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The Landweber iteration approach is used to construct the radial pair

distribution function (RPDF) from an X-ray absorption (EXAFS) spectrum.

The physical motivation for the presented investigation is the possibility to also

reconstruct asymmetric RPDFs from the EXAFS spectra. From the methodical

point of view the shell fit analysis in the case of complicated spectra would be

much more eased if the RPDF for the first shell(s) are computed precisely and

independently. The RPDF, as a solution of the fundamental EXAFS integral

equation, is examined for theoretical examples, and a detailed noise analysis is

performed. As a real example the EXAFS spectrum of curium(III) hydrate is

evaluated in a stable way without supplementary conditions by the proposed

iteration, i.e. by a recursive application of the EXAFS kernel.

Keywords: EXAFS; pair distribution function; Fredholm integral equation;
Landweber iteration.

1. Introduction

The atomic pair distribution function describes the density of

interatomic distances in matter. The radial pair distribution

function (RPDF), which is independent of orientation, is

of special practical importance for the analysis of EXAFS

spectra. It is a major descriptor for the atomic structure of

amorphous materials and liquids.

A RPDF has by definition the following properties

(Babanov et al., 1981):

ðiÞ gðrÞ � 0 for any r;

ðiiÞ gðrÞ ! 1 if r!1;

ðiiiÞ gðrÞ ! 0 if r! rmin; gðrÞ ¼ 0 if r < rmin;

ðivÞ ð1=VÞ
R1
0

4�r2gðrÞ dr ¼ 1:

ð1Þ

The first condition is the positivity constraint, which is valid

for each probability distribution. The second condition states

that, for large distances where the particles are uncorrelated,

g(r) tends to 1.† Thirdly, for distances smaller than the sum of

ionic radii of the two atoms (rmin), where the impenetrability

of the particles becomes apparent, g(r) is equal to zero.

Fourthly, g(r) is normalized to 1.

The conditions in (1) must be incorporated in the

construction procedure of the function g(r), thus ensuring that

the sought solution is a normalized RPDF.

The general EXAFS integral equation for a one-component

system, i.e. for a system with only one type of backscattering

atoms, has the form

�ðkÞ ¼

Z
R3

Fðk; rÞ

kr3
exp �

2r

�ðkÞ

� �

� sin 2krþ 2�ðkÞ þ ’ðk; rÞ½ �gðrÞ dV; ð2Þ

where the kernel

Aðk; rÞ ¼
Fðk; rÞ

kr2
exp �

2r

�ðkÞ

� �

� sin 2krþ 2�ðkÞ þ ’ðk; rÞ½ � ð3Þ

results from the matrix element of the electron scattering

according to Fermi’s Golden Rule (see Stern, 1974; Lee &

Pendry, 1975; Teo, 1986). Here �(k) is the normalized oscil-

lating part of the measured EXAFS spectrum, k is the electron

wavevector, and r is the distance from the central to the

backscattering atoms. The function’s backscattering amplitude

F(k,r), the central atom phase shift �(k), the backscattering

atom phase shift ’(k,r) and the mean free path of the

photoelectron �(k) are obtained from the curved wave

approximation using the FEFF code (Ankudinov et al., 1998).

The reduction factor is set to S2
0 = 1 in this article.

† This boundary condition is irrelevant for RPDFs, which are derived from
EXAFS measurements. The distance of neighboring atoms measured by
EXAFS spectra is smaller than the asymptotic value of r, for which g(r)! 1
is valid.
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Equation (2) may be simplified in spherical coordinates due

to the fact that the kernel depends only on the radius r. In this

case the volume element is dV = 4�r2 dr. For EXAFS data

analysis it is more demonstrative and more adapted to intro-

duce a radial particle distribution n(r) instead of g(r),

nðrÞ ¼ 4�r2gðrÞ; ð4Þ

with

N ¼
Rr2

r1

nðrÞ dr; ð5Þ

so that N is the number of backscattering atoms in the sphe-

rical shell between r1 and r2, i.e. the analogue to the coordi-

nation number.

The EXAFS equation (2) now takes the form

�ðkÞ ¼

Z1

0

Fðk; rÞ

kr2
exp �

2r

�ðkÞ

� �

� sin 2krþ 2�ðkÞ þ ’ðk; rÞ½ �nðrÞ dr: ð6Þ

The function n(r), depending on the radius, is unknown and

contains all the information about the EXAFS spectrum.

