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Ring artefacts in X-ray computerized tomography reconstructions are

considered. The authors propose a ring artefact removal method based on

a priori information regarding the sinogram including smoothness along the

horizontal coordinate, symmetry of the first and the final rows and consideration

of small perturbations during acquisition. The method does not require prior

reconstruction of the original or corrected sinograms. Its numerical implemen-

tation is based on quadratic programming. Its efficacy is examined with regard to

experimental data sets collected on graphite and bone.
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1. Introduction

We consider a typical arrangement for parallel-beam tomo-

graphy, whereby a sample is rotated about an axis while illu-

minated by a parallel beam of X-rays (see Fig. 1). This does

not restrict the method proposed in the paper, which can be

also applied (with small modifications) to fan-beam and cone-

beam geometries. A description of these geometries may be

found by Natterer & Wübbeling (2007).

Typically, a white or monochromatic beam of X-rays formed

by a synchrotron or laboratory source passes through the

sample and then falls onto a scintillator, which absorbs X-rays

and then re-emits the absorbed energy in the form of visible

light. A charge-coupled device (CCD) or a complementary

metal-oxide-semiconductor (CMOS) camera then records the

photons to form a radiographic image.

Unfortunately, the real system is always affected by errors;

some of them are random (e.g. cosmic rays, dark noise on the

pixels) while others have a deterministic nature. The following

causes lead to ring artefacts in reconstructed slices (see, for

example, Banhart, 2008; Vidal et al., 2005; Kowalski, 1977;

Titarenko et al., 2010b):

(i) dirt, dust or scratches on the scintillator, the optical

system or the camera;

(ii) X-ray diffraction, reflection of the visible light from

some part of the system;

(iii) defects in pixel elements such as dead pixels, drifts in

the individual pixel response, or non-linear response;

(iv) defects or impurities on the scintillator crystals;

(v) beam variations either produced at the source or

somewhere along its path (e.g. owing to defects in the

monochromator).

Ring artefacts often appear as concentric circles (for 360�

sample rotation) or arcs (half-circles with additional line

segments on their ends, when the sample is rotated by 180�).

The common means of reducing ring artefacts is the flat-field

correction method [for an introduction, see Stock (2008)].

Consider a row of pixels along x on the camera recording the

projection of a two-dimensional horizontal slice (horizontal

section across the sample) recorded with the sample rotated to

an angle � about a vertical axis. Then having measured flat-

field intensity Iflatðx; �Þ (the intensity recorded without the

sample), a dark-field intensity Idarkðx; �Þ (the intensity

recorded without the beam, caused by the generation of

thermal electrons on the camera pixels) and the sample illu-
Figure 1
A simplified scheme of the experimental set-up.
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minated intensity Iðx; �Þ, we calculate the attenuation through

the slice,

pðx; �Þ ¼ ln
Iflatðx; �Þ � Idarkðx; �Þ

Iðx; �Þ � Idarkðx; �Þ

� �
: ð1Þ

The flat-field and the dark-field intensities are often taken only

before and/or after the experiment and are interpolated for all

other angles �. To increase the accuracy several projections of

the flat-field and the dark-field are sometimes taken and their

averaged projections are used. This method is not entirely

successful in suppressing the error (see, for example, Davidson

et al., 2003), and so a more effective way to improve the image

is needed. A number of approaches have already been

proposed, and they can be divided into three main groups:

(i) Processing before reconstruction. Such methods often

use the intensity Iðx; �Þ or the attenuation pðx; �Þ sinogram

and are based on smoothing the sinogram [either ordinary

smoothing, filtering using a fast Fourier transform or the

removal of high frequencies; see, for example, Boin & Haibel

(2006), Raven (1998), Antoine et al. (2002)].

(ii) Processing after reconstruction (for example, see Walls

et al., 2005; Sijbers & Postnov, 2004; Yang et al., 2008). For

instance, in Yang et al. (2008) the reconstructed slice is

considered in polar coordinates, if a large variance occurs, an

average value taken over a few pixels in the radial direction.

(iii) Modifying the experimental procedure. For example,

using time delay integration whereby the detector is moved

laterally during acquisition (Davis & Elliott, 1997).

Of course, ring artefact suppression methods can also use

ideas from several groups. For example, the method proposed

by Titarenko et al. (2009) is based on both pre- and post-

processing ideas.

We propose an alternative method that can be applied

before reconstruction. Consider the ideal case where the

X-ray beam is monochromatic and constant over time, and the

dark noise is zero; then the measured intensity is

IðxÞ ¼ I0ðxÞ exp �pðx; �Þ½ �; ð2Þ

where I0ðxÞ is the initial (flat-field) intensity and pðx; �Þ is the

attenuation. If we assume that there is an unknown non-

rotating object between the sample and the scintillator, then

we could write

IðxÞ ¼ I0ðxÞ exp �pðx; �Þ � qðxÞ½ �; ð3Þ

where qðxÞ is a function to be found and describes the overall

contribution to the recorded intensity from all the determi-

nistic errors listed above. In order to describe a range of

physical effects we do not restrict qðxÞ to have only positive

values. The effects of non-linearities on the scintillator or the

detector pixels are not considered here, since they are not

described by (3). This is also strictly true for white-beam

optics; however, the method can also be used at least as a first

approximation (see examples in x4).

There may be various random errors "ðx; �Þ in the detected

signal; for example, as caused by beam instability, dark noise

in the pixels, analog-to-digital conversion errors associated

with the camera. Hence, the measured attenuation ~ppðx; �Þ can

be written as

~ppðx; �Þ ¼ pðx; �Þ þ qðxÞ þ "ðx; �Þ: ð4Þ

Our aim is to find qðxÞ; error reduction is not considered in

this paper.

