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A theoretical model to trace X-rays through an L-shaped (nested or Montel

Kirkpatrick–Baez mirrors) laterally graded multilayer mirror to be used in a

synchrotron application is presented. The model includes source parameters

(size and divergence), mirror figure (parabolic and elliptic), multilayer

parameters (reflectivity, which depends on layer material, thickness and number

of layers) and figure errors (slope error, roughness, layer thickness fluctuation

�d/d and imperfection in the corners). The model was implemented through

MATLAB/OCTAVE scripts, and was employed to study the performance of a

multilayer mirror designed for the analyzer system of an ultrahigh-resolution

inelastic X-ray scattering spectrometer at National Synchrotron Light Source II.

The results are presented and discussed.
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1. Introduction

In X-ray optics, elements such as reflective mirrors operate in

total reflection within a small critical angle (�c), beyond which

the reflectivity drops rapidly to zero. This is due to the fact that

the real part (�) of the refraction index (n = 1 � � + i�) in

the hard X-ray spectral range is extremely small (�10�6).

Reflective mirrors are widely used in synchrotron X-ray

beamlines as collimating and focusing optics. Also, they can be

used as the first optical element to reduce the heat load

impinging on the monochromator and as a harmonic

suppressor. With the advent of new polishing techniques (Jain,

2008), such as abrasive flow machining (Rhoades, 1991) and

magnetorheological finishing (Kordonski & Jacobs, 1996), and

with the improvement of sputtering deposition systems, the

use of mirrors and challenging mirror surfaces [e.g. Wolter

mirrors for soft X-ray microscopy (Sugisaki et al., 1998)] has

become more popular. However, manufacturing high-quality

mirrors for hard X-ray energies is still a major challenge. At

higher energies the critical angle becomes much smaller (�c =

�1/2), which requires, in general, a longer mirror and a surface

of higher accuracy in order to reduce angular spread caused by

slope error. Also shorter photon wavelength requires smaller

values of roughness in order to reduce the intensity loss owing

to diffuse scattering.

One way to circumvent this problem is to use diffractive

multilayer mirrors. Using these the angle of incidence can be

increased and therefore the slope errors can be relaxed. In the

X-ray spectral range, multilayer mirrors were first successfully

fabricated in the early 1940s as superlattices using the

evaporation techniques (Dumond & Youtz, 1940). The

multilayer is an artificial structure composed of layers of

alternating soft and heavy materials, thereby creating an

artificial lattice. Such structures become much more useful

(Vinogradov & Zeldovich, 1977; Lienert et al., 1999; Cham-

peaux et al., 2007) with the advent of new sputtering deposi-

tion techniques that make it possible to control the layer

thickness with a precision better than 0.2 nm (Schuster &

Gobel, 1995). This makes it possible to build laterally graded

multilayers, i.e. structures with the lattice parameter (the d

spacing) varying for different points on the mirror surface, in

order to improve the efficiency of the diffractive optics. The

advantage of such a structure is that higher intensity at higher

reflection angles can be obtained owing to diffraction by the

artificial lattice. Laterally graded multilayer mirrors, for

example, have been used to increase the bandwidth (to ��/�
’ 10�3) of beamline monochromators. Their use as collima-

tors (Goebel mirrors) in conventional X-ray sources, to

improve the intensity in powder diffraction experiments, has

also been reported (Hertlein et al., 2005; Shymanovich et al.,

2008).

In many cases the application of multilayer mirrors involves

only one-dimensional figuring owing to the challenge in

fabricating a mirror with an aspherical surface figure. L-

shaped laterally graded multilayer mirrors provide a solution

to this problem by combining two one-dimensionally figured

multilayer mirrors at 90� to each other. Such types of mirror

have been used in commercial powder diffratometers

(Hertlein et al., 2005; Shymanovich et al., 2008) and also with

neutron sources (Ice et al., 2009). By having two diffractions at

each surface (Fig. 1), these mirrors can be used to focus

(elliptic figure) or collimate (parabolic figure) the beam into
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two dimensions. They can also be used to focus the beam into

one direction and collimate in another (with a vertical elliptic

mirror and a horizontal parabolic mirror or vice versa). The

disadvantage of having two diffractions, compared with an

aspherical surface, is compensated by the possibility to carry

out more accurate surface figuring. Compared with the Kirk-

patrick–Baez geometry (Kirkpatrick & Baez, 1948), L-shaped

laterally graded multilayer mirrors present the advantage of

having the same focus distance for the vertical and horizontal

mirror.

