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The capabilities of artificial neural networks (ANNs) have been investigated for

the analysis of nuclear resonant scattering (NRS) data obtained at a synchrotron

source. The major advantage of ANNs over conventional analysis methods is

that, after an initial training phase, the analysis is fully automatic and practically

instantaneous, which allows for a direct intervention of the experimentalist on-

site. This is particularly interesting for NRS experiments, where large amounts

of data are obtained in very short time intervals and where the conventional

analysis method may become quite time-consuming and complicated. To test

the capability of ANNs for the automation of the NRS data analysis, a neural

network was trained and applied to the specific case of an Fe/Cr multilayer. It

was shown how the hyperfine field parameters of the system could be extracted

from the experimental NRS spectra. The reliability and accuracy of the ANN

was verified by comparing the output of the network with the results obtained by

conventional data analysis.
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1. Introduction

The use of X-rays for the investigation of the structural and

electronic properties of condensed matter has expanded

tremendously since the advent of third-generation synchro-

tron sources. Together with the increasing brilliance of X-ray

sources, the quantity of experimental data generated at

synchrotron facilities has developed at a pace even higher than

that of the X-ray flux. Since large amounts of spectra can be

measured in shorter and shorter time periods, there is an

increasing need to develop computer codes that allow for a

fast data analysis, without manual intervention by the user.

Moreover, in order to make fast online decisions during the

experiment on what course to follow, novel data analysis

systems should be created that can treat experimental data in

real time. One technique that can particularly benefit from

such a fast and online analysis environment is nuclear reso-

nant scattering (NRS) of synchrotron radiation. Since its

development in 1985 (Gerdau et al., 1985), NRS has evolved

from an exotic technique in the field of spectroscopy to a

widely used tool for the investigation of magnetic, structural

and dynamical properties of matter via hyperfine interactions

(Röhlsberger, 2004). A direct interpretation of the NRS

spectra, however, is obstructed by the complexity of the data,

from which the relevant physical parameters can often only

be extracted after a detailed quantitative analysis of the

measurements. So far, this analysis has been carried out by

comparing theoretically calculated spectra with the measured

data, and adjusting the parameters of the calculations to

obtain the best agreement between theory and data. Although

several interactive fitting routines have been developed for

this purpose (Sturhahn, 2000; Shvyd’ko, 1999), intensive and

laborious human initiative, creativity and intervention is

required to evaluate the spectra.

Since the development of NRS with synchrotron radiation,

alternative experimental set-ups have been proposed to

enhance the interpretability of the data by transforming the

conventional NRS spectra, usually recorded in a time differ-

ential mode, to energy domain (Sturhahn, 2001; Callens et al.,

2005). In this work we present a different approach to achieve

an instantaneous data analysis in NRS experiments, namely by

making use of artificial neural networks (ANNs). These are

program codes that are developed to solve specific problems

by relating numerous possible inputs to the corresponding

output parameters, without the implementation of the physics

determining the problem (Bishop, 1995). Fig. 1 shows the

typical architecture of an ANN, which basically consists of an

input and output node array that are connected through

several hidden node layers in between. The nodes of each

layer are mutually connected with the nodes of the neigh-

bouring layer(s) and transfer data with a weight which is

specific for each connection. The output of a single node is

a function of the summed and weighted inputs from the

previous node layer. The transfer weights need to be deter-

mined in order to adapt the network to the particular issue.

The adjustment of these weights is called the training. Once
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the weights of the network are set, the developed ANN can be

used to directly relate a given input (in our case the NRS

spectra) to the corresponding output (the relevant physical

parameters) and the network is considered trained to solve the

particular problem.

In order to teach the ANN how to relate specific features of

the data to specific properties of the sample, the ‘supervised

learning’ method is applied (Bishop, 1995). In supervised

learning a so-called ‘training set’ is created, which consists of

several thousands of spectra, either real data or theoretically

calculated spectra, with well known output parameters. When

the data of the training set are presented to the input of the

network, having its weights initially set to random, the output

parameters of the ANN can be calculated. These parameters

are connected to the desired output parameters by means of a

network error E, which is given by

E ¼
1

2

PN

n¼1

yn � onð Þ
2: ð1Þ

In this summation, which runs over the number of specimens

in the training set, y is the calculated output of the network

(for reasons of simplicity only a single output is considered)

and o is the desired or correct output. To train the network,

the network error is minimized by consecutively adjusting the

weights of all successive layers after each training iteration

by means of a backpropagation algorithm (Bishop, 1995).

