88 �0.05
7.200 (III) 45 45 +24.5 �24.5 �0.78 �0.06
7.200 (IV) 45 �45 +24.5 �24.5 �0.89 �0.05

Table 5
Polarization rate (in terms of the Stokes parameters P 01 and P 02) obtained
at E = 7.200 keV with double-phase-plate configurations as illustrated in
Fig. 2.

The two phase plates have a thickness of 0.3 mm (closer to the source) and
0.2 mm, respectively. The total effective thickness t 0 = t/cos� = 0.55 mm. The
transmitted beam is 31% of the incident one.

Energy (keV) �1 �2 �1 �2 P 01 � 0.2 P 02 � 0.2

7.200 (I) 45 45 +19.5 +19.5 �0.81 �0.04
7.200 (II) 45 135 +19.5 �19.5 �0.89 �0.01
7.200 (III) 45 45 +19.5 �19.5 �0.85 �0.02
7.200 (IV) 45 �45 +19.5 �19.5 �0.96 �0.02

Figure 6
Intensities measured at 5.57 keV with a couple of 0.1 mm phase plates in
the unrotated linear polarization channel. Configurations I and IV are
represented by (red) squares and (blue) circles, respectively. They are
scaled so as to represent P 01. The two data sets are shifted by 0.03� for
clarity. Phase plate 1 delivers a circular polarization and the abscissa is the
� angle of phase plate 2. Lines are fits with a double convolution of the
ideal function (see text).



small depolarization arises even from the compensated

spread. In configuration (I) the compensated spread is forced

to 0, while the uncompensated one, owing to all effects, 	E, 	�,

	� (see Table 1), is 0.0025 (2)� root mean square (r.m.s.). In

configuration (IV), the uncompensated 	� is 0.0015 (2)� r.m.s.

and the compensated (	E2 + 	�2)1/2 is 0.0020 (4)� r.m.s. Fig. 7

shows the Stokes parameters measured in configuration (IV),

with ��1, ��2 adjusted to the total half-wave shift and rotating

�1 and �2 together (� = 2�1, see end of x2). Fig. 8 compares the

single-plate configuration with the best result obtained with

the two-phase-plate configuration. In the examined energy

range the double-diamond set-up provides a 10% improve-

ment compared with a single-diamond system.

In order to underline the importance of this result, which at

first glance might not justify the effort of realising a more

complicated set-up, it is interesting to calculate the thickness

required by a single-phase-plate system to produce a 10%

higher polarization rate. It is shown in Appendix A that the

depolarization produced by a phase plate is inversely

proportional to the square of its effective thickness. Using the

value for P 01 in Table 2, taken at 3.720 keV, the required

thickness t
I to have the same polarization rate as configuration

(IV) with thickness tIV would be

t
I ¼ t IV

P 01;I þ 1

P 01;IV þ 1

� �1=2

¼ 2:2 t IV: ð23Þ

t
I is obtained considering that given the polarization rate P 01;I
corresponding to the thickness tI = tIV we are looking for the

thickness (t
I) that will produce the wanted polarization rate

P 01;IV. The absorption factor for that t
I would be roughly 500,

about the square of the absorption factor 17 occurring for tIV.

Therefore, the use of the double phase plates represents a

significant advantage.

6. Resonant X-ray diffraction on UO2

In order to test the double-phase-plate set-up we performed a

resonant X-ray diffraction experiment on a sample of UO2 at

the U M4 edge (3.728 keV). Below the Néel temperature, TN =

31 K, it assumes a complicated magnetic structure of the 3k

variety (Willis & Taylor, 1965; Frazer et al., 1965; Burlet et al.,

1986). Important theories have been developed since the late

1960s (Allen, 1968a,b; Sasaki & Obata, 1970; Siemann &

Cooper, 1979; Solt & Erdös, 1980) up until more recent times

(Kudin et al., 2002; Laskowski et al., 2004; Magnani et al.,

2005). All these theories emphasize the importance of the

interplay between the Jahn–Teller and quadrupolar interac-

tions in UO2. The evidence for the ordering of the quadru-

poles was provided recently by resonant X-ray diffraction at

the uranium M4 edge (Wilkins et al., 2006).