To simulate such a multilayer mirror, one can use some

excellent ray-tracing programs dedicated to X-rays (freely

available) which include SHADOW (Lai & Cerrina, 1986) and

RAY (Schafers, 2008). Also, other programs such as ZEMAX,

Tracepro and Code V, which handle visible-light optics, are

commercially available. The reason for having dedicated ray-

tracing programs for X-rays is because such programs consider

two important main issues: X-ray refraction index (smaller

than 1) and dynamical diffraction effects (Authier, 2001).

Among the dedicated X-ray ray-tracing programs, SHADOW

does not handle laterally graded multilayers, whereas RAY

does. However, both are not able to easily trace X-rays into L-

shaped mirrors. In this manuscript we present a theoretical

model to trace X-rays through L-shaped laterally graded

multilayer mirrors. The model was implemented in MATLAB/

OCTAVE scripts. The input parameters used here are those

required for the analyzer system of the high-resolution

inelastic X-ray scattering (IXS) spectrometer at NSLS II. In

the IXS spectrometer the L-shaped laterally graded multilayer

mirror needs to accept the scattering of the sample with an

aperture of 5 mrad and collimate this beam to 0.1 mrad. This

collimation has to be the acceptance of a high energy reso-

lution analyzer crystal system (Shvyd’ko et al., 2006; Yabashi et

al., 2001; Toellner et al., 1997) in order to improve the effi-

ciency of the spectrometer. Other options like separated

Kirkpatrick–Baez multilayer mirror systems and aspherical

multilayers could also do the job.

Different mirror figures were exploited: parabolic and

elliptic and a combination of both (Fig. 1). These mirror

figures work in different configurations: collimator, focusing

and combination of vertical focusing and horizontal collima-

tion. The beam being diffracted by the mirror is characterized

in terms of source parameters (source size and divergence),

figure errors (slope error, roughness and the random layer

thickness fluctuation �d/d) and corner gap.

2. Theoretical model

The first step to tracing X-rays through a multilayer mirror is

to set up the odd and even multilayer materials and also the

number of bi-layers in the multilayer structure. These para-

meters will determine the efficiency of the multilayer mirror.

The next step is to calculate the reflectivity. To do this the

dynamical theory of X-ray diffraction for angles near grazing

incidence needs to be applied (Authier, 2001; Parrat, 1954;

Underwood & Barbee Jr, 1981). By using the formalism

developed by Parrat (1954) and improved by Underwood &

Barbee Jr (1981) one can plot the reflectivity curve shown in

Fig. 2 (solid line) for a flat multilayer mirror. The curve was

calculated with parameters optimized for maximum reflec-

tivity: W/B4C multilayer mirror for 100 bi-layers (2.5 nm each,

W 1.0 nm thick and B4C 1.5 nm thick). This curve shows an

asymmetry and some oscillations around the main peak. Both

effects are a consequence of the dynamical theory of X-ray

diffraction. The asymmetry is due to the different photo-

electric absorption of the standing X-ray wavefield (Honnicke

& Cusatis, 2009) for the low- and high-angle side of the
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Figure 2
Theoretical reflectivity for a W/B4C flat multilayer mirror for a total of
100 bi-layers (2.5 nm each, W 1.0 nm thick and B4C 1.5 nm thick) (solid
curve) and the approximation, as a Gaussian profile, used in the
simulations (dotted curve).