Simultaneously, a network error is calculated on another

similar but independent test set containing spectra not

presented to the network in the training phase. This is

necessary to avoid the well known problem of ‘overtraining’,

in which the ANN is overfitted to the training data but loses its

generalization capabilities. Once a minimal error is reached on

both the training set and the test set, the training of the

network is completed and the ANN can be applied to the

experimental data set.

While the creation of the training set and the initial training

itself are time-consuming, once a trained network is obtained

thousands of experimental spectra can be analyzed almost

instantaneously. Up to now, artificial neural networks have

been successfully applied to several experimental techniques,

including Rutherford backscattering spectrometry (Barradas

& Vieira, 2000; Barradas et al., 2002), infrared spectroscopy

(Duponchel et al., 1999) and Mössbauer spectroscopy

(Paulsen et al., 2000; De Souza et al., 2002). The aim of this

work is to validate the capability of ANNs for the NRS data

analysis. As a specific test system, an Fe/Cr multilayer is

presented, for which the measured data will be analyzed both

by conventional analysis and by means of a specifically

developed ANN.

2. NRS of synchrotron radiation

NRS of synchrotron radiation finds its origin in the Mössbauer

effect (Mössbauer, 1958), which describes the resonant

absorption and subsequent re-emission of photons by the

nuclear levels of atoms bound in a solid. After scattering of the

synchrotron photons from a nuclear resonant absorber, the

system returns to its initial state, and the intensity of the

resonantly emitted photons is detected as a function of time

after the excitation by the synchrotron pulse. For an isolated

nucleus, only a single transition between ground and excited

nuclear level is possible, and the temporal evolution of the

nuclear resonant scattered intensity can be described by an

exponential decay, with a time constant determined by the

lifetime of the excited nuclear level. When the atom is

embedded in a crystal, however, the degeneracy of the nuclear

levels will be lifted owing to hyperfine interactions, and

different transitions between ground state and excited state

become possible. Owing to the broad bandwidth of the

synchrotron radiation, all transitions will be excited simulta-

neously and the coherent decay of the excited nuclear levels

will give rise to a periodic interference pattern, caused by the

energy differences between the various nuclear transitions.

These oscillations, known as quantum beats, are superimposed

on the exponential decay of the nuclear resonant scattered

intensity (Fig. 2).

The shape of the NRS spectrum is a fingerprint of the local

magnetic and electronic environment in which the nucleus is

embedded. For a magnetic interaction, for instance, the beat

period is inversely proportional to the total magnetic field at

the position of the nucleus. This is illustrated in Fig. 2, where

NRS spectra were calculated for a 57Fe absorber, character-

ized by a hyperfine field of �17 T [Figs. 2(a) and 2(c)] and

�33 T [Figs. 2(b) and 2(d)]. As can be observed in the simu-

lations, the shape of the NRS spectrum is also sensitive to the

direction of the magnetic hyperfine field, since the orientation

of the magnetic field determines the number of frequencies

that contribute to the quantum beat pattern. When the in-

plane angle � between the hyperfine field and the �-vector of

the incoming radiation is changed, the shape of the NRS

spectrum evolves from a single frequency pattern for � = 90�

[Figs. 2(a) and 2(b)] to a multiple frequency spectrum for � =

0� [Fig. 2(c) and 2(d)].

For the relatively simple example of a single hyperfine field,

the hyperfine parameters can be extracted in a rather

straightforward manner from the shape of the NRS spectra.
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Figure 1
Schematic drawing of an artificial neural network.



However, when the hyperfine fields are distributed in magni-

tude and/or direction, several parameters will influence the

shape of the spectrum, resulting in complicated interference

patterns (Röhlsberger et al., 2001, 2002). A minor change of

one of the hyperfine parameters, driven by external conditions

such as pressure, strain or magnetic fields, will drastically

modify the entire spectrum, so that the measurements can

only be interpreted after a quantitative analysis of the data.