Following Wilkins et al. (2006) we write the resonant

diffraction amplitude for an electric dipole (E1) event as

f res
E1 ¼ f0 þ if1 þ f2; ð24Þ

where the terms fn are given by the following equations,

f0 ¼ "̂"""""f � "̂"""""i F11 þ F1�1ð Þ; ð25Þ

f1 ¼ ð"̂"""""f � "̂"""""iÞ � ẑz F11 � F1�1ð Þ; ð26Þ

f2 ¼ "̂"""""f �
eTT � "̂"""""i 2F10 � F11 � F1�1ð Þ: ð27Þ

F1q is the resonant energy factor (Hill & McMorrow, 1996), ẑz is

the direction of the magnetic moment andeTT is a tensor of rank

two. "̂"""""i and "̂"""""f represent the direction of the incident and

diffracted photon polarization, respectively.

The term f0 represents Thomson (charge) scattering and

equals zero for space-group forbidden reflections. The term f1

probes a tensor of rank one, with odd time-reversal symmetry

arising from a net spin polarization. The term f2 represents a

traceless symmetric tensor of rank two that can arise from an

asymmetry intrinsic to the crystal structure (Templeton scat-

tering or anisotropic tensor susceptibility) or it can be due to

antiferro order of electric quadrupole moments. It possesses a

time-even symmetry. It can be shown (Wilkins et al., 2006) that

the reflections arising from quadrupolar ordering coincide
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Figure 7
Polarization scan performed on the direct beam at 5.5 keV with a couple
of 0.1 mm phase plates. Red squares, blue circles and magenta diamonds
represent the measured values of P 01, P 02 and Plin = ½ðP 01Þ

2
þ ðP 02Þ

2
�
1=2,

respectively.

Figure 8
Obtained polarization rate as a function of the incident X-ray energy.
Each energy requires a different pair of phase plates.



with those due to magnetic dipole ordering. The experimental

challenge for Wilkins et al. (2006) was therefore to separate

the two contributions: magnetic dipole and electric quadru-

pole. They achieved this result by means of diffracted polar-

ization analysis. Indeed, for �-polarized incident X-rays (the

polarization direction is perpendicular to the diffraction

plane) all the scattering from the magnetic structure is in the

rotated channel �–�0, while the signal from the electric

quadrupole might be present in both rotated �–�0 and unro-

tated �–�0 channels.

In order to test the double-phase-plate set-up under ‘real’

conditions we performed first the same experiment as carried

out by Wilkins et al. (2006) by measuring the azimuthal

dependence (scan about the scattering wavevector) of the

(112) forbidden reflection in both �–�0 and �–�0 channels.

Then we took advantage of the possibility to change the

direction of the incident photon polarization. The goal of

these measurements was not to provide better evidence for the

quadrupole ordering but to check the sensitivity of the

method, given the remarkable difference in the strength of the

two signals.

Results from the azimuthal scan follow the expected

dependence and are displayed in Fig. 9. The contributions of

two transverse domains are taken into account as an inco-

herent sum of intensities. We show the ratio �–�0 over �–�0

here as first it gives a straightforward estimate of the magni-

tude of the two resonant processes. This will play an important

role in the analysis of the polarization scans. Secondly, some

systematic errors such as the change in the absorption of the

sample and a partial illumination of the sample, which might

occur as a function of the azimuthal angle, are eliminated by

the ratio. These errors are normally significant for off-specular

reflections.

The use of phase-plate polarimetry and polarization scans

enables the experimenter to eliminate such errors. The

measurements are performed with the sample at rest; the

sample does not move and only the direction of the incident

polarization together with the position of the analyzer crystal

is changed. Moreover, polarization scans are very sensitive to

the simultaneous presence of two sources of scattering that

may (Mazzoli et al., 2007) or may not, as we will see with UO2,

interfere. In this section, unprimed values for P1 and P2 refer

to the Stokes parameters describing the polarization state of

the beam after the phase plates, and primed values refer to the

polarization state of the beam after being diffracted by the

sample (see Fig. 1).

We have selected three different positions in azimuth,  =

�95�,  = �11� and  = 32�. At each position a polarization

scan was performed.  = �95� was chosen as no quadrupolar

signal is expected,  = �11� is where the quadrupolar scat-

tering is maximum and  = 32� is where the ratio between the

quadrupole and the magnetic signal is expected to be

maximum (compatible with our experimental geometry

limitations). Results are presented in Figs. 10, 11 and 12 for the

three azimuthal angles, respectively. For each direction of the

polarization (represented by the angle �) the analyzer stage is

rotated discretely (angle 
) and the polarization analyzer is

rocked. The set of integrated intensities obtained by the latter

scans are subsequently fitted using (22). The fit enables the

extraction of the P 01 and P 02 Stokes parameters. The experi-

mental values of the Stokes parameters are then compared

with their expected values. The latter can be readily calculated

once the magnetic and quadrupolar structure factors are

known. An instructive example on how to perform such a

calculation can be found by Fernández-Rodrı́guez et al. (2008).