Note that it is not possible to solve (4) without employing

some assumptions about the nature of pðx; �Þ and qðxÞ. In

order to solve the equation we mainly invoke principles of the

theory of inverse and ill-posed problems described below.

2. Ill-posed problems

Let there be a problem

Az ¼ u; u 2 U; z 2 Z; ð5Þ

where U and Z are Hilbert spaces and A : Z! U is a linear

operator. Instead of the exact operator A and the data u we

are given approximate Ah and u� such that

kAh � Ak � h; ku� � uk � �: ð6Þ

Denote � = fh; �g. Our aim is then to find a solution z 2 Z for

the given data fAh; u�; �g.
In the earliest part of the 20th century Jacques Hadamard

formulated the conditions which define the so-called well

posed problems (see Hadamard, 1923), namely:

(i) the solution of the problem expressed in (5) exists and;

(ii) it is unique;

(iii) it is stable.

All problems which do not satisfy the above conditions are

called ill-posed. Hadamard believed that solving practical

problems one had to consider only well posed ones. However,

since then many important ill-posed problems have been

identified.

In 1963, A. N. Tikhonov formulated a famous definition of

the regularizing algorithm that has become a basic tenet in the

modern theory of ill-posed problems (see Tikhonov, 1963). By

definition, a regularizing algorithm (regularizing operator) is

called an operator/function RðAh; u�; �Þ possessing two prop-

erties:

(i) RðAh; u�; �Þ is defined for any � > 0, h � 0, u� 2 U,

Ah 2 LðZ;UÞ;

(ii) for any z 2 Z, for any u� 2 U such that Az = u,

ku� u�k � �, � > 0 and for any Ah 2 LðZ;UÞ such that

kAh � Ak � h, h � 0, z� = RðAh; u�; �Þ ! z as �! 0.

Here LðZ;UÞ is a space of linear bounded operators acting

from Z into U.

Tikhonov proposed the following approach to construct

regularizing algorithms. He introduced the smoothing func-

tional (now often called Tikhonov’s functional). The simplest

form of this functional is

M�
½z� ¼ kAhz� u�k

2
þ �kzk2; ð7Þ

where � > 0 is a regularization parameter. The minimiser z�� of

the functional is considered as an approximate solution of (5).

Note that if there are several solutions of (5) then z�� tends to

the normal solution (i.e. the solution with the minimal norm in
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Z). And if (5) has no solution, then z�� tends to a normal

pseudosolution (pseudosolutions are defined as minimisers of

kAz� uk).

The main problem is the choice of the regularization

parameter �. There are two approaches: a priori and

a posteriori. The a priori choice is demonstrated by the

following theorem (Tikhonov & Arsenin, 1977).

Theorem 1. Let A be a one-to-one operator, z 2 Z. Then

z�ð�Þ� ! z as �! 0 and �ð�Þ ! 0 so that ðhþ �Þ2=�ð�Þ ! 0.

As one of the a posteriori choices we consider the simplest

form of the generalized discrepancy principle (Tikhonov et al.,

1995). Let a solution z�� be found for a given � > 0 and define a

generalized discrepancy as

��ð�Þ ¼ kAhz�� � u�k
2
� �þ hkz��k
� �2

� �2; ð8Þ

where � � minz2Z kAhz� u�k.

(1) If the condition ku�k
2 > � does not hold, then as an

approximate solution of (5) we take z� = 0.

(2) Otherwise, the generalized discrepancy ��ð�Þ has a root

�	 > 0 and we take z� = z�
	

� , and if ��ð�Þ > 0 for all � > 0

then z� = lim�!0þ0 z�� .

To find the root one can exploit the properties of ��ð�Þ:
(1) ��ð�Þ is continuous and monotonically non-decreasing

for � > 0.

(2) lim�!þ1 ��ð�Þ = ku�k
2
� �2 � �2.

(3) lim�!0þ0 ��ð�Þ � ��
2.

It is important to mention that for ill-posed problems the

regularization parameter � should depend explicitly on the

errors. If there is no such dependency then only well posed

problems can be solved (Bakushinskii, 1984). Therefore the

best known ‘error-free methods’, namely the ‘L-curve method’

(Hansen, 1992) and ‘the generalized cross-validation method’

(Wahba, 1977), cannot be applied to ill-posed problems [see

examples by Yagola et al. (2002)].

It has been recognized that the problem (5) could be

generalized for non-linear problems (Tikhonov et al., 1998). In

such a case one wants to minimize a functional JðzÞ. If the

solution is not unique, one chooses the solution which mini-

mizes a functional �ðzÞ. Then for the simplest case we obtain

the modified smoothing functional

M�½z� ¼ J�ðzÞ þ ��ðzÞ; ð9Þ

where J�ðzÞ is an approximate functional [see Tikhonov et al.

(1998) for more details]. For (5), �ðzÞ = kzk2, JðzÞ =

kAz� uk2, J�ðzÞ = kAhz� u�k
2.

More information about ill-posed problems can be found in

books by Tikhonov et al. (1995), Bakushinsky & Kokurin

(2004), Engl et al. (1996), Groetsch (1993), Ivanov et al. (2002),

Kaltenbacher et al. (2008), Lavrentiev et al. (2003) and

Tikhonov et al. (1998).

3. Ring artefact removal algorithm

3.1. A priori information

3.1.1. Smoothness. Here we discuss the solution of (4). The

first step is to find additional (so-called a priori) information

about the exact solution pðx; �Þ. The main assumption to be

made is that pðx; �Þ is a smooth function of x for the following

reason.

Let us denote the intensity of the X-ray beam just before

the scintillator as Iðx; zÞ, where z is the vertical coordinate.