The ‘shell fitting’ procedure is the most frequently applied

method to evaluate EXAFS spectra in practice. In this

procedure it is usually assumed that the particle density is

represented by separated Gaussian peaks where the half width

of the Gauss curve is the Debye–Waller factor �2,

nðrÞ ¼
Xshells

m¼1

Nm

ð2��mÞ
1=2

exp
�ðr� rmÞ

2

2�2
m

� �
: ð7Þ

Thus, the integral in the EXAFS equation (6) can be resolved

analytically and, assuming some well justified approximations,

will be reduced to the EXAFS equation for a number of

coordination shells,

�ðkÞ ¼
Xshells

m¼1

Nm

r2
m

Fmðk; rmÞ

k
exp �

2rm

�ðkÞ

� �
exp �2�2

mk2
� �

� sin 2krm þ 2�ðkÞ þ ’ k; rmð Þ
� �

: ð8Þ

Here, Nm is the coordination number and �2
m is the Debye–

Waller factor of the backscattering atoms in the mth shell.

While the shell fitting procedure approximates n(r) by

symmetrical Gaussians, knowledge of the exact RPDF, or

equivalent n(r), is of greatest importance, e.g. for the investi-

gation of anharmonic corrections caused by thermal vibrations

(Yang & Joo, 1998; Dalba & Fornasini, 1997; Crozier et al.,

1988). This is the main physical reason to determine the

complete RPDF independently.

Equation (6) may be rewritten in a condensed form as

�ðkÞ ¼
R1
0

Aðk; rÞ nðrÞ dr: ð9Þ

This is a Fredholm integral equation of the first type

connecting the known spectrum �(k) with the unknown

function n(r). The inversion of equation (9), i.e. the determi-

nation of n(r), is a so-called ill-posed problem. From the three

conditions for a well posed problem, suggested by Hadamard

(1932), i.e. (i) the existence, (ii) the uniqueness and (iii) the

stability of the solution depending continuously on the data,

condition (iii) is most often violated owing to the uncertainties

in the data, i.e. experimental error. The two most important

well established methods for the solution of this type of

integral equations, like equation (9), are Tikhonov’s regular-

ization (Tikhonov & Arsenin, 1981) and Landweber’s itera-

tion (Landweber, 1951) procedures. The principal difference

between the methods is the following. The integral equation,

like equation (9) or (10), is solved using the Tikhonov regu-

larization by multiplication with the inverse matrix (i.e. the

inverse integral operator), whose irregularities are avoided by

addition of a regularization matrix. The Landweber iteration

(see details below) does not use the inverse matrix and

therefore does not contain irregularities. Both methods are

independent and different.

In the mathematical literature some comparisons of the two

methods exist (Kirsch, 1996; Latham, 1998). They stated that

for non-noisy model spectra both methods lead to the same

result. A general comparison of both methods for the case of

realistic noisy data is not possible because of the different

character of data errors for each individual case.

It has been confirmed that for the inversion of equation (9),

and for data with experimental error, more stable results are

supplied by the Landweber iteration (Kirsch, 1996), which on

the other hand needs more iteration steps. The latter state-

ment agrees with our initial experiences of the analysis of

EXAFS spectra using the Landweber iteration. However, no

direct comparison of both methods, applied to real noisy

EXAFS spectra, exists. In x3 a qualitative noise analysis for

the Landweber iteration using model spectra is presented.

Babanov and co-workers (Babanov et al., 1981, 2007;

Ershov et al., 1981; Kunicke et al., 2005; see also Yang &

Bunker, 1996; Khelashvili & Bunker, 1999; Bunker et al., 2005;

Ageev et al., 2007) have applied the Tikhonov regularization to

the analysis of EXAFS spectra. Using special assumptions,

adequate RPDF of various systems were reconstructed. In this

context no systematic noise analysis exists.

Lee & Yang (2006) presented a new analytical method, the

Matched EXAFS RPDF Projection (MEPP), to obtain the

RPDF of an EXAFS spectrum via Fourier filtering.

An interesting article by Yamaguchi et al. (1999) deals with

the application of the Landweber iteration to the inversion of

the EXAFS equation. Their work focuses on the application of

the wavelet Galerkin method for the reconstruction of the

integral kernel A(k,r) in equation (9). The Landweber itera-

tion method contains two parameters (see below): a conver-

gence parameter � and a stopping number �opt, which

indicates the optimal number of iterations. Both parameters

were set by Yamaguchi et al. (1999) by ‘trial and error’ to 5000.

