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Compact high-resolution X-ray spectrometers with a one-dimensional tempera-

ture gradient at the analyzer crystal are considered. This gradient, combined

with the use of a position-sensitive detector, makes it possible to relax the usual

Rowland-circle condition, allowing increased space at the sample position for a

given energy resolution or arm radius. Thus, for example, it is estimated that

�meV resolution is possible with a 3 m analyzer arm and 200 mm clearance

between the sample and detector. Simple analytic formulae are provided,

supported by excellent agreement with ray-tracing simulations. One variation of

this method also allows the detector position sensitivity to be used to determine

momentum transfer, effectively improving momentum resolution without

reducing (slitting down) the analyzer size. Application to medium-resolution

(�10–100 meV) inelastic X-ray scattering spectrometers with large angular

acceptance is discussed, where this method also allows increased space at the

sample. In some cases the application of a temperature gradient can improve the

energy resolution even with a single-element detector.

Keywords: X-ray spectrometers; analyzer crystals; inelastic X-ray scattering;
atomic dynamics; electronic dynamics.

1. Introduction

Non-resonant inelastic X-ray scattering (IXS), with a resolu-

tion of less than �100 meV, is a rapidly growing field. In the

high (meV) resolution limit, one has access to atomic

dynamics, which are important in many phase transitions, and

especially in the context of modern materials science, where

the phonons are a crucial component of correlated systems.

Atomic dynamics are also intimately connected with the

behavior and structure of disordered materials such as liquids

and glasses. Medium-resolution spectrometers, with higher

intensity from relaxed resolution, can be used to measure

electronic dynamics, with direct access to band structure, the

multi-polarity of the electronic transitions, and to possible

correlations between electronic transitions (e.g. dispersing

excitations such as orbitons). The combination of improved

instrumentation and increased access to sophisticated calcu-

lations makes measurement of the dynamic structure factor

for both atoms and electrons an increasingly attractive

endeavor, especially if high resolution can be obtained.

There are presently many efforts under way to improve the

present generation of spectrometers, and to design the next

generation of instruments, especially with new third-genera-

tion sources coming on line. In this context, the relatively

recent suggestion of ‘dispersion compensation’ by Huotari and

co-workers (Huotari et al., 2005), allowing improved resolu-

tion with a fixed-size spectrometer, or a smaller spectrometer

for a fixed resolution, is of great interest. In principle, this is

particularly true for high-resolution (�meV) spectrometers

(Dorner & Peisl, 1983; Sette et al., 1998; Burkel, 1991; Baron et

al., 2000; Sinn et al., 2001) where the size of the 2� (analyzer)

arms can be�10 m, which is very large given the limited space

on the experimental floor of synchrotron radiation facilities.

However, the work of Huotari et al. focused primarily on

medium (20–100 meV) resolution, and is difficult to extend to

�meV resolution because clearance between the sample and

the detector becomes extremely restrictive. In the scheme

suggested by Huotari et al., this clearance, d, scales as d =

4"R2/p where R is the arm radius, " = �E/E is the fractional

energy resolution, and p is the detector pixel size. Thus, for

example, taking R = 3 m, p = 0.1 mm, �E = 0.3 meV at E =

26 keV gives d = 4.2 mm, which severely limits the space for

sample environment (one would really like �100 mm clear-

ance, or more).

The present paper discusses how to achieve �meV reso-

lution with a short analyzer arm, while retaining a relatively

large (200 mm) clearance between the detector and the

sample. We show that the application of a one-dimensional
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temperature gradient to the usual analyzer crystals, resulting

in a corresponding gradient in the lattice spacing, allows

relaxation of the Rowland-circle condition while retaining

high resolution. We present a detailed analytical treatment of

the various contributions supported by excellent agreement

with ray-tracing simulations. While focused primarily on

�meV energy resolution and �10 mrad angular acceptance

(high resolution), we also consider �10 meV resolution and

�100 mrad acceptance (medium resolution).

The article is organized as follows. x2 reviews the basic

concepts, introduces the limit of applying dispersion

compensation for high-resolution work, and, qualitatively,

introduces the analyzer temperature gradient. x3 presents a

detailed quantitative analytic treatment of two different types

of temperature gradient set-ups, and x4 discusses ray-tracing

simulations and includes the effects of imperfect analyzer

figure. The results for meV analyzers are discussed in x5 and

application to medium resolution is covered in x6. Practical

aspects, including detector size, momentum resolution and

backgrounds are discussed in x7. Test results for one possible

temperature gradient scheme are given in x8 and conclusions

are presented in x9.

2. Basic concepts

2.1. Crystal optics

At present, sub-eV-resolution X-ray spectrometers gener-

ally use crystal analyzers; the energy resolution of most

detectors remains �100 eV in the hard X-ray region and,

while bolometers can achieve �eV resolution for softer

X-rays, they are far from the 0.1 eV level. Thus crystal

analyzers are almost1 the only option. Typical resolutions are

given in Table 1. However, for crystal analyzers, one is

severely limited by the angular acceptance of Bragg reflections

in the perfect crystals, which is typically of the order of

microradians, while to obtain reasonable count rates one

typically desires large angular acceptance, e.g. 1 to 100 mrad,

depending on the details of the experiment. The relation

between angular acceptance and energy resolution for

diffraction from a flat perfect crystal is derived from Bragg’s

law as

�E=Eð Þgeom � " ¼ tan ��� ffi ��� ð�� 1; �� � �Þ;

ð1Þ

where E is the photon energy, � ’ �/2 � �B (�B is the Bragg

angle) is a deviation angle from exact backscattering of the

crystal, and �E is the geometric contribution to the energy

resolution owing to a divergence of ��. Given, for example, a

desired2 upper limit of a geometric contribution to the reso-

lution of 0.3 meV at 26 keV and a typical operating angle of

� ’ 0.2 mrad one finds the angular acceptance of a flat crystal

is only �� < �60 mrad.

To move beyond this severe limit, one usually creates a

figured analyzer operating in the Rowland circle condition,

where the shape of the analyzer crystal is chosen so that all

rays from a point source hit it at a fixed angle, reducing or

removing the geometric contribution from equation (1). For

the highest resolution, one uses diced analyzers to remove

strain from bending a crystal (Fig. 1A). The angular limit is

then set by the crystallite size of the analyzer crystals [see

discussions by Masciovecchio et al. (1996a,b)]. In this

geometry the crystallite size in the diffraction plane, c, sets the

angular scale �� ’ c/L1 (L1 is the sample-to-analyzer

distance) giving a contribution to the energy resolution

(Fig. 1A),

"1 � c=L1ð Þ tan �0 ffi dc=2L2
1: ð2Þ

The second approximation is the first-order term assuming the

detector is offset a distance d from the sample. The cube size,

owing to issues of fabrication, is usually �1 mm. One then

finds that a 0.3 meV geometric contribution at 26 keV for a

10 m arm allows d ’ 2.3 mm. As L1 (the arm radius) is

reduced, this quickly becomes an even more severe limit, with

d scaling as L2
1.