The intensities of the visible light just after the scintillator and

after the optical system are denoted as Iscinðx; zÞ and Ioptðx; zÞ,

respectively. It may be assumed that transformations

Iðx; zÞ ! Iscinðx; zÞ ! Ioptðx; zÞ are linear and could be written

as convolutions, i.e.

Iscinðx; zÞ ¼ Iðx; zÞ 	 Kscinðx; zÞ

�
RR

Iðx� �; z� 	ÞKscinð�; 	Þ d� d	 ð10Þ

and Ioptðx; zÞ = Iscinðx; zÞ 	 Koptðx; zÞ = Iðx; zÞ 	 Kðx; zÞ,

Kðx; zÞ = Koptðx; zÞ 	 Kscinðx; zÞ, where Kscinðx; zÞ and Koptðx; zÞ

are point-spread functions (PSFs) of the scintillator and the

optical system. It is often assumed that the PSFs have Gaus-

sian shape (Banhart, 2008; Mahajan, 2001). Thus we can write

Kðx; zÞ = k exp½�
ðx2 þ z2Þ�, where k; 
 > 0. Owing to the

differentiation characteristics of the convolution we obtain

@

@x
Ioptðx; zÞ ¼ Iðx; zÞ 	

@

@x
Kðx; zÞ: ð11Þ

Since @Kðx; zÞ=@x = �2k
x exp½�
ðx2 þ z2Þ� and Iðx; zÞ �

Imax, then

@

@x
Ioptðx; zÞ

����
���� � 2k
Imax

Z Z
� exp �
ð�2 þ 	2Þ

� ��� �� d� d	

� 2k
Imax �1=2=

1=2
� �

¼ 2kImaxð�=
Þ
1=2: ð12Þ

Thus the attenuation pðx; �Þ is also a smooth function of x. For

example, let us consider an object with a flat edge, so the

intensity of X-rays after they have passed through the sample

is

Iðx; zÞ ¼

(
Imax x < 0;
�Imax x � 0;

ð13Þ

where � 2 ½0; 1�, i.e. the sample is in the left half-plane (x � 0)

and the optical path length of the X-rays passing through the

sample is � ln �. Then the intensity of the visible light

recorded by the camera sensor is

Ioptðx; zÞ ¼ Kðx; zÞ Iðx; zÞ

¼ Imaxk
R1
�1

exp �
�2ð Þ d�
h R1

x

1 exp �
�2ð Þ d�

þ
Rx
�1

� exp �
�2ð Þ d�
i

¼ Imaxkð�=
Þ �1=2=2
1=2
� �n

erfðþ1Þ � erf 
1=2x
� �

þ �
h

erf 
1=2x
� �

� erfð�1Þ
io

¼ Imaxkð�=2
Þ 1þ � � erf 
1=2x
� �

ð1� �Þ
� �

; ð14Þ

where erfðxÞ � ð2=�1=2Þ
R x

0 expð�t 2Þ dt. If I1 � limx!�1 Ioptðx; zÞ

= Imaxk�=
, then Ioptðx; zÞ = I1½1þ � � erfð
1=2xÞð1� �Þ�=2,
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@Ioptðx; zÞ=@x ¼ �I1 

1=2=�1=2

� �
ð1� �Þ expð�
x2

Þ ð15Þ

and @Ioptðx; zÞ=@z = 0, therefore the maximum absolute value

of the first derivative is I1

1=2ð1� �Þ=�1=2. So instead of the

discontinuous function Iðx; zÞ we record the continuous

function Ioptðx; zÞ. The values of Ioptðx; zÞ at two points ðx1; z1Þ

and ðx2; z2Þ can differ by at most

I1

1=2ð1� �Þ x1 � x2ð Þ

2
þ z1 � z2ð Þ

2
� �1=2

=�1=2: ð16Þ

However, if the PSFs tend to two-dimensional delta functions

(e.g. when the scintillator is very thin), then 
 increases and a

possible difference of the intensities between two points may

be very large. Therefore intensities of light recorded at

neighbouring pixels of the camera sensor may be uncorrelated

and the approach described in the paper cannot be used.

However, for most data sets collected at modern synchrotrons

the assumption of smoothness is valid. Of course, one may

expect that scintillators will become thinner in the near future;

however, it is likely that the sizes of camera pixels will also

decrease, so maximal changes of intensities at neighbouring

pixels should be similar.

We also suppose that the optical path lengths found using

images recorded by the camera and real X-ray images virtually

recorded before the scintillator are the same. Therefore the

real optical path length is assumed to be a smooth function

on ðx; zÞ.

3.1.2. Small perturbations. Let us introduce a Cartesian

frame ð�; �Þ on a given slice. Suppose ð0; 0Þ is at the point of

intersection of the vertical axis of rotation of the sample and

the given slice, and the coordinate axis � is parallel to the axis

x on the plane of the camera sensor. For simplicity and not

restricting generality we suppose that ð0; 0Þ projects into 0 on

the axis x. Denote the attenuation coefficient across the given

slice by �ð�; �Þ. Then the attenuation pðx; �Þ is the line integral

pðx; �Þ ¼
R
L

�ð�; �Þ d� d�; ð17Þ

where L is defined by the equation � cos � + � sin � = x.