3. Fe/Cr: the system

In the present study, an Fe/Cr superlattice was chosen as the

test system for the ANN approach. Fe/Cr multilayers are

prototype systems where interlayer coupling can be observed:

depending on the Cr thickness, the magnetization in subse-

quent Fe layers will order parallel, antiparallel or perpendi-

cular to each other. Here, we focus on the magnetic properties

of a MgO(110)/Cr(100 Å)/[Cr(11 Å)/Fe(40 Å)]22/Cr(50 Å)

superlattice, of which the magnetization vectors of the adja-

cent Fe layers are known to adopt an antiparallel orientation

(Wang et al., 1994). When an external field is applied along the

easy axis of the sample, having an in-plane uniaxial anisotropy,

the interlayer coupling will be affected: for small external

fields the influence is negligible, but for larger external fields

the antiferromagnetic coupling will be broken and the

magnetization of the Fe layers will be forced towards the

external field direction. Moreover, theoretical investigations

have indicated that the rotation of the magnetization vectors

in the Fe layers does not occur simultaneously but depends on

the distance from the surface: first, the magnetization in the

top Fe layer will rotate towards the external magnetic field

(the so-called ‘surface spin flop’), and only upon a further

increase of the field will the magnetization vectors of the

central laying Fe layers follow (‘bulk spin flop’) (Keffer &

Chow, 1973; Bottyan et al., 2002). The first experimental

evidence of the surface spin flop transition in Fe/Cr super-

lattices was provided by means of magneto-optic Kerr

measurements (Wang et al., 1994), which probe the near-

surface magnetization. For the other Fe layers, however, only

the global magnetic behaviour, i.e. the magnetic response of

the entire structure, could be measured via macroscopic

magnetization measurements. Therefore, it is particularly

interesting to investigate the influence of the external field on

the orientation of the magnetization in the Fe layers as a

function of depth, i.e. layer by layer.

A technique that is particularly suitable for this purpose

is NRS of synchrotron radiation. From early Mössbauer

experiments it is known that the orientation of the internal

hyperfine field is strongly correlated with that of the magne-

tization vector M (Perlow et al., 1960). For example, for iron,

the 57Fe hyperfine field is oriented antiparallel to the magne-

tization vector (Hanna et al., 1960), and has a value of�33.0 T

at room temperature (Bergmann et al., 1994). The hyperfine

field information that is extracted from the NRS spectra is

thus directly related to the magnetization of the Fe layers.

Moreover, the isotopic selectivity of the NRS technique is

particularly valuable for obtaining depth-selective informa-

tion: by replacing certain regions of the sample with the

nuclear resonant 57Fe isotope, and the other regions with the

non-resonant 56Fe, the magnetic properties of these sites can

be measured selectively (L’abbé et al., 2004).

The experimental data set analyzed in this work was

collected on a [Cr(11 Å)/Fe(40 Å)]22 multilayer, of which the

third Fe layer from the surface consists of 57Fe. The sample

was grown by DC magnetron sputtering onto a MgO(110)

substrate, as described by Fullerton et al. (1993). A 100 Å Cr

buffer was first deposited at 673 K to improve the epitaxial

growth. Subsequently, the [Cr(11 Å)/Fe(40 Å)]22 multilayer

was grown at 383 K. Finally, the whole structure was capped

with 50 Å Cr to prevent oxidation. The NRS experiments were

performed at beamline ID-22N of the ESRF in Grenoble,

France (Rüffer & Chumakov, 1996). A 14.4 keV photon beam

with a spectral width of 6 meV was reflected by the sample at a

grazing angle of 3.6 mrad. An external magnetic field was

applied along the �-vector of the incoming radiation, parallel

to the in-plane easy axis of the sample. To obtain a complete

image of the magnetization reversal in the 57Fe layer as a

function of external field, an extensive set of NRS spectra

were recorded for 50 different external field values, in a field

range between �0.5 T and 0.5 T.