2.2. Dispersion compensation

Huotari and co-workers (Huotari et al., 2005) introduced

the use of a position-sensitive detector in the focal plane,

essentially combining a focusing analyzer with a dispersive

detector (see Fig. 1B). They showed that, assuming a suffi-

ciently perfect analyzer figure, the block size of the crystal

analyzer in (2) could be replaced by the pixel size, p, of the

detector,

"2 � ð p=2RÞ tan �0 ffi dp=4R2: ð3Þ

research papers

J. Synchrotron Rad. (2010). 17, 12–24 Ishikawa and Baron � Temperature gradient analyzers 13

Table 1
Properties of the Si(nnn) series in an almost backscattering geometry.
�E1Flat: calculated intrinsic single reflection bandwidth; �E2Flat:
measured bandwidth from two flat crystals (Baron et al., 2000); �EAna:
typical observed total energy resolution with an analyzer crystal.
Parentheses indicate calculated values.

n E (keV)
�E1Flat

(meV)
�E2Flat

(meV)
�EAna

(meV)

5 9.885 (14.5) (21.0) –
7 13.839 (4.8) (6.9) –
8 15.816 (4.1) (5.8) 6.0
9 17.793 (1.8) 2.4 3.0

11 21.747 (0.8) 1.2 1.5
12 23.725 (0.75) 1.1 –
13 25.702 (0.35) 0.6 0.9

1 In fact, nuclear resonant scattering (the Mössbauer effect) offers alternative
methods of high-resolution analysis, either with the resonant isotope
embedded in the sample (Seto et al., 1995) or as an external analyzer foil
(Chumakov et al., 1996). However, the former is limited to samples containing
the resonant isotope and only gives density of states information (being
essentially an absorption measurement) while the latter is hampered by the
mismatch of nuclear analyzer bandwidth (typically microvolts, or less) and the
�meV monochromator bandwidth.

2 To obtain sub-meV resolution, we consider backreflection of Si(13 13 13),
which gives �E = 0.3 meV at E = 26 keV.



However, this relies on strict observance of the Rowland-

circle condition, with the detector directly above the sample

(L1 = L2 = R). For high resolution, �meV, this is a very severe

constraint that limits the available space at the sample to a few

millimeters. For example, the detector–sample clearance,

assuming a contribution of 0.3 meV at 26 keV (" = 1 � 10�8)

when R = 5 m and p = 0.1 mm is d ’ 10 mm. This improves on

the previous 2.3 mm of x2.1 but any sort of sample environ-

ment (refrigerators, furnaces, high-pressure cells) remains

problematic.

2.3. Demagnification contribution and failure of dispersion
compensation

One can consider focusing off the Rowland circle to make

space around the sample [Fig. 2(V)]. However, this introduces

variation in the Bragg angle over the analyzer surface leading

to what has been called a demagnification contribution

(Burkel, 1991) to the resolution given by

"3 � tan �0�� ffi
dl�

4RL2

¼
d�

4R

1�M

M
; ð4Þ

where �� is the distribution of angles onto the analyzer

defined as ��� (�max� �min); here �max and �min are maximum

and minimum � value shown [see also Figs. 2(I)(b), 2(IV), 2(V)

and Table 2], and � is the angle of scattered rays intercepted

by the analyzer, � � D/L1, D is the analyzer size, and M = L2/

L1 (see Table 2). Choosing, for example, d = 3 mm, L1 = 5 m

(�0 ’ 0.3 mrad), l = 200 mm and � = 10 mrad, one finds a

geometric contribution of "3 ’ 6.4 � 10�8 or �E = 1.6 meV

at 26 keV. This significantly limits the achievable energy

resolution.
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Figure 1
Schematic of conventional IXS analyzer geometries using diced crystal
analyzers. (A) Rowland circle with a single detector either on the focus
(solid) or offset (broken). (B) The conventional ‘dispersion compensa-
tion’ set-up with a position-sensitive detector on the Rowland circle. S:
sample; A: analyzer; SED: single-element detector; PSD: position-
sensitive detector; FC: flat crystallite. Parameters are listed in Table 2.
The figure dimensions are exaggerated for clarity (L1, L2	 D, l	 d, c).

Table 2
Definition of parameters.

See also Figs. 1 and 2. In some cases subscripts x and y are used to indicate
horizontal (out of the analyzer scattering plane) and vertical (in the analyzer
scattering plane).

" = �E/E Fractional energy resolution
"1 Geometric contribution to the resolution in a conventional

configuration
"2 Geometric contribution to the resolution when a position-

sensitive detector is used with the Rowland-circle condition
satisfied; applies to both the case when the detector is in the
analyzer focus (dispersion compensation) or out of the
focus (with temperature gradient)

"3 Demagnificaton contribution to the resolution when the
Rowland-circle condition is violated without a temperature
gradient

"4 Contribution to the resolution when the Rowland-circle
condition is violated with a temperature gradient

� = �/2 � �B Deviation from exact backscattering
�0 Deviation from backscattering at the center of the analyzer

crystal
R Radius of curvature of the analyzer crystal
L1 Distance from sample to analyzer crystal
L2 Distance from analyzer crystal to analyzer focal point

Note: always have the thin lens equation 2/R = 1/L1 + 1/L2

Note: on-Rowland is the case R = L1 = L2

d Detector offset transverse to the beam path from center of
sample to center of detector

l Shift of the detector away from the sample toward the
analyzer crystal

p Detector pixel size transverse to beam direction in scattering
plane

c Crystallite transverse dimension
D Size of the analyzer crystal in the scattering plane
M Magnification L2 /L1

�min Deviation on line from center of sample to lower edge of
analyzer to center of detector
�min ’ (1/4){2d/R � �[(1 � M)/M]}

�max Deviation on line from center of sample to upper edge of
analyzer to center of detector
�min ’ (1/4){2d/R + �[(1 � M)/M]}