Let there be a radially symmetric function ~��ð�; �Þ =

f ð�2 þ �2Þ. The corresponding attenuation ~ppðx; �Þ defined by

(17) does not depend on the angle �, i.e. ~ppðx; �Þ = ~ppðxÞ. If there

is no information about the exact pðx; �Þ and qðxÞ in (4), then

there may be several solutions. For example, we may define

�
ð�; �Þ = 
 ~��ð�; �Þ and q
ðxÞ = ð1� 
Þ ~ppðxÞ, then we get the

corresponding p
ðxÞ = 
 ~ppðxÞ and p
ðxÞ þ q
ðxÞ = ~ppðxÞ. Even if

we restrict �ð�; �Þ to non-negative functions only, then 
 � 0

and we get infinitely many pairs ðp
; q
Þ that give us the same

~ppðxÞ. This example shows that the solution of (4) may be non-

unique. We need an additional assumption which allows us to

find a unique solution among all possible solutions satisfying

(4). If there is no a priori information about �ð�; �Þ, then the

most natural requirement is that qðxÞ is small. In the case of

large dust/dirt particles with high attenuation we cannot

guarantee that there is no other ‘virtual’ solution �vð�; �Þ that

gives pvðx; �Þ and this pvðx; �Þ is closer to the recorded ~ppðx; �Þ
than the real one pðx; �Þ. Therefore if there are no other

reasons we choose a solution �ð�; �Þ such that the corre-

sponding pðx; �Þ is close to ~ppðx; �Þ. So if several solutions

pðx; �Þ exist, then we choose the solution that has the minimal

norm of kqðxÞk. Of course, the term ‘small’ may be defined in

different ways. For instance, if one needs only small absolute

values of qðxÞ, then one can use the L2 norm, where kqðxÞk2 =R
q2ðxÞ dx; if the first derivative of qðxÞ should also be ‘small’,

then one can use the W2
1 norm kqðxÞk2 =

R
½q2ðxÞ þ fq0ðxÞg2� dx.

3.1.3. Evenness. As we have supposed that the axis of

rotation intersects the given slice at ð0; 0Þ and this point

projects into x = xc, then

p � x� xcð Þ; � þ 180�
� �

¼ p x� xc; �ð Þ; ð18Þ

(see, for example, Natterer & Wübbeling, 2007). Not

restricting generality, we set xc = 0 and

p �x; � þ 180�ð Þ ¼ pðx; �Þ: ð19Þ

Physically, it simply means that an X-ray beam attenuates by

the same amount whichever direction it travels along a given

path through the sample, so that the same attenuation is

recorded for the beam path when it is rotated by 180�. Thus if

the sample is rotated by 180�, then there will be the following

requirement: R
pðx; 0Þ � p �x; 180�ð Þ

	 
2
dx ¼ 0: ð20Þ

If the sample is rotated by � 2 ð180�; 360��; then

R��180�

0

d�
R

dx pðx; �Þ � p �x; � þ 180�ð Þ
	 
2

¼ 0: ð21Þ

3.1.4. Other possible requirements. Sometimes it is known

that for some regions the attenuation has a known value, e.g.

zero. For instance, a sample may have several holes such that

for some angles � certain pixels of the camera measure only a

flat-field. Then one can find qðxÞ for some intervals of x.

As a consequence if it is known that for some projection

angle � part of the illuminating beam does not intersect with

the sample, then this can be used to help find the exact solu-

tion. Let the sample be rotated by 180� and pðx; 0Þ � 0 for

x � 0, then pðx; 180�Þ � 0 for x � 0 and

qðxÞ ¼

(
~ppðx; 0Þ; x � 0;
~ppðx; 180�Þ; x < 0:

ð22Þ

Let the sample have a known radius R. By the radius we mean

the maximum distance between the origin ð0; 0Þ and any point

that belongs to both the sample and the given horizontal slice.

This does not restrict the sample to have a specific shape, any

real sample is permitted; however, the result below will

explicitly depend on R. For ½x1; x2� 
 ½�R;R� we define a strip

D � fð�; �Þ : �2 þ �2 � R; � 2 ½x1; x2�g (see Fig. 2). The inte-

gral of �ð�; �Þ on D is invariant with respect to a rotation of

the ð�; �Þ coordinate system by an angle 4�. This means that if

we virtually exclude all parts of the sample that are outside D,

then the integral path length is the same whether the sample

is rotated by any angle 4�. Since, for a given �, pðx; �Þ =R þ1
�1

�ð�; �Þj�¼x d�, i.e. the integral over the line � ¼ x, then

the integral path length is
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Rx2

x1

pðx; �Þ dx¼
Rx2

x1

Rþ1
�1

�ð�; �Þj�¼x d� dx

¼
Rx2

x1

Rþ1
�1

�ð�; �Þ d� d�

¼
RR

D

�ð�; �Þ d� d�; ð23Þ

i.e. the area integral, and the area integral does not depend

on the angle of rotation of the coordinate system, i.e. on 4�.

In this case D becomes D4� in new coordinates. Define

x	1 = minD4�
� and x	2 = maxD4�

�. Since the area D4� is

inside the area D	 � fð�; �Þ : �2 þ �2 � R2; � 2 ½x	1; x	2 �g, thenR
D	 �ð�; �Þ d� d� �

R
D4�

�ð�; �Þ d� d� and

Rx2

x1

pðx; �Þ dx �
Rx	2
x	

1

pðx; � þ4�Þ dx: ð24Þ

We have the inequality sign since the area D4� is larger than

D	, i.e. we also integrate �ð�; �Þ over some areas that have

been virtually excluded before.

In this paper we consider only the first three requirements,

i.e. smoothness, small errors and evenness.