In the present work we present a methodical introduction

and some examples for the analysis of EXAFS spectra using

the Landweber iteration method, including the convergence

parameter �, which depends on the norm ||A*A||†, and the
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† A* denotes the conjugate transpose. Here and in the following the norm of a
matrix is the Frobenius norm.



stopping parameter �opt, which depends on the error in the

data. The calculation of the matrix A is performed by the use

of the FEFF8.2 program (Ankudinov et al., 1998). We also give

a physical interpretation of the iteration steps of the Land-

weber method for the inversion of the EXAFS equation. In

favor of simplicity and clarity, the article does not contain

analysis of multi-component spectra and of multiple scattering

effects.

2. Landweber’s iteration for a one-component
backscattering system without multiple scattering
effects

2.1. Landweber’s iteration and constraints

2.1.1. Definition. The basic EXAFS equation (6), in

operator form

An ¼ �; ð10Þ

when multiplied by �A*, is identically rewritten as

n ¼ I � �A�Að Þnþ �A��: ð11Þ

Based on this equation, with initial condition n0 = 0 and a

parameter � > 0, Landweber (1951) suggested the iteration

scheme

n�þ1 ¼ n� þ �A� �� An�ð Þ; ð12Þ

where � is the iteration number. For mathematical details, see

for example the textbooks by Kirsch (1996) and Louis (1989).

This iteration procedure can be interpreted as the steepest

descent algorithm to minimize the functional ||An � �|| with �
as convergence parameter. We remark that the acceleration

term (� � An�) is the difference spectrum between the

original spectrum � and the last iteration spectrum An� .

2.1.2. Convergence parameter. It has been proven, e.g. by

Louis (1989), that for � in the range 0 < � < 2/||A*A||, the

Landweber algorithm is equivalent to a linear regularization

procedure. This means that the iteration converges to an

optimal solution n�opt
at an optimal number of iterations �opt .

In the following examples, the convergence parameter

�EXAFS = 1/||A*A|| will be chosen.

2.1.3. Stopping parameter. While � defines only the ‘speed’

of the iteration, the optimal stopping parameter �opt must be

defined for each problem separately. On one hand, iterating

too long causes the experimental error in the data to

increasingly disturb the solution. On the other hand, too few

iterations will lead to a loss of resolution. This convergence

behavior is called semi-convergence (see also Fig. 1a).

Apparently, the stopping parameter �opt depends on the

error in the data (�), e.g. caused by noise, spline errors etc. All

other sources of uncertainty, e.g. the choice of � and the model

matrix A, are described in the literature (Elfving & Nikazad,

2007; Kirsch, 1996) by an additional parameter 	. There, it is

proved that the iterative method is convergent for 0 < 	 < 2.

Our initial model calculations (see below) show best results

for 	 ’ 1.

If the total data error 	� were known, the stopping rule

defining �opt would simply be

if An� � �
�� �� � 	� : � ¼ �opt: ð13Þ

This means that the solution is such that the norm of the

residual ||An � �|| is of the same order as the total data error

	� (Fig. 1b). We have used this condition several times with

simulated noise, i.e. with known � and 	 ’ 1, to validate the

following procedure developed for realistic noisy data.

2.1.4. L-curve criterion. In the case of real EXAFS

measurements, the total error 	� is not known. To determine

the stopping parameter in the Landweber iteration we

adapted the concept of the L-curve criterion, derived for the

determination of an optimized regularization parameter for

the Tikhonov regularization (Hansen, 1992, 2001; Hansen &

Oleary, 1993; Kunicke et al., 2005). In general, the L-curve is a

log–log plot of the norm of a regularized solution versus the

norm of the corresponding residual. Both norms depend

parametrically on �opt . The resulting curve shows a shape like

the capital letter L (Fig. 2). The optimal regularization para-

meter is chosen as the maximum of the L-curve curvature,

corresponding to the corner of the L. As � increases up to the
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Figure 1
Definition of the stopping parameter for an idealized theoretical
spectrum which contains artificial data error. (a) The difference between
the iterated (n�) and the theoretical (ntheor) RPDF, demonstrating clearly
the semi-convergent behavior of the Landweber iteration. (b) The
difference between the iterated and the theoretical spectrum plotted over
the iteration parameter �. 	� is the total error.

Figure 2
A typical idealized L-curve. The function n� is the RPDF after the �th
iteration, � is the measured EXAFS spectrum, and A is the EXAFS
integral operator. The iteration number � increases from right to left.



value �opt , the norm of the residual decreases much faster than

the norm of the solution increases. A region of � values follows

where the norm of the solution starts to increase dramatically.