�� Distributions of the angles onto the analyzer
�� � �max � �min = (�/2)[(1 � M)/M]
Note: upward scattering so that �max 
 �0 
 �min

ya Vertical position from center of analyzer
yd Vertical position from center of detector
dmin Minimum detector offset of d
T0 Temperature at center of analyzer
Tmin Minimum temperature of analyzer
Tmax Maximum temperature of analyzer
�T Difference of temperature from center of analyzer (� T�T0)
�E Difference of energy of rays from elastic energy (� E � E0)
2c0 Demagnified vertical image size by off-Rowland geometry

[� c(1 + M)]



2.4. Temperature gradient analyzers: qualitative

To a first approximation, the temperature gradient we

suggest here may be considered as a way of modifying the

lattice constant to compensate for the demagnification

contribution, essentially varying the d-spacing to correct for

the variation in the Bragg angle, �, over the analyzer. This

allows us to introduce the idea, and sets the scale for the

required gradient, though a different, and, in some cases,

better, method will also be described below. The magnitude of

the required temperature gradient over the analyzer is roughly

given as �T = "3 /� where � is the

thermal expansion coefficient of the

analyzer and "3 is the demagnification

contribution from equation (4). Taking

the previous case (d = 3 mm, L1 = 5 m,

l = 200 mm and � = 10 mrad), one can

estimate the required gradient to be

about 25 mK over a silicon analyzer

operated at room temperature (� = 2.6

� 10�6 K�1). This is a small, but crucial,

adjustment to achieving high resolution.

It becomes more important as the arm

radius is further reduced.

3. Temperature gradient analyzers:
quantitative

Detailed discussion of the temperature

gradient depends on the precise

focusing conditions. In the preceding

section, the temperature gradient was

introduced as a response to the

demagnification contribution when one

moved the analyzer focus off the

Rowland circle. However, there are

actually two limiting cases: one where

the analyzer focus remains on the

Rowland circle and only the detector is

moved away from the sample, and one

where both the analyzer focus and the

detector are moved off the Rowland

circle together. These will be referred to

as the ‘on-Rowland’ and ‘off-Rowland’

cases, respectively, where the designa-

tion refers to the position of the

analyzer focus. These are shown in

Fig. 2, where cases (I)–(III) are all on-

Rowland while (IV)–(VI) are off-

Rowland. The temperature gradient can

be used to improve the resolution

in both cases. Considering resolution

only, the on-Rowland case is better.

However, practical considerations

(beam size and detector noise) can

make the off-Rowland geometry

attractive.

Before proceeding, we introduce another important para-

meter, the clearance between the divergent beam scattered

from the sample to the analyzer and the beam reflected from

the analyzer into the detector. The minimum clearance, so that

the detector does not occlude the analyzers and so that the

entire reflected beam is collected by the analyzer, is denoted

dmin . Note that choosing d = dmin leaves no space for either a

border around the detector or for shielding. By default, we will

take d = dmin + 2 mm to allow for these.

research papers

J. Synchrotron Rad. (2010). 17, 12–24 Ishikawa and Baron � Temperature gradient analyzers 15

Figure 2
Schematic of IXS analyzer geometries using diced crystal analyzers. (I) Positioned along a vertical
Rowland circle with single-element detector (including detector offset with focusing on-Rowland:
broken square). (II) (a) Rowland geometry with a PSD, (b) focal point on the Rowland circle but
detector off the circle. (III) Focusing on-Rowland but detector in front of focal point. (IV) Focusing
off-Rowland with a single-element detector, demagnification contribution causes chromatic
aberration. (V) Detector offset with PSD; energy–position correspondence in (II) is broken in (V).
(VI) Temperature gradient of the analyzer crystal (Tmin < T0 < Tmax); temperature correction
reduces chromatic aberration and allows off-Rowland geometry to be used. Colored lines indicate
dispersed energy for clarity, e.g. the different color of the rays are focused on the center of the
detector in case (V), while one color of the rays are focused on the same position in case (VI).



3.1. Temperature gradient for focus on-
Rowland [case (III)]

Here we discuss the situation

described by Fig. 2(III). The analyzer

focus remains on the Rowland circle, so

very near to the sample, but the

detector is moved towards the analyzer

to make space at the sample position.

Applying a proper temperature

gradient allows preservation of a

(nearly) unique energy–position corre-

lation in the detector despite the

detector being out of the analyzer focus.

Considering Fig. 3, the temperature

gradient preserves the linear relation-

ship between energy and position

[shown in Fig. 3(II)(a)], but increases its

range [Fig. 3(III)].

The exact form of the correlation

between temperature and position on

the analyzer is derived as follows. For a

fixed angle of incidence the energy

difference between rays reflected by

two different crystal cubes having

temperature T and T0 is �E/E =

dhkl(T0)/dhkl(T)� 1, where dhkl(T) is the

d-spacing at temperature T. Meanwhile,

neglecting the cube size of the analyzer

(c ! 0) and using equation (3), the

energy offset and detector vertical

displacement, yd, are related by �E/E =

(yd/2R 0) tan�0. Here, R 0 satisfies 2/R 0 =

1/L1 + 1/(L1 � l) and yd can be replaced

by the analyzer y-position (ya) in

Fig. 2(VI) using yd ’ lya /L1 . Then the

relation between ya and temperature

deviation �T (� T � T0) is

yað�TÞ ’
dhklðT0Þ

dhklðTÞ
� 1

� �
2R0L1

l tan �0

’ �
4R0 2L1

ld
�ðT0Þ�T; ð5Þ

where

dhklðTÞ ¼ dref 1þ
RT

TTref

�ðT 0Þ dT 0

" #

’ dref 1þ �ðT0Þ�T
� �

;

and the second equality assumes the thermal expansion

coefficient, �(T), is approximately temperature independent.

Precise values of �(T) for silicon may be found by Watanabe et

al. (2004) and Okada & Tokumaru (1984), and a reference

lattice constant aref = 5.43102 Å at Tref = 295.65 K (Mohr &

Taylor, 2000). Taking the center of the analyzer to be at

temperature T0 = 300.000 K, we may write dhkl(T0)/

dhkl(T) � 1 ’ ��(T0) ’ �2.627879 � 10�9�T [mK] +

O(�T)2.

Fig. 4(a) shows the required temperature gradient as a

function of normalized analyzer dimension for L1 = 3, 6, 10 m,

l = 200 mm and, as mentioned above, d = dmin + 2 mm. In this

geometry, assuming perfect analyzer figure and a point source,

dmin is given by

dmin ¼ �l þ c (focus on-Rowland); ð6Þ

where �l is the vertical size of the beam to the analyzer at a

distance l from the sample. The temperature gradient is linear
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Figure 3
Schematic of the energy–position correlation in the six different geometries of Fig. 2. Right-hand
line shapes are projections of the resolution function of each detector element. E � E0 : relative
energy, yd : detector y-position; p: detector pixel size; 2c: image size of the small cube crystal.
2c0: demagnified image size. The temperature gradient of the analyzer reduces the aberration
[(III), (VI)].



and the ranges are �52, �12.6 and �4.5 mK relative to the

center of the analyzer, respectively.