Figure 1
Schematic representation of the L-shaped double-bounce X-ray mirror
used as (a) collimator (parabolic figure), (b) focusing optic (elliptic
figure) and (c) focusing/collimating optic (combination of parabolic and
elliptic figure). The insets show the theoretical focus sizes for perfect
mirrors.



rocking curve. The oscillations are the Pendellösung fringes

owing to the finite crystal condition. If the multilayer was

thicker, these oscillations would disappear. In our model the

reflectivity is approximated by a Gaussian profile (Fig. 2,

dotted line) with the same amplitude and full width at half-

maximum (FWHM) of the theoretical reflectivity curve (w =

5.2 � 10�4 rad). So, different types of multilayer (layer

materials, lattice parameter and number of bi-layers) can be

used as input to account for the reflectivity in the scripts.

Once the materials to be used for the multilayer have been

established, other parameters for ray tracing the X-ray

through the mirror must be determined. These include source

parameters (size and divergence), figure errors (slope error,

roughness and random layer thickness fluctuation) and corner

gap. These parameters are specified in the following sections

and used as input for the ray-tracing program.

2.1. Mirror figure

In the present theoretical model we are using parabolic and

elliptic figures and a combination of both, as shown in Fig. 1.

For the parabolic figure the required parameter is the focal

parameter (p) and is given by the parabolic equations

y ¼ ð2pxÞ
1=2; z ¼ ð2pxÞ

1=2: ð1Þ

The input parameters to determine p are the source-to-mirror

distance (s) and the incident angle (�i). The relation between

p, s and �i can be easily found by simple trigonometric

calculations and is given by

�i ¼ arccot 2s=p� 1ð Þ
1=2

� �
: ð2Þ

Another useful relation is how p is

related to the focus distance, F,

p ¼ 2F: ð3Þ

The parameters s, �i and F (F = p/2) are

schematically shown in Fig. 3(a). A

parabolic mirror figure for s = 200 mm

and �i = 1.59� (p = 0.308 mm) is shown

in Fig. 4(a).

For the elliptic figure, the required

parameters are a and b, as given by the

elliptic equation

y ¼ b 1� x2=a2
� �1=2

;

z ¼ b 1� x2=a2
� �1=2

:
ð4Þ

The equations (1)–(4) are for only the

cases of a plane ellipse and a plane

parabola. The input parameters to the

program to determine a and b are

the source-to-mirror distance (s1), the

mirror-to-focus distance (s2) and the

incident angle (�i). To determine a, the

following relation can be used,

a ¼ s1 þ s2ð Þ=2: ð5Þ

To determine b, we first need to specify � (the angle between

s1 and s2),

� ¼ �� 2�i; ð6Þ

by the law of cosines,

ð2cÞ
2
¼ s2

1 þ s2
2 � 2s1s2 cosð�Þ; ð7Þ
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Figure 3
Schematic representation of the main figure parameters: (a) parabolic
figure and (b) elliptic figure.

Figure 4
Mirror figures and parameters used as input in the ray-tracing program: (a) parabolic, (b) elliptic,
(c) variation in the lattice parameter versus distance on the mirror surface for the parabolic laterally
graded multilayer, (d) variation in the lattice parameter versus distance on the mirror surface for the
elliptic laterally graded multilayer mirror. Different inputs for parabolic and elliptic surfaces can
also be used in the program.



where 2c is the distance between the two foci (F1 and F2). With

c we can determine the eccentricity (") by

c ¼ "a: ð8Þ

So b can be found by

b ¼ 1� "2
� �1=2

a: ð9Þ

The parameters a, b, s1, s2, �i, �, c, F1 and F2 are schematically

shown in Fig. 3(b). An elliptic mirror figure for s1 = 200 mm,

s2 = 10000 mm and �i = 1.59� is shown in Fig. 4(b). The abscissa

scales in Fig. 4(a) and 4(b) are different so as to be mathe-

matically consistent with the equations shown above.

2.2. Source parameters

The source parameters as the input for the ray-tracing

program are the source size (�, defined by the FWHM) and

the divergence (��, the full angle). If the source size is infi-

nitely small (point source), the size of the beam (!, defined by

the FWHM) after a perfect mirror (for the parabolic figure)

can be predicted by the simple geometric relation

! ¼ ��s: ð10Þ

For a point source and the elliptic figure mirror, the size of the

beam on the focus (s2) will be the same as in source (s1), i.e. a

point. When a finite source is included, these parameters are

changed. They can also be predicted by geometric relations.