For  = �95�, no quadrupole contribution is expected and

therefore all the observed intensity comes from magnetic

scattering. Comparing predictions with experimental results is

straightforward. Indeed the agreement is rather good as can

be seen in Fig. 10.

Now we turn our attention to the other two polarization

scans which are illustrated in Figs. 11 and 12. At first we tried

to fit the data only with the magnetic contribution (continuous

line). The agreement with experimental results is already

remarkable. Only minor differences are visible. However,

these tiny differences are exactly the signature of the presence

of the quadrupolar ordering. Including the quadrupolar

contribution to the calculated scattering amplitude leads to an

improvement in the description of the experimental data. The

model calculation including both contributions (without

interference) is represented in the figures by a dashed line.

One possible explanation for the lack of interference is that

this term may be cancelled between two domains. The calcu-

lations are performed by utilizing a single parameter, which

represents the ratio between the quadrupole and magnetic

contribution in the scattering amplitude. In our case this

parameter has been determined by the azimuthal angle scan

illustrated in Fig. 9. The small difference between the two

models reflects the weakness of the quadrupole scattering

compared with the magnetic one. From Fig. 9 one can readily

estimate that the contribution of quadrupole scattering barely

exceeds 4% of the magnetic signal. Nevertheless, such a small

signal gives a sizeable contribution in the polarization scans.
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Figure 9
Azimuthal angle dependence for the (112) reflection at the uranium M4

edge at 12 K. The ratio �–�0 over �–�0 is shown. Circles represent the
experimental data, while the line represents the calculated ratio
according to the magnetic and quadrupolar ordering as given by Wilkins
et al. (2006).



To conclude, with the use of polarization scans we have

disentangled the magnetic and quadrupole contributions of

the diffracted intensity. This result proves important as it

shows the sensitivity of this technique, even in the case where

one signal is only a few percent of the other.

7. Conclusions

The use of a double-phase-plate set-up produces a 10% higher

rotated polarization rate compared with a system with a single

phase plate of equal total thickness over the energy range

examined (3.7–7.2 keV). These results are particularly inter-

esting for resonant X-ray scattering applications, especially

at the uranium M edges, where, to obtain the same rate of

rotated polarization, the transmitted beam is attenuated 50

times less thanks to the presence of the two retarders.

In order to test the set-up in the most interesting energy

range, we have performed a resonant X-ray scattering

experiment on UO2 at the uranium M4 edge. By taking

advantage of the possibility to rotate the direction of the

incoming photon polarization we show that it is possible to

disentangle the quadrupole and magnetic diffraction contri-

butions. Therefore, polarization scans might be regarded

as a complementary and/or alternative means to investigate

samples by use of X-ray diffraction. Whilst this approach

shows all its benefits when interference occurs between two

scattering events, this is not the case for UO2 .

APPENDIX A
Phase plate thickness and depolarization effects

If we recall the expression for P 01 given in (13), with ’ = �’ to

ease notation, we have

P 01 ¼ 1þ ½cosð’Þ � 1� sinð2�Þ2; ð28Þ

to have linear light rotated by 90�, where � will be ��/4 and

’* = ��. If we expand P 01 in the vicinity of ’* we have

P 01ð	’Þ ’ �1þ ð1=2Þð	’Þ2; ð29Þ

where 	’ represents a distribution about the actual setting ’*.

Then,

hP 01i ’ �1þ ð1=2Þh	’2
i: ð30Þ

Now if we rewrite (9) as ’ = kt/�� with k constant and we

differentiate on both sides, we obtain

	’ ¼ �
kt

ð��Þ2
	ð��Þ ¼ �

’2

kt
	ð��Þ: ð31Þ

Looking back at (30) we obtain
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Figure 11
Polarization scan for the (112) reflection at the uranium M4 edge at 12 K,
 = �11�. Red squares, blue circles and magenta diamonds represent the
measured values of P 01, P 02 and Plin = ½ðP 01Þ

2
þ ðP 02Þ

2
�
1=2, respectively. The

lines, following the same colour code, represent the calculated Stokes
parameters according to the magnetic (continuous lines) ordering and
magnetic plus quadrupolar (dashed lines) ordering as proposed by
Wilkins et al. (2006).