3.2. Temperature gradient for focus off-Rowland [case (VI)]

Here we discuss the situation described by case (VI) of

Figs. 2 and 3. The analyzer focus remains in the detector as it is

moved off the Rowland circle, introducing a demagnification

contribution, which is then compensated by the temperature

gradient. Considering Fig. 3, one can consider the gradient as a

way of collapsing the dispersion over the detector [Fig. 3(V)]

to a more almost linear form [Fig. 3(VI)]. This is essentially

a first-order correction to the demagnification contribution.

However, owing to the range of Bragg angles now going to the

analyzer focal point, the slope of the energy dispersion versus

detector position depends on the position in the analyzer

where the reflection occurs, thus the correction is only perfect

for one position in the detector. However, it still reduces the

measured bandwidth. This may be analyzed in detail as

follows. For an off-circle focus the analyzer radius, R, is given

by the usual lens equation3

2

R
¼

1

L1

þ
1

L2

ð7Þ

where, as shown in Fig. 2(IV) and Table 2, L1 is the distance

from the sample to the analyzer, and L2 is that from the

analyzer to the focal point. The detector is at l = L1 � L2. The

required condition to keep the energy constant over the

analyzer then becomes dhkl(T)cos� = constant. Taking T0 and

�0 as the temperature and angle at the center of the analyzer,

ya(�T) is expressed as

yað�TÞ ’ 2
d

2R
� cos�1 cos �0

dhklðT0Þ

dhklðTÞ

� �� �. 1

L2

�
1

L1

� 	

’

2 �0 � 2�ðT0Þ�T þ �2
0

� �1=2
n o
ð1�MÞ=ðL1MÞ

: ð8Þ

This may be inverted to give

�TðyaÞ ’
1

8�ðT0Þ

1�M

L1M

� 	
�4�0 þ

1�M

L1M

� 	
ya

� �
ya: ð9Þ

Note that, in contrast to x3.1, the second-order term is no

longer negligible. Then the minimum detector offset in this

geometry is given as

dmin ¼
�l

2
þ c0 (focus off-Rowland), ð10Þ

where the image from a single block of the analyzer will have a

size reduced by the shorter path length to the detector, 2c0 =

c(1 + M).

Fig. 4(b) shows the temperature gradient �T as a function

of normalized analyzer dimension for parameters L1 = 3, 6 and

10 m and l = 200 mm and d = dmin + 2 mm. The temperature

gradient is not linear, and ranges from +48 to �35, +11 to �9

and +4 to �3 mK, respectively. The energy–position correla-

tion becomes quadratic as seen in Fig. 3(VI). The energy–

position density is also not uniform and may yield asymmetric

line shapes for the resolution function.

If the temperature gradient given by (8) is applied, then the

full width of the energy distribution at the edge of the detector

[seen in Fig. 5(d) or Fig. 9(d)] is " = (c0/2R)��. Assuming the

detector pixel size is relatively small compared with the beam

size, this contribution is reduced when the integration (with

appropriate energy shift) over the detector is performed. In

addition, we note that the quadratic dependence of the energy

shift on the position in the analyzer leads to a concentration of

the intensity near the central (small slope) line in these figures.

Thus the practical contribution to the energy shift in this case

is about (c0/2R)��/4. This is, perhaps, more easily seen in

Figs. 5(c) and 9(c), which, after applying the temperature

gradient, are essentially compressed into Figs. 5(d) and 9(d),

but the weighting remains very asymmetric. The pixel size
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Figure 4
Temperature gradient curve �T as a function of analyzer y-position (ya)
normalized by the analyzer dimension. Optical geometry is (a) focus on-
Rowland [case (III)] and (b) focus off-Rowland [case (VI)]. Each
geometry compares L1 = 3.0, 6.0 and 10.0 m and D = 30, 60, 100 mm. Note
the more nearly linear behavior in (a).

3 Strictly speaking, 2/(R cos�0) = 1/L1 + 1/L2 is the best focusing condition.
However, in this paper, �0 is small so that one can omit the cos�0 term: �0 is
10 mrad then 1 � cos�0 is only 5 � 10�5.



contribution is most accurately represented by using �max in

(3). The energy resolution in this case is then given by

"4 �
p

2R
tan �min þ

1

4

c0

2R
��

’
1

8R
�

1�M

M

c0

2
� p

� 	
þ

2pd

R

� �
: ð11Þ

It is worth noting that the non-linear energy–position corre-

lation of this geometry owing to the variation in � over the

analyzer surface leads to a slightly worse energy resolution.

Also a non-linear temperature gradient may be difficult to

achieve practically. However, in contrast to the focus on-

Rowland case, the image size at the detector is reduced, as

shown in Table 3. Therefore detector size can be smaller,

reducing dmin and the detector background (see x7).

It is also worth noting that spherical aberration originates

from the deviation from ideal aspherical shape (ellipsoidal)

causing blurring of the focusing beam size, �sellip-sphe, and may

degrade energy resolution. However, this is only problematic

when the solid angle is much larger and magnification is much

smaller. This contribution is neglegible as far as geometries in

this article are considered.4

As a final comment, we note that the off-Rowland case may

also be applied without the detector in the analyzer focus. This

may be advantageous in some cases.

4. Ray-tracing

Ray-tracing simulations were performed to confirm the

accuracy of the analytic formulae of the previous section.

Analyzer crystals were taken to be rectangular with dimen-

sions Dx and Dy, and to have either a spheroidal or toroidal

curvature. (Note that x and y refer to the two directions

perpendicular to the reference X-ray path, z, perpendicular

and within the scattering plane.) Also, note that while we

carefully considered finite extent transverse to the analyzer

scattering plane, it had negligible impact in all cases consid-

ered. Analyzers are assumed to be ‘diced’ with, for example,

crystallite sizes of 0.6 mm � 0.6 mm on a 0.7 mm pitch. The

simulations, using geometrical optics, generally traced more

than 200000 rays with those rays spread over more than 400

analyzer crystallites, with >400 rays per crystallite. The

selected crystallites were uniformly distributed on the

analyzer surface in both x and y directions transverse to the

sample–analyzer axis, as were the rays on each crystallite.