This means that the value �opt, corresponding to the corner of

the L-curve, gives an optimum in the effort to minimize

simultaneously the norm of the residual and the norm of the

solution.

In the ideal case the L-curve is defined by a smooth

computable formula. Then the maximum of the curvature of

the graph log ||n�|| over log ||An�� �|| gives us the value of �opt .

The curvature c� of the L-curve is obtained using equation

(14) where x = log ||An� � �|| and y = log ||n�||. The prime

denotes the derivative with respect to � if both functions

depend parametrically and continuously on the parameter �,

c� ¼
x 0y 00 � y 0x 00

x 0 2 þ y 0 2ð Þ
3=2
: ð14Þ

Unfortunately, in the case of realistic data the L-curve does

not have the clear form shown in Fig. 2, and is limited by the

knowledge of only a finite set of points. As a first approx-

imation for the numerical differentiations in equation (14) we

used the integral values of the parameter � as nodes. The

corresponding stopping parameter is further denoted by �curv.

The use of �curv resulted in satisfying curvature maxima for all

of our examples.

A complete discussion of the numerical problems in

locating the corner of the L-curve, e.g. by use of cubic spline

curves, is given by Hansen & Oleary (1993).

2.1.5. Positivity constraint. Generally, different constraints

are used for the construction of solutions of ill-posed problems

in order to improve their stability and convergence. A

common method is the utilization of positivity constraints

(Kirsch, 1996). The positivity constraint [see equation (1)] is

included in the Landweber iteration steps because it is an

inherent part of the definition of the RPDF. It should be noted

that the consideration of the positivity constraint leads to a

slight degradation of the smoothness of the L-curve. Instead of

the terminus ‘positivity constraint’ the terminus ‘projected

inversion’ is equivalently used in the relevant literature

(Bunker, 2009).

2.2. Physical interpretation of the transformation of the
spectrum by the transposed matrix A*

In the first step of the Landweber iteration (n0 = 0) and with

� = 1, equation (12) has the form n1 = A*�, where � is the

EXAFS spectrum. In each further iteration step the operator

A* acts on a difference of two EXAFS spectra (� � An�). We

consider the effect of the transposed matrix A* acting on the

spectrum �(k),†

A�� 	 Ani�i 	
X

i

Aðki; rnÞ�i; ð15Þ

and rewrite (15) according to (6) in its continuous form,

A��ð ÞðrÞ ¼

Z1

0

Fðk; rÞ

kr2
exp �

2r

�ðkÞ

� �

� sin 2krþ 2�ðkÞ þ ’ðk; rÞ½ ��ðkÞ dk; ð16Þ

from which the following interpretation of transformation (16)

is obvious. The oscillating part of the integration kernel,

sin(2kr), is the imaginary part of the Fourier transform, which

results usually in a very precise determination of the distances

of the backscattering atoms. The argument of the sine function

is phase corrected by the phases of the central and back-

scattering atoms, and an amplitude window function is formed

by the atomic amplitudes and the mean free paths. Therefore

the transform (16) may be interpreted as a windowed and

phase-corrected Fourier transform, whereas the window and

phase functions originate from the underlying model.

2.3. Construction of the matrix A

For the discretization of equation (6) by an equal-spaced

step function, n(rm) is approximated by a linear function in

each �r interval.

Consequently, the right-hand side of (8) represents the

columns of the matrix Aim , which correspond to the k-

dependence of the kernel for each distance rm. If the coordi-

nation number in each interval is set to Nm = 1, we obtain the

columns of Aim,

�½rm�ðkÞ ¼
1

r2
m

Fðk; rmÞ

k
exp �

2rm

�ðkÞ

� �

� sin 2krm þ 2�ðkÞ þ ’ k; rmð Þ
� �

: ð17Þ

Therefore, for the distances rm, the columns of Aim are

calculated directly from the FEFF program (the chi.dat files

without Debye–Waller factors) in the form of the theoretical

�½rm�ðkÞ spectra. We used step sizes of �r = 0.02 Å or �r =

0.002 Å in our calculations.

Most algorithms use for the description of an RPDF peak

the theoretical scattering functions calculated for one radial

distance supplied by the FEFF structural model. It is well

known that the theoretical scattering functions depend on the

radial distance. Therefore the theoretical scattering functions

must be calculated for a narrow grid of radial distances in the

r-interval of the RPDF. If the theoretical scattering functions

are calculated only for one radial distance then, especially for

strong disordered systems with a broad RPDF, the calculated

RPDF might be incorrect.