Figure 12
Polarization scan for the (112) reflection at the uranium M4 edge at 12 K,
 = 32�. Red squares, blue circles and magenta diamonds represent the
measured values of P 01, P 02 and Plin = ½ðP 01Þ

2
þ ðP 02Þ

2
�
1=2, respectively. The

lines, following the same colour code, represent the calculated Stokes
parameters according to the magnetic (continuous lines) and magnetic
plus quadrupolar (dashed lines) ordering as proposed by Wilkins et al.
(2006).

Figure 10
Polarization scan for the (112) reflection at the uranium M4 edge at 12 K,
 = �95�. Red squares, blue circles and magenta diamonds represent the
measured values of P 01, P 02 and Plin = ½ðP 01Þ

2
þ ðP 02Þ

2
�
1=2, respectively. The

lines, following the same colour code, represent the calculated Stokes
parameters according to the magnetic (continuous lines) and magnetic
plus quadrupolar (dashed lines) ordering as proposed by Wilkins et al.
(2006).



hP 01i ¼ �1þ
’4

2k2t2
h	ð��Þi2; ð32Þ

which shows that the degradation in the produced rotated

light is inversely proportional to the square of the effective

thickness of the retarder.

APPENDIX B
Convolution of angular spreads

The aim is to calculate the Stokes parameter P 01 for a beam

made of angularly spread rays, after going through two phase

plates. Two approximations are made: first, the anomalous

absorption close to the Bragg angle is neglected; second, the

correlation between the energy deviation 	E and the vertical

deviation 	� is ignored, though such a correlation is produced

by the monochromator. Equation (9) is rewritten for two

plates as

�’ ¼
K1

��1

þ
K2

��2

: ð33Þ

K1 is different from K2 if the plate thicknesses are different.

Through (13) and (33) P 01 is a function of (��1, ��2) and, since

the total intensity is invariant for small ��, the value of P 01 is

obtained by summation of its values for individual rays. We

represent the beam as a Gaussian distribution in (��1 + ��2)

and (��1 � ��2),

1

�sd
exp �

ð��1 þ��2Þ
2

2s2
þ
ð��1 ���2Þ

2

2d 2


 �
; ð34Þ

where s and d are r.m.s. spreads in the two directions. The sum

of �� is not compensated whereas the difference is. They

represent deviations along horizontal 	�, vertical 	� and

energy 	E, combined as indicated in Table 1; energy is

converted to angles through Bragg’s law. The integration of P 01
over the resolution function (34) is performed numerically.

We wish to thank R. Caciuffo for fruitful discussions and for

providing the UO2 sample. We also thank J. Hartwig who

provided the phase plates and carried out their topographic

characterization.

References

Allen, S. J. (1968a). Phys. Rev. 166, 530–539.
Allen, S. J. (1968b). Phys. Rev. 167, 492–496.
Blume, M. & Gibbs, D. (1988). Phys. Rev. B, 37, 1779–1789.
Born, M. & Wolf, E. (1999). Principle of Optics, 7th ed. Cambridge

University Press.
Burlet, P., Rossat-Mignod, J., Quezel, S., Vogt, O., Spirlet, J. C. &

Rebizant, J. (1986). J. Less Common Metals, 121, 121–139.

Fabrizi, F., Walker, H. C., Paolasini, L., de Bergevin, F., Boothroyd,
A. T., Prabhakaran, D. & McMorrow, D. F. (2009). Phys. Rev. Lett.
102, 237205.

Fano, U. (1957). Rev. Mod. Phys. 29, 74–93.
Fernández-Rodrı́guez, J., Lovesey, S. W. & Blanco, J. A. (2008). Phys.

Rev. B, 77, 094441.
Frazer, B. C., Shirane, G., Cox, D. E. & Olsen, C. E. (1965). Phys. Rev.

140, A1448–A1452.
Gibbs, D. G., Harshman, D. R., Isaacs, E. D., McWhan, D. B., Mills, D.