Each selected crystallite was assumed to have a deviation in

orientation from the ideal (spheroidal or toroidal) surface

given by a Gaussian distribution to simulate errors in manu-

facture. The source point (i.e. over the sample) for a given ray

was also randomly selected for each ray within a Gaussian

distribution of size �ssx
, �ssy

to simulate the finite beam size on

the sample (or finite penetration into the sample). This allows

definition of the exact incident angle of each ray onto a

crystallite, and, with specular reflection assumed5, then defines

the point of intersection in the detector.

Aside from the geometric parameters defining the set-up,

the reflection curve (in the form of reflected intensity versus

energy for a fixed and perfectly defined angle near to back-

scattering) is also required as an input parameter. The trans-

formation from angular deviation to energy shifts was made

using Bragg’s law (without linearization). This input reflec-

tivity curve was usually chosen to agree with that calculated

from dynamical diffraction from a thick crystal using the

Si(nnn) series of reflections as listed in Table 1. However,
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Figure 5
Energy–position correlation in the detector. (a) and (b) are for the on-
Rowland case without or with temperature gradient of the analyzer
crystal; (c) and (d) are for the off-Rowland geometry without or with
temperature gradient. E = 21.747 keV for Si(11 11 11) backreflection case
from the ray-tracing results. Optical geometry: L1 = 3 m, l = 200 mm and
(a) d = 4.60 mm and (b) d = 3.56 mm are considered here. Contributions
from analyzer slope error, �(x,y) = 20 mrad � 20 mrad, and source size
�ss(x,y) = 20 mm � 20 mm, are included.

Table 3
Properties of two focusing geometries: focus on-Rowland circle [case
(III)] and focus off-Rowland circle [case (VI)].

Notation of the optical parameters are explained in the text.

Focus on-Rowland Focus off-Rowland

Sample–detector
minimum vertical
offset, dmin

�l + c (larger) �l/2 + c0 (smaller)

Image size (detector
active area, y-direction)

�l + 2c (larger) 2c0 (smaller)

Energy–position
correlation

Linear Quadratic

Temperature gradient Linear Quadratic
Energy resolution "2 = ( p/2R) tan�0 "4 = ( p/2R) tan�min +

(c0/8R)��

4 The maximum spherical aberration is (D3/16R2)[(1 � M2)/M2]. One can
calculate a worst-case blurring of �16 mm for L1 = 1 m, l = 0.1 m and � =
100 mrad.

5 Effects from the finite penetration into the analyzer crystal (which can be
estimated to spread a well defined beam, over a length �2�0�abs) were
neglected. This contribution is much smaller than cube size or detector pixel
size so that one can assume reflection occurs specularly at the surface of the
flat cube.



when only the geometric contribution to the energy was

desired, then a narrow delta-function-like reflectivity curve

(width <0.05 meV) was used. After setting the geometry and

choosing the input reflectivity curve, the incident energy was

scanned assuming that the analyzer temperature was held

stable. The resulting distributions are then integrated over

individual detector pixels, giving curves of intensity as a

function of incident energy for a given detector pixel. This is

then convolved with an incident energy distribution appro-

priate for the monochromator defining the bandwidth onto

the sample.

5. Parameters, results and discussion for meV
resolution

The parameter space is complex, with many free parameters

relating to the desired performance and size of the spectro-

meter. In this section we focus on parameter sets aimed at

achieving high, �meV, resolution, with an accepted solid

angle in the analyzer of 10 mrad, consistent with taking �Q ’

1 nm�1. In the next section, x6, we consider medium resolu-

tion.

5.1. Analyzer and source parameters

Experience in fabrication of analyzer crystals with large,

9.8 m, radii of curvature (Miwa, 2002) leads us to take �x,y =

20 mrad as the r.m.s. deviation of the analyzer crystallites in

each direction. It is possible that this may increase for smaller

radii of curvature, but the effect of such deviation, generally

scaling as R�, will be reduced by the smaller radius. The source

size, or the illuminated volume of the sample projected normal

to the sample–analyzer direction, was chosen to be �ss(x,y) =

20 mm (47 mm FWHM), consistent with a focused beam at a

typical spectrometer. The solid angle of the analyzer crystal in

the vertical was fixed at 10 mrad. This is broadly consistent

with present spectrometer design.

5.2. Spectrometer and detector parameters

The space between the sample and the detector, l, was set at

200 mm, as being comparable with present-day spectrometers

with longer 2� arms. The clearance between the active edge of

the detector and the beam was taken as 2 mm, or d = dmin +

2 mm, as discussed above. The detector pixel size was set at p =

0.3 mm. In principle, this might be reduced 0.17 or 0.05 mm,

consistent with pixel sizes of various detectors. However, the

0.3 mm value is comparable with the effect of blurring owing

to analyzer deviation due to the 20 mrad angular variation. It is

also consistent with the thickness of typical silicon pixel

detectors, which can be the relevant parameter if such a

detector is used at grazing incidence to improve the stopping

power. In general, while it is easy to consider reducing the

pixel size below 0.3 mm, it must be done with care as, to see

some benefit from this, many things must be improved

simultaneously. The 0.3 mm chosen here is comfortably

matched to the present conditions. The (one-dimensional)

temperature gradient of the analyzer crystal is assumed to be

given by equation (5) or equation (9).

5.3. Representative results: energy–position correlation and
energy resolution

As an example, we discuss the parameter set for L1 = 3 m,

listed in Table 4 [(III) and (VI)]. The spheroid surface of

Rowland circle diameter Rx = 3000 mm (horizontally) and Ry =

3000 mm (vertically) was taken for case (III). Meanwhile, for

case (VI), a toroidal surface of diameter Rx = 3000 mm and

Ry = 2897 mm6 was taken. The energy–position correlation in

the detector in this selected geometry is shown in Fig. 5(a) for

the on-Rowland geometry. The chromatic aberration owing to

the demagnification contribution in Fig. 5(a) is reduced by use

of the temperature gradient in Fig. 5(b), even though fabri-

cation imperfections have been included in x5.1. As shown in

Fig. 5(d), the temperature gradient also drastically reduces the

aberration from Fig. 5(c).

Fig. 6 shows resolution functions from pixels calculated by

scanning the incident photon energy across the elastic energy.