2.4. Determination of the energy threshold shift DE0

The k-axis, which is the basis for the computation of the

matrix A, is defined by

k ¼ 2m=h- 2
� �

E� E0 þ�E0ð Þ
� �1=2

; ð18Þ

where h- is Plank’s constant, m is the electron mass and E is the

photon energy. E0 is the threshold energy, i.e. the minimum

energy to free the electron. To define the k-axis of the real

experiment, usually a correction term �E0 is introduced. �E0

is a priori unknown and usually it is determined by a shell fit
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† For the discretization of the EXAFS equation (6) we use the following. The
indices i, j, . . . run from 1 to the maximum number imax, jmax etc. of points in k-
space. The indices m, n, . . . run from 1 to the maximum number mmax, nmax etc.
of points in r-space.



of the spectrum before an inversion method is applied. If the

shell fit model is incorrect then the determined �E0 is erro-

neous and an inverse method would give a wrong RPDF. This

leads in turn to the conclusion that the recent inversion

procedures are only applicable if the structural model for the

investigated system is already known.

In our approach, �E0 is defined by the iteration procedure

itself, without recourse to fit calculations or models. The only

assumption is that for each � an optimal �E0 exists, and that

over a broad range around �opt the best values of �E0 are

similar. By using this assumption for a given �, the optimal

�E0 is determined simply by a one-parameter search, using

the minimization of the standard deviation SD�, defined as

SD� ¼
An� � �
�� ��

i
1=2
max

: ð19Þ

SD� is the norm of the residual of the EXAFS equation (10),

and depends on the iteration number �, normalized to the

maximum number of data points in r-space (imax).

We start with arbitrarily chosen values �start and �E0 . With

this start energy threshold shift (e.g. �E0 = 0) the columns in

the matrix Aim are re-calculated on the new k-axis, based on

equation (18). Then the Landweber iteration is performed up

to �start and the new SD� is determined. In the next cycle, �E0

is modified so that SD� decreases. If �E0 converges to a

constant value, the approximation procedure based on �start is

stopped. This first optimal �E0 is already near the true value,

and we calculate with this �E0 the new L-curve and the new

�curv. Then the algorithm to find �E0 is repeated by using �curv

as the new �start . If the actual �start is equal to the next �curv,

then �E0 and SD� have reached their final values.

This procedure will be illustrated below, where �E0

is determined for the noise contaminated spectrum of

example #6.

3. Application of Landweber’s iteration to model
spectra

In this section, we examine theoretically how the Landweber

iteration method responds to noisy ‘close-to-reality’ spectra.

Noise is added in ten steps with a noise generator to a noise-

free theoretical spectrum (Table 1, example #1). Subsequently,

the ten noise-contaminated spectra are analyzed. The change

of the structural parameter (N, r, �2) and the stopping para-

meter are inspected as a function of the amplitude of the

added noise.

Additionally, the difference between the theoretical stop-

ping parameter �theor (equivalent to �opt in Fig. 1a) and the

stopping parameter �curv (equivalent to �opt in Fig. 2), deter-

mined from the curvature of the L-curve, will be discussed.

By using equation (7) we calculated for one oxygen shell a

Gaussian-shaped model RPDF (ntheor) with N = 1, r = 2.50 Å

and �2 = 0.005 Å2. The terms in equation (8) [F(k,r), �(k),

2�(k) and ’(k,r)] are calculated by FEFF8.20 (see x2.3), where

the amplitude reduction factor is set to S0 = 1. The FEFF

structural model consists of a curium hydrate cluster based on

the EXAFS results of Skanthakumar et al. (2007). The matrix

Aim is then calculated using (17) with an energy shift of �E0 =

5 eV [see (18)] and the model spectrum � is calculated using

(10). For the calculation of the k-axis we used (18). We added

to the unweighted spectrum � a noise equal to Cnoise 
rnd,

where the random number generator (rnd) gives values in the

range �0.5 < rnd < 0.5 (Table 1). Fig. 3 shows for examples #2,

#6 and #10 (Table 1) the theoretical RPDF and the noise-

contaminated spectra.