3.2. Finite dimensional approximation

Above we have considered the case of continuous functions,

i.e. when we can measure pðx; �Þ for any x and �. This is close

to the case when pixels of the sensor have very small size,

there is no space between the pixels, we acquire a lot of

projections and the acquisition angles are uniformly sepa-

rated. Here we consider a discrete problem. Let nx be the

number of pixels on a row of the sensor and n� be the number

of acquisition angles. There are two grids: a grid fxjg
nx

1 , such

that xj = x1 þ4xð j� 1Þ, j = 1; . . . ; nx, and a grid f�ig
n�
1 , �i =

4�ði� 1Þ, i = 1; . . . ; n�,4� = �=ðn� � 1Þ. Define matrices pij =

pðxj; �iÞ, ~ppij = ~ppðxj; �iÞ, "ij = "ðxj; �iÞ and a vector qj = qðxjÞ. Then

equation (4) becomes

~ppij ¼ pij þ qj þ "ij; i ¼ 1; 2; . . . ; n�; j ¼ 1; 2; . . . ; nx:

ð25Þ

3.2.1. Smoothness. Let there be a function f ðxÞ and an

arbitrary point x = a. Then the Taylor polynomial of f ðxÞ about

x = a of degree n be denoted by

Pn;aðxÞ ¼ f ðaÞ þ f 0ðaÞðx� aÞ þ f 00ðaÞ
ðx� aÞ

2

2!
þ . . .

þ f ðnÞðaÞ
ðx� aÞ

n

n!
: ð26Þ

If the ðnþ 1Þ-derivative of f ðxÞ exists on the segment ða; xÞ,

then according to Taylor’s theorem (see, for example, Hirst,

2006),

f ðxÞ ¼ Pn;aðxÞ þ EnðxÞ; ð27Þ

the error (or remainder) term EnðxÞ is given by

EnðxÞ ¼
f ðnþ1ÞðcÞ

ðnþ 1Þ!
ðx� aÞ

ðnþ1Þ; ð28Þ

where c 2 ða; xÞ.

Let us consider the ith row. We omit its index in pij, i.e. by pj

we mean pij . Using the Taylor series we can write down

pjþ4j ¼ pj þ p0j4j4xþ p00j
ð4j4xÞ

2

2
þ p000j

ð4j4xÞ
3

6
þ . . . ; ð29Þ

where p0j, p00j , p000j are the first, second and third derivatives of

pðx; �iÞ at xj . Since the function pðx; �Þ is assumed to be

smooth, then using formulas similar to (11) we could estimate

the remainder (28) for pðx; �iÞ. Therefore pj could be

approximated by a linear combination of pj�1, pj�2, pj�3 . . ..
Let 2m be a number of points outside the point xj (m from

the left and m from the right). We want to find coefficients

a1, a2; . . . am such that

pj ’
Xm

l¼1

al pj�l þ pjþl

� �
: ð30Þ

For each pj�l we use the Taylor series (29) and find al in order

to set to zero the maximal number of coefficients of deriva-

tives p0j, p00j ; . . .. For m = 1, we get a1 = 1/2; for m = 2, a1 = 2/3,

a2 = �1/6; for m = 3, a1 = 3/4, a2 = �3/10, a3 = 1/20; for m = 4,

a1 = 4/5, a2 = �2/5, a3 = 4/35, a4 = �1/70.

Then the condition of smoothness of pðx; �Þ leads to the

minimization of

Pnx�m

j¼mþ1

pj �
Pm
l¼1

al pj�l þ pjþl

� �� �2

: ð31Þ

If we introduce a vector b = ðam; . . . ; a1;�1; a1; . . . ; amÞ, then

we can rewrite the last formula as

Pnx�2m�1

j¼0

P2mþ1

l¼1

bl pjþl

� �2

: ð32Þ

Since the remainder defined in (28) could be estimated, then

the constant ~hh > 0 in

P2mþ1

l¼1

bl pjþl

����
���� � ~hh

�Pnx

j¼1

p2
j

�1=2

ð33Þ
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Figure 2
The slice is rotated by 4�. In the new coordinates D becomes D4� . D	

projects on the same segment ½x	1; x	2 � of ½�R;R� as D4� does.



could also be found. Instead of pj we should substitute ~ppj � qj,

then find the sum of similar functions for all rows. As the result

we get

qTH1qþ 2cT
1 qþ w1; ð34Þ

where q = ðq1; . . . ; qnx
Þ, w1 is a constant and T means the

transpose of a vector. Equation (34) can be considered as

kAhz� u�k
2 in (7) and errors similar to h and � in (6) could

also be found owing to (33). Note that the matrix H1 is

symmetric, positive-semidefinite (i.e. qTH1q � 0 for any q),

ð4mþ 1Þ-diagonal. For instance, for m = 1, H1 equals

n�
4

1 �2 1 0 . . . 0 0 0

�2 5 �4 1 . . . 0 0 0

1 �4 6 �4 . . . 0 0 0

0 1 �4 6 . . . 0 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 0 . . . 6 �4 1

0 0 0 0 . . . �4 5 �2

0 0 0 0 . . . 1 �2 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð35Þ

3.2.2. Small perturbations. If we suppose that among all

possible solutions pðx; �Þ we should find such a solution that

the corresponding function qðxÞ has small absolute values,

then on the set of the solutions we have to find an element that

minimizes the norm kqðxÞk2
L2 , which may be approximated by

�0

Pnx

j¼1

q2
j ¼ qTH20q; ð36Þ

where �0 > 0 and H20 = diag f�0; . . . ; �0g is a diagonal matrix.

The meaning of �0 will be discussed in x3.3. Note the matrix is

positive-definite, i.e. qTH20q > 0 for any vector q 6� 0.

If one also requires small values of q0ðxÞ or higher deriva-

tives, then one has to minimize

qTH2q; ð37Þ

where H2 =
Pr

l¼0 H2l, r is the maximal order of the derivatives.

Note that matrices H2l for l > 0 are only positive-semidefinite.