4. Fe/Cr: conventional data analysis

First, the experimental data were analyzed in the conventional

way, by comparing the measured data with theoretically

calculated spectra with the help of the least-square fit routine

CONUSS (Sturhahn, 2000). In Fig. 3(a), a selection of the

measured NRS spectra is shown. The external field signifi-

cantly influences the shape of the NRS spectra, whereas for

Bext = 0.5 T and Bext = �0.5 T the shape of the spectra is

similar to the 0� simulation of Fig. 2(d), the 0.18 T spectrum

showing a strong resemblance to the 90� simulation. This

clearly indicates that the hyperfine field, and consequently the
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Figure 2
Time spectra of NRS from a 57Fe absorber, for selected directions and
magnitudes of the magnetic hyperfine field Bhf. The spectra were
calculated using the CONUSS code (Sturhahn, 2000). k is the incident
photon direction, whereas � and � form the linear polarization basis of
the synchrotron radiation. The in-plane angle between the hyperfine field
Bhf and the �-vector of the incoming radiation is given by the angle �.



magnetization in the Fe layer, rotates under the influence of

the external field.

Initially, the NRS time spectra were analyzed by assuming a

single magnetic hyperfine field in the 57Fe layer. The rotation

of the magnetic hyperfine field as a function of the external

field was described by the angle �, defined as the in-plane

angle between the hyperfine field and the �-vector of the

incoming radiation. The hyperfine field was supposed to be

centred around approximately �33 T, taking into account a

Lorentzian distribution (with full width at half-maximum �).

By using this model, however, significant discrepancies

between the data and the calculated spectra were observed.

L’abbé et al. (2004) and Toellner et al. (1995) demonstrated

that additional components in the 57Fe hyperfine field distri-

bution are required in order to analyze the spectra. These

components arise from the thin interface region between the
57Fe layer and the adjacent Cr layers, and are characterized by

a reduced hyperfine field compared with the ‘core’ �33 T

component. In our analysis, the interface was modelled with a

single hyperfine field component, of which the orientation was

assumed to be the same as that of the hyperfine field in the

central part (core) of the 57Fe layer.

In total, six parameters were used to analyze the spectra:

the angle �, the magnitude of the core hyperfine field (Bhf1),

the magnitude of the interface hyperfine field (Bhf2), the

FWHM of both magnetic fields (�1 and �2, respectively), and

the weight of the interface site with respect to the core site

(weight2). Whereas the first parameter describes the orienta-

tion of the core and the interface hyperfine fields with respect

to the external field, the other five parameters determine the

hyperfine field distribution of the 57Fe

layer. The resulting distribution is

shown in Fig. 3(b). For the core, a

magnetic hyperfine field Bhf1 of

�33.3 (2) T with a distribution �1 of

2.9 (3) T could be extracted from the

data. The interface shows a reduced

hyperfine field Bhf2 of�22.2 (8) T with a

broad full width at half-maximum �2 of

11 (2) T. The weight of the interface site

was found to be 0.20 (2) times the

weight of the core contribution. These

values are the average values of the

hyperfine field parameters that were

extracted from the individual spectra

separately, with the standard deviations

as corresponding errors. The relatively

large error on Bhf2 and �2 indicates a

reduced sensitivity of the NRS spectra

to the interface parameters: a slight

change of these parameters only weakly

affects the shape of the NRS spectrum.

The evolution of � as a function of

external field is illustrated in Fig. 3(c).

It is important to note that the time

spectra are sensitive to the magnitude

and the direction of the hyperfine field,

but not to its sign; the projection of the hyperfine field on �
can either be positive or negative (L’abbé et al., 2004). For the

�0.5 T measurement, for instance, � was assumed to be 9 (2)�,

but, in principle, exactly the same fit would be obtained with

an angle of 171 (2)�. However, the 171 (2)� solution can be

excluded for physical reasons: for a large external field of

�0.5 T, the magnetization in the 57Fe layer can be expected to

be aligned with the applied field, so that the magnetic hyper-

fine field will point along the �-vector of the incoming radia-

tion [� = 9 (2)�]. Around 0.15 T, the hyperfine field starts to

rotate towards the direction of the incoming photon beam [� =

37 (3)�]. This is clearly reflected in the shape of the 0.18 T

measurement. Finally, for the +0.5 T measurement, the

magnetization will again be fully aligned with the external

field, so that the hyperfine field can be expected to be anti-

parallel to � [� = 173(2)�].