& Vettier, C. (1988). Phys. Rev. Lett. 61, 1241–1244.
Giles, C., Malgrange, C., de Bergevin, F., Vettier, C., Yakhou, F. &

Stunault, A. (1997). Unpublished.
Giles, C., Malgrange, C., Goulon, J., de Bergevin, F., Goulon, J.,

Baudelet, F., Fontaine, A., Vettier, C. & Freund, A. (1995). Nucl.
Instrum. Methods Phys. Res. A, 361, 354–357.

Giles, C., Malgrange, C., Goulon, J., de Bergevin, F., Vettier, C.,
Dartyge, E., Fontaine, A., Giorgetti, C. & Pizzini, S. (1994). J. Appl.
Cryst. 27, 232–240.

Golovchenko, J. A., Kincaid, B. M., Levesque, R. A., Meixner, A. E.
& Kaplan, D. R. (1986). Phys. Rev. Lett. 57, 202–205.

Hill, J. P. & McMorrow, D. F. (1996). Acta Cryst. A52, 236–244.
Hirano, K., Izumi, K., Ishikawa, T. & Annaka, S. (1991). Jpn. J. Appl.

Phys. 30, L407–L410.
Isaacs, E. D., McWhan, D. B., Peters, C., Ice, G. E., Siddons, D. P.,

Hastings, J. B., Vettier, C. & Vogt, O. (1989). Phys. Rev. Lett. 62,
1671–1674.

Johnson, R. D., Bland, S. R., Mazzoli, C., Beale, T. A. W., Du, C.-H.,
Detlefs, C., Wilkins, S. B. & Hatton, P. D. (2008). Phys. Rev. B, 78,
104407.

Kudin, K. N., Scuseria, G. E. & Martin, R. L. (2002). Phys. Rev. Lett.
89, 266402.

Laskowski, R., Madsen, G. K. H., Blaha, P. & Schwarz, K. (2004).
Phys. Rev. B, 69, 140408.

Magnani, N., Santini, P., Amoretti, G. & Caciuffo, R. (2005). Phys.
Rev. B, 71, 054405.

Mazzoli, C., Wilkins, S. B., Matteo, S. D., Detlefs, B., Detlefs, C.,
Scagnoli, V., Paolasini, L. & Ghigna, P. (2007). Phys. Rev. B, 76,
195118.

Murakami, Y., Hill, J. P., Gibbs, D., Blume, M., Koyama, I., Tanaka,
M., Kawata, H., Arima, T., Tokura, Y., Hirota, K. & Endoh, Y.
(1998). Phys. Rev. Lett. 81, 582–585.

Okitsu, K., Ueji, Y., Sato, K. & Amemiya, Y. (2001). J. Synchrotron
Rad. 8, 33–37.

Paolasini, L., Detlefs, C., Mazzoli, C., Wilkins, S., Deen, P. P.,
Bombardi, A., Kernavanois, N., de Bergevin, F., Yakhou, F., Valade,
J. P., Breslavetz, I., Fondacaro, A., Pepellin, G. & Bernard, P. (2007).
J. Synchrotron Rad. 14, 301–312.

Paolasini, L., Vettier, C., de Bergevin, F., Yakhou, F., Mannix, D.,
Stunault, A., Neubeck, W., Altarelli, M., Fabrizio, M., Metcalf, P. A.
& Honig, J. M. (1999). Phys. Rev. Lett. 82, 4719–4722.

Sasaki, K. & Obata, Y. (1970). J. Phys. Soc. Jpn, 28, 1157–1167.
Scagnoli, V., Staub, U., Mulders, A. M., Janousch, M., Meijer, G. I.,

Hammerl, G., Tonnerre, J. M. & Stojic, N. (2006). Phys. Rev. B, 73,
100409(R).

Siemann, R. & Cooper, B. R. (1979). Phys. Rev. B, 20, 2869–2885.
Solt, G. & Erdös, P. (1980). Phys. Rev. B, 22, 4718–4726.
Templeton, D. H. & Templeton, L. K. (1982). Acta Cryst. A38, 62–67.
Wilkins, S. B., Caciuffo, R., Detlefs, C., Rebizant, J., Colineau, E.,

Wastin, F. & Lander, G. H. (2006). Phys. Rev. B, 73, 060406.
Willis, B. & Taylor, R. (1965). Phys. Lett. 17, 188–190.

research papers

J. Synchrotron Rad. (2009). 16, 778–787 Valerio Scagnoli et al. � Linear polarization scans for resonant X-ray diffraction 787

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kv5072&bbid=BB33