For instance, for l = 1 the matrix H21 may be written as

�1

1 �1 0 . . . 0 0 0

�1 2 �1 . . . 0 0 0

0 �1 2 . . . 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 . . . 2 �1 0

0 0 0 . . . �1 2 �1

0 0 0 . . . 0 �1 1

0
BBBBBBBB@

1
CCCCCCCCA

ð38Þ

or as (35). If the coefficient �0 > 0, then the matrix H2 is

positive-definite as a sum of the positive-definite H20 and

positive-semidefinite H2l, l > 0.

3.2.3. Evenness. Since real problems always have errors in

data, then requirements (20) and (21) should be changed to

the minimization of the corresponding functions in the equa-

tions. Let us consider (20). If there is j	 2 1; nx such that xj	 =

0, i.e. the axis of rotation is projected in this point, then define

n	 = minð j	 � 1; nx � j	Þ and obtain the finite dimensional

approximation of (20),

Pj	þn	

j¼j	�n	
p0j � pn�;2j	�j

� �2

: ð39Þ

Now consider the case when there are j	 2 1; nx � 1 and

�	 2 ð0;4xÞ such that xj	 þ�	 = 0. Define 
 = �	=4x

and n	 as the maximal number such that x1 � �n	4x and

xnx
� ðn	 þ 1Þ4x. Then using linear interpolation on a

segment ½xj; xjþ1� we get

Pj	þn	

j¼j	�n	
ð1� 
Þ p0j � pn�;2j	�j

� �
þ 
 p0;jþ1 � pn�;2j	�jþ1

� �h i2

:

ð40Þ

In a similar way equation (21) may be rewritten. In both cases

we get a quadratic function

qTH3qþ 2cT
3 qþ w3; ð41Þ

where H3 is a positive-semidefinite matrix.

3.2.4. Other possible requirements. Let there be some

areas where the sinogram should have known values. The

simplest way is to find an average value of all elements ~ppij of a

jth column that are inside the area, then subtract the derived

value and add the known value to the whole column.

However, because of the noise in real data the number of

these elements should be large enough in order to decrease

the influence of the noise.

The presence of the noise should also be taken into account

for equation (24), which for instance may be approximated as

Pj2
j¼j1

pij �
Pj	2
j¼j	

1

pi	 j þ C; ð42Þ

where C is a constant and j	1; j	2 depend on j1, j2 and 4�.

3.3. The functional to be minimized

Assuming smoothness and evenness of the function pð�; xÞ

as a function of x we get the following functional to be mini-

mized,

JðqÞ � qTHqþ 2cqþ w

� qTH1qþ 2cT
1 qþ w1

� �
þ � qTH3qþ 2cT

3 qþ w3

� �
; ð43Þ

where H � H1 þH3, c � c1 þ c3, w � w1 þ w3, � � 0. Note

that H is a positive-semidefinite matrix, thus the solution may

be non-unique. To choose a unique solution we suppose that

the errors are small and introduce

�ðqÞ � qTH2q: ð44Þ

Then the modified smoothing functional can be written as

M�
½q� � JðqÞ þ ��ðqÞ

¼ qTðH þ �H2Þqþ 2cqþ w; ð45Þ

where � > 0 is the regularization parameter. Then matrix

H þ �H2 is positive-definite. So if there are no other restric-

tions on q [such as is defined by (42)], then the functional

M�½q� always has a unique solution. In the case of other
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restrictions, a unique solution exists if the restrictions define a

non-empty set.

Note that matrices H1 and H2 are band matrices, i.e. their

non-zero entries are confined to a diagonal band, comprising

the main diagonal and zero or more diagonals on either side.

Thus if � = 0 one can use special mathematical algorithms to

find the minimiser of M�½q�. The matrix H3 is a sparse matrix

but almost all its diagonals have at least one non-zero element.

Hence for � > 0 we are restricted to use general numerical

methods to minimize M�½q�.

To find the solution we solve a quadratic programming

problem using the C-library implemented by Numerical

Algorithms Group (NAG). The solution is based on an inertia-

controlling method that maintains a Cholesky factorization of

the reduced Hessian and is described by Gill et al. (1991).

4. Applications

4.1. Experimental set-up

To illustrate the new method we apply it to two data sets

acquired at the Daresbury synchrotron X-ray source (station

16.3; second-generation synchrotron) using a PCO-4000 CCD

camera (resolution: 4000� 2672; pixel size: 9 mm � 9 mm;

dynamic range: 14 bit, Kodak image sensor KAI-11002). The

following two samples were used:

(i) Graphite, a cylindrical piece of graphite (diameter 5 mm)

with small metallic particles inside, exposure time 150 ms, 3600

projections, CdWO4 scintillator (500 mm thick), a pixel

corresponds to a 2.25 mm � 2.25 mm area.

(ii) Bone, a piece of human bone with tissue all embedded

in epoxy (size about 4 mm), exposure time 16 s, 1800 projec-

tions, YAG:Ce scintillator (35 mm thick), a pixel corresponds

to 0.9 mm � 0.9 mm area.

For the two data sets, 10 dark and 20 flat/white-field images

were taken (10 dark and 10 flat-field images before and 10 flat-

field images after the acquisition of ordinary projections).

Their averaged images were obtained for the standard flat-

field correction procedure. The range of acquisition angles for

both samples was 180�.

As mentioned above, the method is strictly applicable only

for a monochromatic spectrum of X-rays. However, if

attenuation coefficients of elements in a sample vary smoothly

over the range of wavelengths representative of the white

beam then the method can also be applied. Of course some

possible beam hardening effects cannot be fully excluded. We

have scanned the two samples in white beam.