5. Fe/Cr: ANN data analysis

To investigate the capabilities of ANNs for the analysis of the

experimental data, an artificial neural network was trained to

determine the magnetic properties in the 57Fe layer of the

Fe/Cr superlattice. For our specific case, the network was

constructed on the basis of the six-parameter model that was

described in the previous section, with the NRS spectra as

input data, and �, Bhf1, Bhf2, �1, �2 and weight2 as the desired

output parameters.

For the network, a (I, 150, 75, 25, O) architecture was

chosen, where I is the input layer of the ANN (250 input

nodes, which are the counts per channel, for each NRS spec-
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Figure 3
(a) Selection of the experimental data that were measured on the Fe/Cr multilayer. The solid red
lines are the corresponding spectra that were calculated with the output parameters from the
conventional data analysis. (b) Resulting hyperfine field distribution of the 57Fe layer. (c)
Experimental results for � as a function of the applied field, determined for all spectra in the
experimental data set.



trum), O is the output layer of the network (six parameters),

and the numbers in between are the numbers of nodes of the

three hidden layers. Several other architectures were chosen

by trial and error, but did not lead to a drastic improvement

or deterioration of the network error. The training of the

network was realised via the supervised learning method. To

create a training set, 20000 theoretically calculated NRS

spectra with randomly chosen values of the six parameters

within the experimental possibilities were generated using

CONUSS. In order to make the training set as realistic as

possible, all spectra were convoluted with Poisson noise, as

one would expect for experimentally obtained data. As such,

numerous NRS spectra and their corresponding parameters

determining the shape of the spectrum were available for the

training. The generation of the training set was completed in

about 5 h using a Pentium-4 computer running at 2.66 GHz,

whereas the training of the network, as described in the

Introduction, was realised in less than half an hour.

To test the performance of the trained network, an

evaluation set of 200 independent NRS spectra, calculated

in the same way and with the same parameter ranges as the

spectra of the training set, was generated. After the neural

network was applied to the evaluation set, the calculated

output parameters of the ANN were compared with the target

parameters (i.e. the original parameters by which the simula-

tions were made) for each spectrum of the evaluation set. The

results are shown in Fig. 4. The relationship between the target

and output parameters of the network approaches very well

the desired behaviour of an ideal ANN, i.e. a linear depen-

dence with slope 1. The fact that the interface parameters

seem to be slightly harder to reproduce than the core para-

meters again reflects the reduced sensitivity of the NRS

spectra to the interface region. It should also be noted that

only limited parameter ranges were used to generate the

spectra of the evaluation set; for the core parameters, for

instance, Bhf1 was restricted to the region between �38 T and

�30 T, whereas �1 was confined between 2.2 T and 4.2 T.

These are the same ranges that were used to generate the

spectra of the training set, and are the maximal ranges for

which a trained network could be obtained. For broader

intervals, no satisfactory minimum error on the network could

be reached. This indicates the limits of the artificial neural

networks: when several parameters are present, each of which

can significantly modify the shape of the NRS spectrum, the

ANN will be inefficient to analyze the data.

After training and testing of the network, the experimental

Fe/Cr data were analyzed with the ANN. The total analysis

time for the 50 spectra was less than 1 s. The processing of the

same data set by means of the conventional method took

about 3 h. In Fig. 5(a), three theoretical spectra, generated

from the output parameters of the ANN, are superimposed

onto the experimental data. Although the agreement between

calculations and experiment is slightly worse than in the case

of the manual fitting [see for instance the 25 ns beat in the

central panel of Fig. 5(a)], it is clear that the developed

network allows one to reproduce the experimental data with a

very high degree of fidelity. This is also illustrated in Figs. 5(b)

and 5(c), where the output of the ANN is compared with the

results that were obtained by the conventional data analysis.