The sizes of the beam (!) after the mirror, for parabolic and

elliptic figures, are given by equations (11) and (12), respec-

tively,

! ’
�

cos �i

þ��f ; ð11Þ

! ’ � f2=f1ð Þ þ��f1: ð12Þ

In the present simulations both cases can be considered (point

source or extended source). The trace of the X-rays is made

for each ray (250000 in total) that reaches the mirror surface at

different angles of incidence (aberrations owing to the incor-

rect incident angle owing to the source size are considered).

This procedure is helpful when the surface errors are included,

as each ray will be touching a different point on the surface.

2.3. Slope error

The slope error, or waviness, is almost always considered as

short-range sinusoidal-like variations from the ideal surface

shape. If this kind of variation is of over a large range it is

called the figure error. The slope error is responsible for the

image spread on the focal plane and also for a reduction of the

intensity owing to the shadowing effect of the ripples (Sanchez

Del Rio & Marcelli, 1992).

The slope error introduced in the present model is consid-

ered to be sinusoidal-like in the direction of the beam

(meridional slope error) on both surfaces. When the input

parameter is the slope error, the probe for the entire sinu-

soidal function (ripple wavelength) is chosen to be

S ’ A sinð2�=�Þ; ð13Þ

where A is the ripple amplitude and � is the wavelength of the

sinusoidal slope error. Based on this function, the slope error

number is given by the derivative of this function with respect

to �, point by point on the mirror surface.

2.4. Roughness

In general, roughness is defined by the inhomogeneity of

the surface. Its size is considered to be of the order of the

wavelength (a few tenths of a nanometer for X-rays), and thus

it produces diffuse scattering (Debye et al., 1957; Wong, 1985;

Sinha et al., 1988; Kopecky, 1994; Bruson, 1995; Stepanov et al.,

1996; Vainer et al., 2006). Usually, roughness is considered by

defining a correlation function. The correlation function gives

the extension of the inhomogeneity, i.e. the size of the region

over which they occur. When the Born approximation is used,

the scattered function is proportional to the Fourier trans-

formation of the correlation function. The correlation function

used here is based on a scattering model involving a homo-

geneous surface with several holes of random size (Debye et

al., 1957). This gives us a correlation function for a random

scatter given by

�ðrÞ ’ expðr=aÞ; ð14Þ

where a is given by the extension of the inhomogeneity and

it is, usually, of the order of ten thousandths of a nanometer. A

similar approach can be made by using the formalism

proposed by Sinha et al. (1988) with h, in his nomenclature,

equal to 0.5. Following the mathematics given by Debye et al.

(1957), the scattered intensity is given by

i ¼
8�a3h	2iV

1þ k2�2a2ð Þ
2 ; ð15Þ

where a has been defined above, 	 is the local fluctuation from

an average electron density (proportional to the RMS

roughness �, that is the input in the ray-tracing program), V is

the illuminated volume, k = 2�/� and � is the scattering angle.

The reflectivity intensity including the scattering is shown as a

dotted Gaussian profile in Fig. 5. Such a curve is used as a

reflectivity curve when roughness is included. Different values

for the roughness can be used as input.

2.5. Random layer thickness fluctuation

This kind of imperfection is characterized by the random

variation in the layer thickness around its nominal value at

that spatial position on the mirror. It is treated here as the

relative variation in the lattice parameter (�d/d); this is the

input in the ray-tracing program. When this is included, the

reflectivity (Gaussian profile) becomes broadened (Fig. 5).

The area of the Gaussian profile is kept constant, so that the

peak intensity is reduced owing to the variation in the lattice

parameter.