The FWHM of the spectra of individual pixels gives E sim
tot =

1.12 meV7 (on-Rowland) and 1.0 meV8 (off-Rowland) at

Si(11 11 11) assuming a delta-function incident bandwidth. As

shown in Fig. 6(a), these agree well with the analytical esti-

mation E ana
tot = 1.15 and 1.0 meV (FWHM), respectively. To

provide a comparison with a uniform temperature [T(ya) =
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Figure 6
Resolution functions of PSD scanning, incident photon energy 0.1 meV
step relative to elastic line. E = 21.747 keV for the Si(11 11 11)
backreflection case. (a) Focus on-Rowland. (b) Focus off-Rowland. For
comparison, the uniform temperature case of the analyzer is shown.
Optical geometry of L1 = 3 m, l = 200 mm, d = 4.60 mm (a) and d =
3.56 mm (b) are considered here. Angular deviation from ideal surface
�(x,y) = 20 mrad � 20 mrad, source size �ss(x,y) = 20 mm � 20 mm and
intrinsic Darwin width �Eint = 0.8 meV are taken into account. (Incident
bandwidth is eliminated.)

6 The horizontal radius of curvature Rx affects the horizontal size of the
focused beam but does not affect the energy resolution or the temperature
gradient for cases considered in this paper. See also x7.
7 The geometric term of the resolution is calculated as �E sim

geom = 0.97 meV
(FWHM)
8 �E sim

geom = 0.59–0.71 meV (FWHM) depending on the position of the detector
pixels.



constant], ray-tracing results are also shown for this case in

Fig. 6 (black symbols). In this geometry the energy resolution

decreases by a factor of three (on-Rowland) to six (off-

Rowland) when the temperature gradient is applied.

5.4. Discussion

Here, we consider the dependence of the energy resolution

on the spectrometer size, L1 . Using analytic forms discussed in

x2, the energy resolution as a function of 2� arm length L1 is

summarized in Fig. 7, expressed by solid (geometric contri-

bution) and broken (total contribution) lines.9 Table 4 lists the

results of Fig. 7. Ray-tracing results, using parameters in

Table 4, are shown by circles. This shows that it is possible to

estimate resolution using the analytic approximations with a

fair degree of accuracy. The effect of the temperature gradient

becomes large beginning near 6 m. An energy resolution of

�1.5 meV is possible at 21.7 keV for L1 > 3 m.

6. Medium-resolution with large angular acceptance

We now consider application to medium-resolution large-

solid-angle analyzers. This is the case originally considered for

dispersion compensation without a temperature gradient

(Huotari et al., 2005, 2006). While more space is available near

the sample in this case since the resolution is relaxed, it is still

limited, so it is attractive to consider moving the detector away

from the sample. In contrast to high-resolution IXS, medium-

resolution set-ups often employ large-solid-angle analyzers

(� = 50–100 mrad) to increase count rate. In this case, while

the formulae given in x3 remain applicable as a first approx-

imation, some care is needed and ray-tracing becomes

increasingly important. Here we focus on shorter (1–2 m-long)

arms and a fixed large analyzer crystal D(x,y) = 100 mm. We
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Table 4
Calculated contributions to energy resolution in (I)–(VI).

Parameters are defined in Table 2. Analyzer crystal dimension D = 100, 60 and 30 mm is chosen to keep the solid angle � = 10 mrad. �T1 and �T2 are top and
bottom temperature offset relative to the analyzer center. "1 to "4 are contributions to the energy resolution discussed in the text. (�E)geom: geometric energy
resolution at E = 21.747 keV. (�E)sim: ray-tracing results, only geometric contributions are taken into account. Si(13 13 13) backreflection case at E = 25.702 keV
are also shown in (�E)geom .

(I)(a) (II)(a) (III) (IV) (V) (VI)

L1 (m) 10 6 3 10 6 3 10 6 3 10 6 3 10 6 3 10 6 3
L2 m) 10 6 3 10 6 3 10 6 3 9.8 5.8 2.8 9.8 5.8 2.8 9.8 5.8 2.8
R (m) 10.00 6.000 3.000 10.00 6.000 3.000 10.00 6.000 3.000 9.899 5.898 2.897 9.899 5.898 2.897 9.899 5.898 2.897
c (mm) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
d (mm) 2.60 2.60 2.60 2.60 2.60 2.60 4.60 4.60 4.60 3.59 3.59 3.58 3.59 3.59 3.58 3.59 3.59 3.58
l (mm) 0.0 0.0 0.0 0.0 0.0 0.0 200 200 200 200 200 200 200 200 200 200 200 200
p (mm) – – – 0.3 0.3 0.3 0.3 0.3 0.3 – – – 0.3 0.3 0.3 0.3 0.3 0.3
M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.93 0.98 0.97 0.93 0.98 0.97 0.93
�0 (mrad) 0.13 0.22 0.43 0.13 0.22 0.43 0.23 0.39 0.79 0.18 0.30 0.62 0.18 0.30 0.62 0.18 0.30 0.62
�� (mrad) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.17 0.36 0.10 0.17 0.36 0.10 0.17 0.36
�T1 (mK) 0 0 0 0 0 0 �4.5 �12.6 �52.1 0 0 0 0 0 0 �3.0 �8.5 �35.7
�T2 (mK) 0 0 0 0 0 0 4.5 12.6 52.1 0 0 0 0 0 0 4.0 11.4 47.8
"1 (p.p.b.) 8 22 87 – – – – – – – – – – – – – – –
"2 (p.p.b.) – – – 2 5 22 3 10 40 – – – – – – – – –
"3 (p.p.b.) – – – – – – – – – 19 52 221 19 52 221 – – –
"4 (p.p.b.) – – – – – – – – – – – – – – – 3 8 32
" (p.p.b.) 8 22 87 2 5 22 3 10 40 19 52 221 19 52 221 3 8 32
(�E)geom

(meV)†
0.17 0.47 1.88 0.04 0.12 0.47 0.08 0.21 0.86 0.40 1.14 4.80 0.40 1.14 4.80 0.06 0.17 0.69

(�E)sim

(meV)
0.16 0.46 1.86 0.06

(�0.002)
0.12
(�0.01)

0.47
(�0.06)

0.08 0.21 0.97 0.38 1.06 4.27 0.40
(�0.03)

1.11
(�0.10)

4.4
(�0.4)

0.068–
0.078

0.15–
0.18

0.59–
0.71

(�E)geom

(meV)‡
0.20 0.56 2.23 0.05 0.14 0.56 0.09 0.25 1.02 0.48 1.34 5.64 0.48 1.34 5.64 0.07 0.20 0.81

† E = 21.747 keV. ‡ E = 25.702 keV.

Figure 7
Energy resolution as a function of 2� arm length L1 for high-resolution
spectrometers. Comparison of a single-element detector (SED) and
dispersion compensation (DC) with temperature compensation (TC).
Closed and open circles represent simulation results of geometric and
total contributions, respectively. Solid lines are the geometric terms
discussed in Table 4. Broken lines are the estimated total resolution
including non-perfection contributions.