After all images (dark/flat fields and ordinary projections)

were taken, we applied the standard flat-field correction

technique (1) to each projection. Then instead of projections,

i.e. vertical slices, we recovered horizontal slices. Each hori-

zontal slice was preprocessed by the method proposed in this

paper and then reconstructed using a filtered backprojection

algorithm (FBP) for a parallel-beam geometry [see the

description by Natterer & Wübbeling (2007)]. Each slice was

reconstructed independently of the other slices. Therefore the

preprocessing and reconstruction can be done in parallel on

a cluster of workstations/desktops. In order to process a

4000� 4000 sinogram it usually takes 1–2 s [Intel processor

E7200 (dual core), NAG C-library]. Since an optimization

procedure is used, the preprocessing time is a function of

the initial estimate of the solution, which in our case we set

to zero.

4.2. Graphite

We have applied the standard flat-field correction technique

to the graphite sample; see the sinogram and the reconstructed

slice in Figs. 3(a) and 3(c). Note that the choice of the regu-

larization parameter � > 0 is very important. If � is too large,

then the suppression of ring artefacts will be minimal, since

kqðxÞk may have only small values. If � is too small, then qðxÞ

may have very large values and therefore may change the

whole sinogram; see Figs. 3(e) and 3( f), where additional

‘waves’ are seen on both the sinogram and the reconstructed

slice (the sinogram tends to flatten in order to avoid possible

jumps near the edges).

In Fig. 4 several profiles are shown for the 150th row, i.e. for

the row that corresponds to � = 7.5�. One can see that when

there is no suppression the profile is close to zero outside the

sample’s shadow, i.e. for x < 1.6 and x > 6.7 mm. To compare

profiles found after the proposed method has been applied we

also have applied the mean filter in order to avoid fluctuations.

The mean filter has not changed the main properties of the

profiles and the profiles are easier to see in Fig. 4(b).

If � is small (e.g. � = 10�9), then the profile flattens.

However, the shape depends on other parameters. If evenness

is used, then the profile tends to have a symmetrical slope

outside the sample’s shadow; see the grey line in Fig. 4(b) for

the segments x 2 ½0; 1:6� and x 2 ½6:7; 7:8�. Note that evenness

has not been used for x > 7:8, since the centre of rotation (x =

3.90 mm) is not at the centre (x = 4.27 mm) of the sinogram, so

there are constant values for pðxÞ for x > 7.8 mm.

If � is large, then kqðxÞk may have only small values, so that

while large jumps for qðxÞ are possible the number of these

jumps is very small. For example, after the mean filter has been

applied there is no visible difference between the profiles

found after applying the standard flat-field correction or the

proposed method (� = 0.00025); the profile is shown Fig. 4(b)

by the black solid line.

The best way to find � is to find a root of the generalized

discrepancy �ð�Þ. However, it is often difficult to make correct

estimations of the errors h and �. For some cases we may use

a priori information about the sinogram. For instance, let us

consider a segment of a row where pðxÞ should be zero [e.g.

the left hand 30% of the central row (� = 90�) in Fig. 3(a)].

For a given � we define � as the standard deviation of the

values of pðxÞ in this segment (see Fig. 5). For small values of �,

� is large as pðxÞ is not constant on average as already pointed

out; see region x < 1.6 mm in Fig. 4 (grey and dotted lines).

As the slope of pðxÞ gets larger towards smaller �, � is a

decreasing function for small values of �. Note that very small

values of � should be avoided, since the optimization problem

becomes very unstable and the solution may be non-unique.
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As � becomes large the suppression of ring artefacts reduces

and � becomes an increasing function of �. It is clear that

�ð�Þ tends to a constant as �!þ1 (see Fig. 5), since there

is no suppression at all. Consequently there is an ‘optimal’

value of �, where �ð�Þ has a minimal value. For our case we

get � = 0.00025 (ln 0:00025 ’ �8.29). The corresponding

sinogram and the reconstructed slice are shown in Figs. 3(b)

and 3(d).

4.3. Bone

The method described above can also be a first step in the

suppression of more complicated ring artefacts. For instance,

we have scanned a piece of a human bone. Several regions on

the projections change their values over time [i.e. q depends

on time, so we have qðx; tÞ]. From a physical point of view it

can be explained in the following way. Absorption properties

of some dust/dirt particles and defects inside the scintillator

depend on its temperature. X-rays heat the scintillator,

therefore there is a cooling system connected to the scintil-

lator. However, the system is turned on only when the

temperature of the scintillator reaches some level and it takes

some time to cool the scintillator to the initial temperature.

Therefore one can see almost periodical changes of q.

The original sinogram and the corresponding reconstructed

image are shown in Figs. 6(a) and 6(c). Applying the above

method we obtain Figs. 6(b) and 6(d). There are still some ring

artefacts on the image; however, these artefacts are caused by

the time-dependent effects explained above. Unfortunately

these artefacts do not allow us to estimate errors in input data

correctly and therefore find an ‘optimal’ regularization para-

meter �, so we simply tried � = 0.00001.

The correction of the remaining irregular ring artefacts

requires changes in the experimental procedure to avoid

thermal effects by (i) changing a scintillator, (ii) moving a

sensor as in Davis & Elliott (1997), (iii) acquiring more flat-

field images during the acquisition. An example of a method

correcting irregular ring artefacts caused by vibrations in a set-

up can be found by Titarenko et al. (2010b).
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Figure 4
The attenuation pðxÞ for the 150th row (�150 = 7.5�) of the sinogram: (a)
corresponds to the row shown by the dashed line in Fig. 3(a), the standard
flat-field correction; (b) the proposed method is applied, then the mean
filter (radius is 10 pixels) is applied to exclude fluctuations, the optimal
regularization parameter � = 0.00025, � = 0.0, corresponds to Fig. 3(b)
(black solid line), � = 10�9, � = 0.2, corresponds to Fig. 3(e) (grey solid
line), � = 10�9, � = 0.0 (black dotted line).