2.6. Mirror corner

One of the important points raised by the synchrotron

community concerns the corner of the L-shaped mirrors. The

corner is an important issue which arises when assembling the
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two mirrors together. If the joint is not perfect, the efficiency

of the mirror will be reduced. In our simulations the corner is

considered in terms of its size, which is an input parameter in

the ray-tracing program. In this region of the mirror, diffrac-

tion does not occur, so there is no intensity. This appears as

a dark diagonal line in the image after the mirror. In our

simulations we consider a corner gap of 2 mm. In this case the

intensity loss owing to the corner is 0.2%. However, this value

is going to be larger in the center of the mirror (about 60 mm)

owing to the pre-figured mirrors. In this case a dark elliptical-

shape diagonal is expected in the center of the image after the

mirror (schematically shown by arrows in Fig. 6a). In our

simulations this is not considered; the scripts are being

improved to treat this kind of effect. Even in this case,

however, the intensity loss owing to the corner is estimated to

be less than 2%.

2.7. Statistic fluctuation

Experimental measurements always carry statistic fluctua-

tion. To reproduce it in our model, the Poison statistic (
) was

introduced in a simple form,


 ¼ I=I0ð Þ
1=2; ð16Þ

where I/I0 is the relative intensity in each pixel of the two-

dimensional detector that registers the intensity diffracted by

the mirror. This is not an input in the ray-tracing program but

is processed when the intensities are calculated.

3. Results

The results obtained with the ray-tracing simulations, based on

the model previously described in this manuscript, are shown

in Figs. 6–8 for the three different types of L-shaped laterally

graded multilayer mirrors: parabolic (Fig. 6), elliptic (Fig. 7)

and a combination of both parabolic (vertical mirror for

horizontal collimation) and elliptic (horizontal mirror for

vertical focusing) (Fig. 8). For the simulations shown here the

source size, the acceptance and the mirror corner gap were

kept constant with the following values: 5 mm � 5 mm, 5 mrad

� 5 mrad and 2 mm, respectively. Also, four different para-

meter sets were considered for each mirror: (a) no slope error,

no roughness and no random variations in the lattice para-

meter (�d/d) (perfect mirror); (b) slope error of 5 mrad,

roughness of 0.2 nm and �d/d = 7 � 10�4; (c) slope error of

10 mrad, roughness of 0.2 nm and �d/d = 7 � 10�4; (d) slope

error of 15 mrad, roughness of 0.2 nm and �d/d = 7 � 10�4.

The spot sizes shown in Figs. 6–8 were taken at 10 m from

the mirror. The pixel size on the images is considered to be,

approximately, 2 mm � 2 mm. All the images present a blur

near the border of the spot; this is due to the source, which

contributes for a divergent beam, even for a perfect parabolic

mirror. Also, some diffraction effects are clearly shown in

some figures. This is mainly due to the defined sinusoidal slope

error which induces diffraction effects.
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Figure 6
Spot sizes for the parabolic L-shaped laterally graded multilayer mirror.
The images were taken at 10 m from the mirror. The pixel size is,
approximately, 2 mm � 2 mm. The acceptance is 5 mrad � 5 mrad, the
source size is 5 mm � 5 mm and the corner gap is 2 mm. (a) Perfect mirror
(no slope error; no roughness, � = 0; no random variations in the lattice
parameter, �d/d = 0). (b) Slope error 5 mrad, � = 0.2 nm, �d/d = 7� 10�4.
(c) Slope error 10 mrad, � = 0.2 nm, �d/d = 7 � 10�4. (d) Slope error
15 mrad, � = 0.2 nm, �d/d = 7 � 10�4. The dark diagonal line is the
missing intensity owing to the corner gap; (i) represents the expected
ellipse-like effect induced in the corner owing to the pre-figured surfaces.
The area inside the two lines is expected to appear dark. The minor axis
of this ellipse, defined by the two lines, is expected to be 60 mm for
this mirror.

Figure 5
Solid line: Gaussian profile used as reflectivity in the present simulations.
Dotted line: Gaussian profile with the scattering owing to the 0.2 nm
roughness (r.m.s.). Dashed line: broad diffraction profile curve owing to
the random layer thickness fluctuation (�d/d) with the scattering owing
to the 0.2 nm roughness (r.m.s.).