9 "tot � ð"
2
geom þ "

2
slope þ "

2
source þ "

2
intÞ

1=2. Here, "slope and "source are given by
2.35� tan�0 and 2.35�ss tan�0 , respectively. "int is the intrinsic reflection width
of a specified diffraction plane.



consider the Si(555) reflection at E = 9.9 keV which has an

intrinsic resolution (single reflection) of 14.6 meV. We take

l = 100 mm.

In contrast to the high-resolution analyzers, the tempera-

ture gradient of the present case (smaller arm and large solid

angle) becomes much steeper as seen in Fig. 8. The corre-

sponding energy–position characteristics are shown in Fig. 9.

Another important point is that the magnitude of the image at

the detector increases quickly with increasing �l. When � =

100 mrad, l = 100 mm, one can estimate the image size to be

11.2 mm. This is much larger than one-to-one focusing (on-

Rowland geometry) image size (2c = 1.2 mm) and requires a

large number of detector pixels (see Fig. 10a), and may make

the off-Rowland geometry relatively attractive.

The energy resolution as a function of L1 is shown in Fig. 11.

One can obtain a resolution almost the same as the intrinsic

reflection width �E ’ 15 meV listed in Table 1. This drasti-

cally increases when L1 < �1 m. For �E < 20 meV, one

requires L1 > �1 m.

Before closing this section, it is worth noting that the

application of a temperature gradient can improve the energy

resolution even when a single-element detector is used. This

works in the off-Rowland geometry [case (VI) in Fig. 2]. Fig. 12

shows results for L1 = 1 m, � = 100 mrad, l = 100 mm. Ray-
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Figure 8
Temperature gradient for medium resolution for (a) focus on-Rowland [case (III)] and (b) focus off-Rowland [case (VI)]. The temperature deviation �T
as a function of analyzer y-position (ya) normalized by analyzer dimension D = 100 mm is shown for silicon analyzers with central temperature 300 K.

Figure 9
Energy–position correlation in the detector by ray-tracing. E = 9.885 keV,
Si(555) backreflection case. yd: detector vertical position. E � E0: relative
energy. Optical geometry of L1 = 1 m, l = 100 mm and (a) d = 12.60 mm
and (b) d = 7.54 mm are considered here. Contributions from slope error
�(x,y) = 20 mrad � 20 mrad, source size �ss(x,y) = 20 mm � 20 mm are
included

Figure 10
Resolution functions: (a) focus on-Rowland (b) focus off-Rowland. The
inset in (a) is magnification of results for one pixel. E = 9.885 keV at
Si(555) backreflection. L1 = 1 m, l = 100 mm, p = 0.3 mm, (a) d = 12.6 mm
and (b) d = 7.54 mm. The angular deviation from ideal surface �(x,y) =
20 mrad � 20 mrad, source size �ss(x,y) = 20 mm � 20 mm and intrinsic
Darwin width �Eint = 14.7 meV (FWHM) are taken into account.
(Incident bandwidth is not included.)



tracing results are shown for quadratic temperature gradient

�E = 23 meV (FWHM) and a more practical linear gradient

�E = 35 meV (FWHM). These are much better than without

the gradient which has an asymmetric line shape with �E =

72 meV (FWHM) or �E = 232 meV (full width at tenth of

maximum). Similar improvements, though not as dramatic, are

also possible in high-resolution configurations.

7. Some practical considerations

The practical aspects of detector size, momentum-resolution

and noise are mentioned in this section. While from the point

of view of the dispersion and energy resolution the on-

Rowland case is preferable, it leads to a relatively large beam

size at the detector, so requires a larger detector and larger

dmin . Background in the detector is usually dominated by
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Figure 11
Energy resolution as a function of 2� arm length, L1, for medium-
resolution spectrometers. Comparison of a single-element detector
(SED) and dispersion compensation (DC) with temperature compensa-
tion (TC). Closed and open circles represent simulation results of
geometric and total contributions, respectively. Solid lines are geometric
terms discussed in Table 5.

Table 5
Calculated contributions to the energy resolution for medium-resolution spectrometers operating at the Si(5 5 5) reflection (short arm length and large
solid angle).

L1 = 2.0, 1.5 and 1.0 m and c = 0.6 mm, l = 100 mm, p = 0.3 mm and D = 100 mm (corresponding solid angles are � = 100, 66.7 and 50 mrad) are selected. We take d =
10 mm for cases (I) and (II) and d = dmin + 2 mm for cases (III)–(VI). (�E)geom: geometric energy resolution at E = 9.885 keV. Results for Si(7 7 7) reflection case at
E = 13.839 keV are shown in the last row.

(I)(a) (II)(a) (III) (IV) (V) (VI)

L1 (m) 2.0 1.5 1.0 2.0 1.5 1.0 2.0 1.5 1.0 2.0 1.5 1.0 2.0 1.5 1.0 2.0 1.5 1.0
L2 (m) 2.0 1.5 1.0 2.0 1.5 1.0 2.0 1.5 1.0 1.9 1.4 0.9 1.9 1.4 0.9 1.9 1.4 0.9
R (m) 2.0 1.5 1.0 2.0 1.5 1.0 2.0 1.5 1.0 1.949 1.448 0.947 1.949 1.448 0.947 1.949 1.448 0.947
c (mm) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
d (mm) 10.0 10.0 10.0 10.0 10.0 10.0 7.60 9.27 12.6 5.09 5.91 7.57 5.09 5.91 7.57 5.09 5.91 7.57
l (mm) 0.0 0.0 0.0 0.0 0.0 0.0 100 100 100 100 100 100 100 100 100 100 100 100
p (mm) – – – 0.3 0.3 0.3 0.3 0.3 0.3 – – – 0.3 0.3 0.3 0.3 0.3 0.3
M 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.95 0.93 0.90 0.95 0.93 0.90 0.95 0.93 0.90
�0 (mrad) 2.50 3.33 5.00 2.50 3.33 5.00 1.95 3.20 6.63 1.30 2.04 3.98 1.30 2.04 3.98 1.30 2.04 3.98
�� (mrad) 0.0 0.0 0.0 0.0 0.0 0.0 1.3 2.4 5.6 1.3 2.4 5.5 1.3 2.4 5.5 1.3 2.4 5.5
�T1 (K) 0.0 0.0 0.0 0.0 0.0 0.0 �0.48 �1.40 �6.70 0.0 0.0 0.0 0.0 0.0 0.0 �0.24 �0.65 �2.74
�T2 (K) 0.0 0.0 0.0 0.0 0.0 0.0 0.48 1.40 6.70 0.0 0.0 0.0 0.0 0.0 0.0 0.41 1.19 5.67
"1 (p.p.m.) 0.75 1.33 3.00 – – – – – – – – – – – – – – –
"2 (p.p.m.) – – – 0.19 0.33 0.75 0.15 0.32 0.99 – – – – – – – – –
"3 (p.p.m.) – – – – – – – – – 1.72 4.86 22.2 1.72 4.86 22.2 – – –
"4 (p.p.m.) – – – – – – – – – – – – – – – 0.10 0.21 0.61
" (p.p.m.) 0.75 1.33 3.00 0.19 0.33 0.75 0.15 0.32 0.99 1.72 4.86 22.2 1.72 4.86 22.2 0.10 0.21 0.61
(�E)geom