For examples #2–#10 the L-curves are shown in Fig. 4 with

an inset showing example #10 on a more convenient scale. For

the presented theoretical examples, ntheor is known, hence for

each example the theoretical optimum number of iterations

�theor can be determined as the minimum in ||n� � ntheor||

normalized to the maximum number of data points in r-space

(mmax). Figs. 5(a) and 5(b) illustrate the determination of �theor

and �curv for the examples #2–#10.
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Table 1
Summary of the structural parameters N, r, �2, the theoretical (�theor) and
L-curve defined stopping parameter (�curv) for the noise-contaminated
model spectra.

The sign 1 for example #1 remarks that, for a spectrum without error, an
a priori limitation rule for the iteration does not exist, as explained in x2.1.3.
Standard deviations of the parameter are given in parentheses.

Example
Cnoise

� 104 N r (Å)
�2
� 103

(Å2) �theor �curv

#1 0.00 1 2.5 5 1 1

#2 0.50 0.999 (6) 2.5000 (5) 4.99 (7) 84 93
#3 0.75 0.995 (7) 2.4999 (6) 4.93 (8) 75 79
#4 1.00 0.991 (8) 2.4999 (6) 4.88 (9) 70 72
#5 1.50 0.98 (1) 2.4998 (8) 4.8 (1) 62 64
#6 2.00 0.98 (1) 2.500 (1) 4.7 (1) 57 59
#7 2.50 0.97 (1) 2.500 (1) 4.6 (2) 53 56
#8 3.00 0.97 (2) 2.499 (1) 4.5 (2) 50 55
#9 3.50 0.97 (2) 2.499 (2) 4.4 (2) 48 53
#10 4.00 0.96 (2) 2.499 (2) 4.3 (2) 46 51

Figure 3
Theoretical RPDFs (ntheor) and the corresponding spectra with added
artificial noise are shown in black. The RPDFs (n�curv

) reconstructed using
the Landweber iteration and the corresponding spectra are shown in red.
Residuals are blue.



The inspection of the shape of the L-curves (Fig. 4) leads to

the conclusion that for examples with a high noise level the

norm of the residual ||An� � �|| decreases and the norm of the

solution ||n�|| increases faster than for the examples with a

lower noise level; hence the higher the experimental error in

the data the lower is the number of iterations needed for the

solution. This trend is in accordance with the shift of the

minimum in ||n� � ntheor|| and c(�) to smaller �theor and �curv,

in case the noise level increases [Figs. 5(a) and 5(b)]. These

observations are in line with the semi-convergent behavior

of the Landweber iteration. The observed good accordance

between �curv and �theor (Table 1) shows the reliability of the L-

curve concept to estimate the number of required iterations

for noise-contaminated spectra.

For all L-curves, the position of the maximum curvatures

determined by equation (14) shows a very similar norm ||n�||

(open circles connected by line in Fig. 4). This is a first indi-

cation that for all calculated RPDFs the coordination number

will be very similar as discussed later.

For all examples, the determined n
curv
and the theoretical

ntheor are in good accordance, as can be seen for examples #2,

#6 and #10 in Fig. 3. Also, the spectra calculated using n
curv
are

in good agreement with the noise-contaminated spectra within

the noise level (Fig. 3).

The sought structural data (N, r, �2) in Table 1 are derived

from a comparison of the RPDFs with a Gaussian-shaped

RPDF [see equation (7)]. For all noise levels the structural

parameters (N, r) are in good agreement with those of the

initial model (Table 1, #1). The deviation of �2 from its true

value increases systematically and significantly with the noise

level. For example #2, no significant deviation is observed,

whereas, for example #10, �2 is 14% below the true value

(Table 1). It is interesting to note that the precision in the

determination of the structural parameters follows the order

r > N > �2. This trend is also visible in the deviations between

n
curv
and ntheor (Fig. 3). The position of the maxima in n
curv

does not change with the noise level, while the left- and right-

hand sides of n
curv
show deviations from ntheor with increasing

noise (Fig. 3). It is important to realise that these deviations

influence the shape of the RPDF and that therefore �2 is the

parameter which is most affected by noise, i.e. experimental

error, of the EXAFS spectrum.

Note that for the preceding comparison of models the

energy shift for the noise-free spectrum was fixed at �E0 =

5 eV. In the following we demonstrate, using example #6, the

procedure for calculating �E0 as described in x2.4. For this

spectrum, �theor = 57 and �curv = 59 (Table 1, #6).