Quantitative values for the divergence and spot size

(FWHM), obtained from these images, are shown in Tables 1,

2 and 3. The diffracted integrated intensity is shown to be

constant for all types of mirror, as there were no missed rays

owing to the figure errors, because the field of view (1.9 mm �

1.9 mm) is large enough to collect all the rays (for the para-

meters chosen here). However, the peak intensity can be

different. For an ideal mirror the reflectivity shown in Fig. 2

has a peak intensity of 0.85. However, since each ray goes

through two diffractions, the peak intensity would be about

0.723 for a perfect L-shaped laterally graded multilayer

mirror. This value was confirmed for all three types of mirror.

When the figure errors are included, the peak intensity is
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Table 2
Divergence and spot size for different slope errors for the elliptic L-
shaped laterally graded multilayer mirror (focusing optics).

Source size (5 mm � 5 mm) and acceptance (5 mrad � 5 mrad) are fixed. Such
results were obtained from the ray-tracing simulations shown in Fig. 7.

Slope error
(mrad)

Spot size
(mm)

Divergence
(mrad)

0 0.250 � 0.250 84
5 0.387 � 0.387 63
10 0.583 � 0.583 44
15 0.782 � 0.782 19

Table 3
Divergence and spot size for different slope errors for the elliptic/
parabolic L-shaped laterally graded multilayer mirror (vertical focusing
and horizontal collimating optics).

Source size (5 mm � 5 mm) and acceptance (5 mrad � 5 mrad). Such results
were obtained from the ray-tracing simulations shown in Fig. 8.

Slope error
(mrad) Spot size (mm)

Vertical
divergence
(mrad)

Horizontal
divergence
(mrad)

0 1.250 � 0.250 84 19
5 1.371 � 0.387 63 37
10 1.571 � 0.583 44 57
15 1.766 � 0.782 19 77

Figure 7
Spot sizes for the elliptic L-shaped laterally graded multilayer mirror. The
images were taken at 10 m from the mirror. The pixel size is,
approximately, 2 mm � 2 mm. The acceptance is 5 mrad � 5 mrad, the
source size is 5 mm � 5 mm and the corner gap is 2 mm. (a) Perfect mirror
(no slope error; no roughness, � = 0; no random variations in the lattice
parameter, �d/d = 0). (b) Slope error 5 mrad, � = 0.2 nm, �d/d = 7� 10�4.
(c) Slope error 10 mrad, � = 0.2 nm, �d/d = 7 � 10�4. (d) Slope error
15 mrad, � = 0.2 nm, �d/d = 7 � 10�4. The dark diagonal line is the
missing intensity owing to the corner gap.

Figure 8
Spot sizes for the elliptic (vertical focusing)/parabolic (horizontal
collimation) L-shaped laterally graded multilayer mirror. The images
were taken at 10 m from the mirror. The pixel size is, approximately, 2 mm
� 2 mm. The acceptance is 5 mrad � 5 mrad, the source size is 5 mm �
5 mm and the corner gap is 2 mm. (a) Perfect mirror (no slope error; no
roughness, � = 0; no random variations in the lattice parameter, �d/d = 0).
(b) Slope error 5 mrad, � = 0.2 nm, �d/d = 7 � 10�4. (c) Slope error
10 mrad, � = 0.2 nm, �d/d = 7� 10�4. (d) Slope error 15 mrad, � = 0.2 nm,
�d/d = 7 � 10�4. The dark diagonal line is the missing intensity owing to
the corner gap.

Table 1
Divergence and spot size for different slope errors for the parabolic L-
shaped laterally graded multilayer mirror (collimating optics).

Source size (5 mm � 5 mm) and acceptance (5 mrad � 5 mrad) are fixed. Such
results were obtained from the ray-tracing simulations shown in Fig. 6.

Slope error
(mrad)

Spot size
(mm)

Divergence
(mrad)

0 1.250 � 1.250 19
5 1.371 � 1.371 37
10 1.571 � 1.571 57
15 1.766 � 1.766 77



reduced. The main reason for this is the loss of intensity owing

to the roughness (�) and owing to the random variations in the

lattice parameter (�d/d), especially for the parabolic mirror.