(meV)†
7.4 13.2 29.7 1.9 3.3 7.4 1.4 3.2 9.8 17.0 48.0 219 17.0 48.0 219 0.98 2.04 6.01

(�E)sim

(meV)
7.4 13.1 29.6 1.8 3.3 7.2 1.2 3.7 10.7 11.4‡ 22.5

(48)‡
57.7‡ 5.4, 4.9,

2.9‡
11, 17,
13 (48)‡

53, 78,
40 (57)‡

0.90 1.97 5.2

(�E)geom

(meV)§
11.9 21.1 47.4 3.0 5.3 11.9 2.0 4.4 13.8 23.7 67.0 306.0 23.7 67.0 306.0 2.7 6.6 23.1

† E = 9.885 keV. ‡ The differences between the analytic estimation and the simulations are due to asymmetric resolution function from the non-linear energy–position
correlations. § E = 13.839 keV.

Figure 12
Improved energy resolution using a single-element detector and a
temperature gradient in the off-Rowland geometry. Conditions for the
simulations are large solid angle, 100 mrad, E = 9.885 keV of Si(555) with
three different temperature gradients. See text for discussion.



cosmic-ray muon events, and can be expected to scale with

area, so the on-Rowland case will have a larger noise, and one

should consider count rates in expected experiments carefully.

The increased offset, larger dmin , may also become more of

an issue as one considers a two-dimensional analyzer array

(Baron et al., 2008).

The on-Rowland case, however, offers the possibility to

improve momentum resolution using transverse position

sensitivity of the detector. The essential idea is that if the

detector is not in the horizontal analyzer focus then there is a

correlation between horizontal detector position and hori-

zontal analyzer position. In particular, assuming a spherical

analyzer the beam size for the on-Rowland case is just �l

while the blurring owing to the crystallite size (pinhole effect)

is just 2c0. Then, if �l 	 2c0, the detector position sensitivity

allows one effective momentum resolution. A correlatory to

this is that if one could obtain a single analyzer crystal with

very large extent out of the scattering plane, then the position

sensitivity might be sufficient such that the single crystal would

act as an array. Thus a horizontal analyzer array might be

avoided. However, as the limit for analyzer fabrication, at least

for high resolution, is really the dicing and bonding process,

this would require significant advances in analyzer fabrication

technique. It would probably be most interesting for shorter

radius arm, where, for example, one might consider a toroidal

analyzer, with different radii in the vertical and horizontal, so

that the vertical radius might be chosen to match the off-

Rowland conditions and so reduce the detector extent, while

the horizontal might be chosen to allow the momentum

resolution to be determined by the detector.

8. Preliminary temperature gradient experiment

We tested one possibility for creating the required tempera-

ture gradient. Fig. 13 shows a schematic of our apparatus. A

rectangular piece of silicon is used to simulate the analyzer

substrate, and is placed between two copper plates. The silicon

analyzer can then be considered as one element in a thermal

circuit: passing a constant heat flow through the silicon should

create the desired gradient. Considering the thermal conduc-

tivity of silicon, 1.3 W cm�1 K�1 at room temperature, and

choosing the silicon cross section to be 3 cm� 9 cm (normal to

the flow), one expects that a heat flow of �0.5 W will create a

temperature difference of 100 mK across 7 cm of silicon.

To test this, we place the holder sketched in Fig. 13 into a

vacuum. The base temperature was controlled by a PID

system and the offset heater was held at a constant power. The

total power to the base heater was about 7 W, while the offset

heater was 0.3 W. The temperature distribution over the

surface was measured by nine calibrated thermistors that were

attached to the surface using silver paste. As one can see from

the results in Table 6, the gradient was controllable to within

�3 mK, along a horizontal line. This level of control should

allow reduction of a geometrically broadened resolution of

2.2 meV to about 0.6 meV at 22 keV, a reasonable first starting

point for this work.

9. Conclusions

The promise of inelastic X-ray scattering has always been

offset by the complexity of the necessary spectrometers.

However, increased experience, improvements in optics,

detectors and overall beamline design make it increasingly

possible to consider very sophisticated instrumentation. In

contrast, hutch size, and space on the experimental floor

remain serious limitations. Thus the suggestion of introducing

a temperature gradient on analyzer crystals to reduce spec-

trometer size for a given resolution, or improve resolution for

a fixed size, is both timely and relevant.

Our work suggests �1.5 meV energy resolution should
be possible at 21.7 keV using a 3 m

arm while keeping 200 mm clearance

between the sample and the detector,

and better than 20 meV resolution at

10 keV with 100 mm clearance. Other

points discussed include the possibility

to improve the energy resolution even

with single-element detectors when the

analyzer focus is not on the Rowland

circle, and the possibility of using a two-

dimensional position-sensitive detector

for improving momentum resolution

transverse to the analyzer scattering

plane without slitting.
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Table 6
Example of a temperature gradient result.
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Figure 13
Sketch of a temperature gradient crystal holder. Numbers on the right-hand figure represent the
serial numbers of thermistors and are referred to in Table 6. Crystal surface mount thermistors and
monitored temperature at each position.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ot5607&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ot5607&bbid=BB1


R. & Bohnen, K. P. (2008). J. Phys. Chem. Solids, 69, 3100–3102.
Baron, A. Q. R., Tanaka, Y., Goto, S., Takeshita, K., Matsushita, T. &

Ishikawa, T. (2000). J. Phys. Chem. Solids, 61, 461–465.
Burkel, E. (1991). Inelastic Scattering of X-rays with High Energy

Resolution, Springer Tracts in Modern Physics, Vol. 125. Berlin:
Springer.

Chumakov, A. I., Baron, A. Q. R., Rüffer, R., Grünsteudel, H. F. &
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