For each external field value, the ANN analysis yields a � value

that corresponds very well with the results of the conventional

analysis (Fig. 5b). In Table 1, the average values of the five

remaining parameters and their corresponding standard

deviations, obtained by the two analysis methods, are

compared. The overall hyperfine field distributions obtained

by both methods overlap almost completely (Fig. 5c).

6. Conclusions

We have developed an artificial neural network for the

analysis of NRS spectra that were measured on a Fe/Cr

multilayer system. The network was trained by means of a

theoretically generated training set, and applied to experi-

mental NRS data with excellent results. From the six output

parameters of the network, the measured spectra can be

reproduced with very high accuracy. The results, which are

obtained without any knowledge of the underlying physics, are

in very good agreement with those of the conventional data

analysis. This means that the results given by the ANN can be
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Figure 4
Comparison between the nominal parameters (target) and the output
parameters of the ANN (output) for the 200 spectra of the evaluation set.

Table 1
Comparison between the output parameters from the conventional data
analysis (CONV) and from the ANN analysis (ANN) for the five
parameters of the 57Fe hyperfine field distribution.

Bhf1 (T) �1 (T) Bhf2 (T) �2 (T) weight2 (a.u.)

CONV �33.3 (2) 2.9 (3) �22.2 (8) 11 (2) 0.20 (2)
ANN �33.3 (2) 2.8 (3) �22.2 (6) 10 (2) 0.20 (3)



taken directly as such, or can be used as an initial guess for

further refinement in CONUSS. While we focused in this work

on the magnetic properties of one specific sample, the same

network can be applied to all experimental data sets of which

the relevant physical parameters lie within the experimental

range of the training set. However, when broader parameter

ranges are required, or when additional parameters influence

the shape of the NRS spectra, a new ANN must be built and

trained. This is clearly a general shortcoming of the ANN

approach. On the other hand, in many NRS experiments

several similar samples are measured in the same experi-

mental run, creating a large amount of comparable spectra

that can be analyzed with the same ANN. This is also the case

for the Fe/Cr example: whereas the current work was limited

to the magnetic properties of one selective layer of the Fe/Cr

multilayer, it is certainly appealing to extend the measure-

ments to other Fe/Cr samples, having a different Fe layer

enriched with the 57Fe isotope. By developing a network that

takes into account both the magnetic characteristics and the

structural composition of the various samples, all data sets can

be analyzed with the same network.

In conclusion, the capability of artificial neural networks for

a fast and accurate data analysis in NRS experiments has been

demonstrated for an Fe/Cr case. We have shown that the

relevant hyperfine interaction parameters can be determined

fully automatically and almost instantaneously for each spec-

trum in the experimental data set. Given the successful results,

the network can be extended to many other NRS experiments

where a qualitative analysis of the data is required. Once the

relevant parameters are identified and the parameter ranges

are correctly set, for example by

analyzing one spectrum with the

conventional method, a suitable ANN

can be built and trained, and subse-

quently applied to an extensive amount

of data. Although the preparation of

the analysis, i.e. the construction of

a suitable ANN, may still be time-

consuming, the effort clearly pays off

when large data sets are considered.

Hence, the ANN analysis method is a

step forward towards an automated

evaluation of NRS experiments,

and could serve as inspiration to

other synchrotron-based experimental

methods that have to deal with an

increasing amount of experimental data.
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Gerdau, E., Rüffer, R., Winkler, H., Tolksdorf, W., Klages, C. P. &
Hannon, J. P. (1985). Phys. Rev. Lett. 54, 835–838.

Hanna, S. S., Heberle, J., Perlow, G. J., Preston, R. S. & Vincent, D. H.
(1960). Phys. Rev. Lett. 4, 513–515.

Keffer, F. & Chow, H. (1973). Phys. Rev. Lett. 31, 1061–1063.
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Figure 5
(a) Selection of the experimental data that were measured on the Fe/Cr multilayer. The solid red
lines are the corresponding spectra that were calculated with the output parameters of the ANN. (b)
Experimental results for �, determined both from the conventional data analysis (CONV) and from
the ANN analysis. (c) Hyperfine field distribution in the 57Fe layer, obtained from the two analysis
methods.
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