For the elliptic and elliptic/parabolic mirror another contri-

bution for the loss of peak intensity is the slope error. For this

reason the peak intensity value changes for the different figure

error parameters. The slope error can also affect the peak

intensity for a parabolic mirror but only for large values

(above 20 mrad).

The divergence is strongly dependent on the source size and

on the slope error. If the source size is kept constant at 5 mm�

5 mm (constant for all simulations), the changes in the diver-

gence are caused by the angular spread of the beam owing to

the slope error. For a perfect figure, the parabolic mirror

showed a divergence of 19 mrad � 19 mrad; this is due to the

source. When the slope error is included, the divergence

(Table 1) and the spot size (Fig. 6) are increased. On the other

hand, for a perfect figure, the elliptic mirror showed a diver-

gence of 84 mrad � 84 mrad; this is also due to the source.

When the slope error is included, the divergence (Table 2) is

decreased while the spot size is increased (Fig. 7). This can be

understandable because a perfect focusing mirror does not

have aberrations (convergent mirror) and, when some figure

errors are included, this mirror is no longer a perfect

convergent mirror and starts to deliver a less convergent

beam. For the elliptic/parabolic mirror (vertical focusing/

horizontal collimating) the results are a combination of elliptic

and parabolic mirror, as shown in Table 3. Another important

parameter is how perpendicular the L-shape arrangement is.

By using a geometric approach shown elsewhere (Beaumont

& Hart, 1974), we estimated the required value for the toler-

ance in the perpendicularity. We found that such a parameter

can be off by an angle of 50 mrad, in order to keep the values

shown in Tables 1–3 within the range of 5%.

The optimized slope-error parameter for the L-shaped

laterally graded multilayer mirror for the IXS beamline at

NSLS II was selected to be 10 mrad, because the integrated

intensity is the same for 5 mrad as for 15 mrad, the spot size

(Fig. 8) is about 0.5 mm � 1.2 mm (for the elliptic/parabolic

mirror) and the divergence is 44 mrad (vertically) � 57 mrad

(horizontally). These parameters are considered small enough

for our requirements.

For comparison purposes, a ray tracing for the parabolic L-

shaped multilayer mirror (non-laterally graded) obtained

using SHADOW is shown in Fig. 9. SHADOW is not able to

handle the laterally graded multilayer mirror; however, the

results for the divergence are compatible with the results

obtained with the ray-tracing scripts described within this

manuscript.

4. Conclusion

A theoretical model to trace X-rays through an L-shaped

laterally graded multilayer mirror has been presented here.

The model included different types of surfaces, multilayer

types/thickness and several other parameters (such as rough-

ness, slope error, random variation in the lattice parameter,

corner effects etc.). Three types of L-shaped mirrors were

traced: collimator (parabolic figure), focusing optics (elliptic

figure) and focusing/collimator optics (combining elliptic and

parabolic figure). The results show that the theoretical model

was able to confirm the expected spot sizes and divergences.

An extended option based on challenging surfaces such as

asphericals with polynomial curvatures (parabolic paraboloid

and parabolic ellipsoid) is being implemented. Also, these ray-

tracing scripts were useful for estimating the specification

requirements based on our performance needs [slope error

(r.m.s.) 10 mrad, roughness (r.m.s.) 0.2 nm, �d/d = 7 � 10�4

and corner gap 2 mm] and to confirm that such optics could
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Figure 9
(a) Spot size for the parabolic L-shaped multilayer mirror (non-laterally
graded) obtained using the software SHADOW. The images were taken
at 10 m from the mirror. The acceptance is 5 mrad � 5 mrad, the source
size is 5 mm� 5 mm. Slope error 10 mrad, � = 0.2 nm, �d/d = 7� 10�4. (b)
Divergence plot (y0 versus z0) for the former parameters. Total number of
rays: 25000.



also be used for synchrotron applications as an alternative to

the Kirkpatrick–Baez geometry or to a single aspheric-type

mirror.

This work was supported by the US Department of Energy,

Office of Science, Office of Basic Energy Sciences, under

contract No. DE-AC-02-98CH10886.
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