The starting values are �start = 10 and �E0 = 0 eV. At �start =

10 the resulting �E0 is 5.08 eV (Table 2), hence already near

the value of a noise-free initial spectrum (Table 1, #6). The

curvature shows for this first value of �E0 a maximum at
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Figure 5
Definition of the stopping parameters �theor and �curv for the noise-
contaminated spectra of examples #2–#10 (Table 1). (a) The difference
between the theoretical and the iterated RPDF, normalized to the
maximum number of data points in r-space. (b) The curvature [see
equation (14)] of the L-curves (Fig. 4). For graphs (a) and (b) the symbols
correspond to the numbers of the examples.

Table 2
Determination of �E0 for the noisy spectrum of example #6, arbitrarily
starting at �start = 10 and �start = 100.

Step �start �curv �E0 (eV) SD� � 102 (Å�3)

1 10 64 5.08 6.286
2 64 67 5.13 6.284
3 67 68 5.14 6.283
4 68 68 5.14 6.283

1 100 66 5.11 6.284
2 66 68 5.14 6.283
3 68 68 5.14 6.283

Figure 4
L-curves for the noise-contaminated spectra of examples #2–#10
(Table 1).



�curv = 64 (Table 2). By taking this value as the next �start , a

new improved �E0 is determined. After four such steps, �start

is equal to �curv and �E0 has reached a final value of 5.14 eV.

When starting at �start = 100, the method leads to the same

result (Table 2). During the approximation cycles the value of

SD� decreases and the difference between the theoretical

(�E0 = 5 eV) and the calculated �E0 increases slightly. This

demonstrates that a part of the noise in the spectrum influ-

ences �E0 and consequently influences the RPDF, which

reflects the normal behavior of error propagation.

Table 3 shows the structural parameters for example #6,

determined either by the Landweber iteration with calculated

�E0 (‘iteration’) or by shell fit. Both results are in good

agreement. Furthermore, they are in good agreement with the

results obtained by keeping �E0 constant during the Land-

weber iteration (Table 1, #6).

4. Application of Landweber’s iteration to curium(III)
hydrate

The coordination environment of the hydrated Cm3+ ion was

recently investigated by Cm L3 EXAFS and high-energy

X-ray scattering (Skanthakumar et al., 2007). It was found that

the Cm3+ ion is surrounded by nine coordinating water

molecules at two different Cm—O distances. The EXAFS

spectrum was fitted by six oxygen atoms at 2.47 Å and three

oxygen atoms at 2.63 Å, while maintaining the coordination

numbers fixed to stabilize the shell fit (Skanthakumar et al.,

2007).

In order to test our full Landweber approach (including the

procedure for determining �E0) for deriving the RPDF of a

real world spectrum, the authors of Skanthakumar et al. (2007)

kindly provided their experimental Cm3+ hydrate spectrum

[Fig. 6(a), #1].

For the calculation of the matrix A an r-interval of 1.3–4.0 Å

with a step size of �r = 0.002 Å is used. To determine �E0 , the

method described in x2.4 is applied and yields �E0 = 6.42 eV

at �curv ’ 900 (Table 4). The determined RPDF shows an

asymmetry at higher r-distances [Fig. 6(c), #1]. The small

features at 3.1–3.8 Å in the RPDF [Fig. 6(c), #1] may arise

from reproduction of small multiple-scattering contributions

by the Cm—O functions or other sources. The determined

asymmetric RPDF is only properly reproduced when two

Gaussians are considered in equation (7) [Fig. 6(c), #1]. The
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Table 3
Structural parameters for example #6 determined by the Landweber
iteration including the calculation procedure of �E0 and the structural
parameters determined by shell fitting.

Standard deviations of the parameter are given in parentheses. In the case of
the shell fit, the standard deviations were calculated by using the software
EXAFSPAK (George & Pickering, 1995).

Example #6 N r (Å) �2 (Å2) �E0 (eV)

Iteration 0.98 (1) 2.500 (1) 0.0047 (1) 5.14
Shell fit 0.96 (3) 2.494 (2) 0.0046 (2) 4.9 (3)

Figure 6
(#1) Experimental data of Cm(III) hydrate. (#2) Theoretical example.
Data (black), result of the Landweber iteration (red), residual between
data and result of Landweber iteration (blue). (a) EXAFS spectra, (b)
corresponding Fourier transforms, (c) RPDFs. Decomposition of the
RPDFs into two Gaussians and the sum of the two Gaussians (green).

Table 4
Summary of the structural parameters for Cm(III) hydrate and a theoretical example gained by the Landweber iteration and the shell fit, the theoretical
(�theor) and L-curve (�curv) defined stopping parameters in the case of the Landweber iteration.