Figure 5
The standard deviation � of the values pðxÞ as a function of ln �
(graphite); see text.

Figure 3
Sinograms and the reconstructed slices for graphite: (a) and (c) based on
the standard flat-field correction; (b) and (d), (g) the proposed method is
applied and the ‘optimal’ � = 0.00025 is used (only smoothness is
assumed); (e) and ( f ) the proposed method is applied, � = 10�9, � = 0.2.
The dashed line shows the position of the 150th row, i.e. �150 = 7.5�.



5. Discussion

The primary aim of the paper is to propose the new method.

Here we compare it with the method of Boin & Haibel (2006)

as implemented within the High Speed Tomography Recon-

struction (PyHST) reconstruction software package (http://

www.esrf.eu/UsersAndScience/Experiments/TBS/SciSoft), a

very popular software tool used at the ESRF (European

Synchrotron Radiation Facility, Grenoble, France). To get the

best images we have tuned the parameter N, the so-called span

factor (see Boin & Haibel, 2006). The results of the compar-

ison are shown in Fig. 7. One can see that for these data sets at

least a better suppression of ring artefacts is achieved by the

newly proposed method.

Note that a simplified version of this algorithm can be found

by Titarenko et al. (2010a), where only the smoothness of

pðx; �Þ and the small values of qðxÞ were used. There it was

required that
Pnx�1

j¼1 ð pj � pjþ1Þ
2 and

Pnx

j¼1 q2
j should be small

in order that H þ �H2 from (45) was a tridiagonal symmetric

matrix, so a fast (analytical) method of finding q could be

applied. The method proposed here is more general, since

higher derivatives of pðx; �Þ and qðxÞ can be used and a

condition of evenness has also been introduced.

In the future more sophisticated a priori restrictions are

expected to be proposed, some of which will apply to parti-

cular sample types of acquisition geometries. Nevertheless,

simpler methods such as that proposed by Titarenko et al.

(2010a) are also needed because they can be used in cases

where fast algorithms are needed to suppress artefacts.

A priori information has been used previously by Titarenko

et al. (2009), but it requires knowledge of the attenuation

coefficients in some areas in order to apply a correction to a

wider area. In the current paper no information about these

values is used, so that the method proposed here is applicable

to a wider range of complex samples which gives the better

suppression in cases where Titarenko et al. (2009) can be

applied.

It was mentioned in x4.3 that in some cases ring artefacts

can have irregular shapes such that those described by Titar-

enko et al. (2010b) caused by various time-dependent vibra-

tions in the experimental set-up. In such cases it may be better

to transform these irregular artefacts to regular ones first by

shifting a reference flat field and then only correct by the

current method. Unfortunately, this approach is not applicable

to all possible irregular ring artefacts.

Now let us discuss possible bottlenecks when applying the

method proposed here to some real data set. For the first

group of samples there is an area near the centre of the

rotation where the attenuation coefficient differs sufficiently

compared with other areas of the slice. For instance it may be a

metal particle, a fibre crossing the slice, a small pore in a foam/

bone or a cell in a plant. As a result the corresponding sino-

gram will often have a jump near the central vertical line.

For the second group there is an axial symmetric feature, e.g. a

thin glass tube or container protecting a biological sample.

In both cases it is difficult to decide whether we suppress

an artefact or a real feature. However, the following two

approaches may help to find an answer. Firstly, try to consider

neighbouring slices as dependent, i.e. their attenuation coef-

ficients should not vary very rapidly from one slice to another

and therefore pðx; z; �Þ or
R 180�

0 pðx; z; �Þ d� should have similar

values if points ðx1; z1Þ and ðx2; z2Þ are close. As a result you

may get an algorithm that will suppress the ring artefacts for

the whole sample at once. One example of such algorithms can

be found by Titarenko & Yagola (2010). Secondly, modify the

data acquisition procedure. For example, take at least one

additional projection at the end of acquisition just shifting a

sample perpendicular to the beam. In this case if your vector
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Figure 6
A piece of a human bone: (a) and (b) sinograms, (c) and (d) reconstructed
images; (a) and (c) the standard flat-field correction is applied, (b) and (d)
the proposed method is used (� = 0.00001).

Figure 7
The pieces of graphite and human bone reconstructed by the proposed
method (a) and (c); and using the PyHST software (b) (N = 51) and (d)
(N = 171).



or matrix q is found correctly, then the two projections

acquired before and after the shift will be the same after

correction; otherwise you may find the points where the

projections differ, and correct the corresponding elements of

vector q. Ideally, it would be better to have an adaptive

method to correct ring artefacts, i.e. shift, rotate or incline a

sample depending on results of the preprocessing. For

instance, it can be done in the following way: acquire only odd

projections, then use them to find the vector q, at the same

time continue acquiring even projections, so at the end of

acquisition you may check whether your vector q is found

correctly; if not, acquire additional projections.

6. Conclusions

A new method for suppressing ring artefacts has been

proposed which is applied directly to sinograms prior to image

reconstruction. Generally this is quicker than approaches that

must be applied to reconstructions. It is based on ideas and

methods from the theory of inverse and ill-posed problems.

The new technique is applied to two data sets obtained using a

parallel white-beam synchrotron X-ray illumination and is

found to work very well. This can be a first step towards the

suppression of more complicated ring artefacts when one

removes regular artefacts first and then applies another

technique to remove remaining irregular artefacts. In principle

the method can also be extended to fan-beam reconstructions.
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