Example Cnoise � 104 N r (Å) �2
� 103 (Å2) �theor �curv �E0 (eV)

Cm(III) hydrate – 6.0 (6) 2.469 (4) 6.0 (3) – 900 6.42
(Landweber iteration) 3.1 (7) 2.61 (2) 10 (2)
Cm(III) hydrate – 6† 2.464 (1) 5.8 (2) – – 6.51 (4)
(Shell fit) 3† 2.612 (4) 9.5 (8)
Theoretical example 5 6.0 (2) 2.464 (1) 5.6 (1) 1709 1922 6.51†
(Landweber iteration) 2.9 (2) 2.614 (6) 8.7 (5)

† Fixed structural parameter. Standard deviations of the parameter are given in parentheses. In the case of the shell fit, the standard deviations were calculated by using the software
EXAFSPAK (George & Pickering, 1995).



resulting structural parameters for the two Cm—O shells are

within the standard deviations in full agreement with those

gained by a shell fit of the Cm(III) hydrate spectrum (Table 4).

The coordination numbers of the two Cm—O shells were

assumed to be 6 and 3 and were fixed to stabilize the shell fit.

Note that in the case of the Landweber iteration the RPDF is

calculated without such constraints and assumptions contrary

to the shell fit.

In the following we tested the ability of the Landweber

iteration in resolving these two overlapping Cm—O shells by

constructing a theoretical model. Both the model RPDF and �
were constructed using the structural parameters gained from

the shell fit of the Cm(III) hydrate spectrum (Table 4) and the

procedure discussed in x3. To the unweighted spectrum �, we

added noise Cnoise (Table 4) similar to the noise amplitude of

the experimental spectrum of Cm(III) hydrate [compare #1

and #2 in Fig. 6(a)]. The optimum number of iterations, �curv =

1922, is near the theoretical optimum number of iterations of

�theor = 1709 (Table 4). For Cm(III) hydrate, �curv is much

higher than for the theoretical examples discussed in x3, which

were analyzed in the smaller r-interval of 2–3 Å. The higher

�curv can be explained by the decrease of the convergence

parameter � owing to the increasing norm ||A*A|| (see x2.1) in

the case of the larger investigated r-interval of 1.3–4.0 Å.

The resulting RPDF [Fig. 6(c), #2] reproduces the noise-

contaminated EXAFS spectrum [Fig. 6(a), #2] within the

limits of the artificially added noise. Owing to the spatially

distinct two oxygen shells, the RPDF shows an asymmetry at

higher r-distances which is not visible in the corresponding

Fourier transform [compare Figs. 6(b) and 6(c), #2], similar to

the experimental data [compare Figs. 6(b) and 6(c), #1]. For

the calculation of the structural parameters, the RPDF is

reconstructed with two Gaussians according to equation (7).

The resulting structural parameters (Table 4, theoretical

example) are in good accordance with those taken for the

construction of the theoretical RPDF (Table 4, shell fit), hence

there is strong confidence in the correct calculation of the

RPDF by the Landweber iteration in the case of the experi-

mental Cm(III) hydrate spectrum. The structural parameter

for Cm(III) hydrate, gained by the Landweber iteration and

the shell fit (Table 4), agrees favorably with the results

published by Skanthakumar et al. (2007) within the bounds

of the errors in the determination of EXAFS structural

parameters.

5. Conclusions

The analysis of model spectra with artificial noise, as well as

of an experimental EXAFS spectrum of Cm(III) hydrate,

demonstrates that the Landweber iteration approach is well

suited to solving the EXAFS integral equation, even if the

spectra contain experimental error. The robustness in relation

to the error in the data represents the main advantage of this

method.

All variables used in the iteration approach [equation (12)]

have a well defined physical meaning. The determined RPDF

n(r) is the density of coordination numbers, the key trans-

formation with the matrix A* is a windowed and phase-

corrected Fourier transform of the spectrum, and the accel-

eration term (�� An�) is the difference spectrum between the

original spectrum � and the last iteration spectrum An� .

Convergence and stopping parameters are uniquely defined

by the matrix A and the L-curve concept.

In the presented approach, the threshold energy shift �E0 is

defined by the iteration procedure itself, without recourse to

fit-calculations or models.

The forthcoming investigations focus on the expansion of

the stable Landweber iteration with the aim of considering

more than one type of backscattering atoms and multiple-

scattering effects for the inversion of the EXAFS equation.
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