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The low-resolution structure of «-crustacyanin has been determined to 30 A
resolution using negative-stain electron microscopy (EM) with single-particle
averaging. The protein, which is an assembly of eight f-crustacyanin dimers,
appears asymmetrical and rather open in layout. A model was built to the EM
map using the X-ray crystallographic structure of B-crustacyanin guided by
PISA interface analyses. The model has a theoretical sedimentation coefficient
that matches well with the experimentally derived value from sedimentation
velocity analytical ultracentrifugation. Additionally, the EM model has
similarities to models calculated independently by rigid-body modelling to
small-angle X-ray scattering (SAXS) data and extracted in silico from the S-
crustacyanin crystal lattice. Theoretical X-ray scattering from each of these
models is in reasonable agreement with the experimental SAXS data and

together suggest an overall design for the «-crustacyanin assembly.
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1. Introduction

a-Crustacyanin is the carotenoid—protein complex responsible
for the blue-black colouration of lobster carapace. Crusta-
cyanins are members of the lipocalin family of hydrophobic
ligand-binding proteins (Britton et al., 1982). The carotenoid
partner is astaxanthin, a natural fat-soluble red pigment found
principally in plants, algae and photosynthetic bacteria. As
well as their principal role in photosynthetic processes, caro-
tenoids provide bright colouration, serve as antioxidants, and
can be a source for vitamin A activity. Astaxanthin belongs to
a group of oxygenated derivatives of carotenoids known as
xanthophylls. These are commonly found in lobster and other
seafood. In the assembly of a-crustacyanin, two genetically
distinct apocrustacyanins (Chayen et al., 2000; Cianci et al.,
2001; Habash et al., 2004) each bind an astaxanthin molecule
and form a heterodimer (B-crustacyanin). The crystal struc-
ture of B-crustacyanin (A1A3 dimer) has been determined
and revealed two astaxanthin molecules held in close proxi-
mity (Cianci et al., 2002). Eight B-crustacyanin dimers
assemble to form o«-crustacyanin, a 320kDa complex
containing 16 astaxanthin molecules. Astaxanthin has a UV-
Vis absorption spectrum peak at a wavelength of 472 nm but
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upon binding to crustacyanin undergoes a large shift towards
longer wavelengths (bathochromic) giving a blue-coloured
protein complex (Cianci et al, 2002). The p-crustacyanin
dimer has a peak wavelength of 580 nm; however, a further
bathochromic peak shift to 632 nm occurs in «-crustacyanin
(Britton et al., 1982). The mechanism of the additional wave-
length shift in a-crustacyanin and the function of the protein—
carotenoid complex is not understood. Theoretical and
computational chemistry studies using the pJ-crustacyanin
coordinates have been extensive, with two predominant
theories for the bathochromic shift: firstly the proposed role of
a protonated histidine (His 90 and His 92 are indeed found
close to the keto oxygen of one end ring of each astaxanthin;
Durbeej & Eriksson, 2006, 2003, 2004; Fisher et al., 2009), and
secondly an exciton interaction between the two polyene
chains in B-crustacyanin (van Wijk et al., 2005). Identifying the
arrangement of S-crustacyanin dimers with the o-crystacyanin
complex is anticipated to resolve the uncertainty surrounding
this wavelength shift phenomenon. Possible suggestions for
the function of a-crustacyanin include camouflage to avoid
prey or as a primitive photoreceptor. Mimicking biological
colouration properties by non-protein-bound carotenoids is
under investigation via a growing ensemble of carotenoid
crystal structures and intermolecular crystal packing
arrangements (reviewed by Helliwell, 2008). Two small-angle
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X-ray scattering (SAXS) models have been reported in the
literature. The first, by Dellisanti and co-workers (Dellisanti et
al.,2003), reported a helical arrangement. Chayen et al. (2003),
by contrast, reported a piano stool type arrangement based on
a fourfold symmetry assumption as a potential interpretation
of an early electron microscopy (EM) study (Zagalsky &
Jones, 1982). To date we have not been able to obtain well
diffracting crystals to produce an atomic-level crystal structure
of a-crustacyanin; therefore lower-resolution techniques have
been used to identify the overall assembly of a-crustacyanin.

2. Experimental methods and results

For the EM, SAXS and analytical ultracentrifugation «-crus-
tacyanin was extracted and purified from lobsters, sacrificed
immediately prior to the extraction procedure, following the
previously published purification procedure (Zagalsky, 1985).
The experimental SAXS data as well as the Protein Data Bank
(PDB) files for a-crustacyanin derived from the rigid-body
best fit using 1gka to the SAXS data and the best fit using 1gka
to the EM envelope data have been deposited with the TUCr".
The EM envelope data can be obtained directly from the
authors by direct enquiry.

2.1. SAXS

SAXS experiments were performed at station 2.1 of the
Daresbury SRS (Towns-Andrew et al, 1989; Grossmann,
2002) using a 200 mm x 200 mm position-sensitive multiwire
proportional counter operated at 512 x 512 pixels. Scattering
data from o-crustacyanin were collected in the momentum
transfer, g, range 0.005-0.64 AL

2.2. Electron microscopy

Purified a-crustacyanin (6 pl) was allowed to absorb for 30 s
onto a glow-discharged (30 s, 25 mA) carbon-coated 400 mesh
copper grid. The grid was washed three times with water and
then negatively stained with 4% (w/v) uranyl acetate pH 4.7.
EM grids were observed using a FEI Tecnai Twin transmission
electron microscope (TEM) equipped with a LaBg filament
operating at 120 keV. Images were recorded under low-dose
conditions (Fig. 1a) with —500 nm defocus at 52000 x magni-
fication on a 2048 x 2048 pixels CCD camera (TVIPS Tem
Cam). The electron dose used for each image was typically
10 e~ A2 The final pixel size was 2.8 A and images were
converted to IMAGICS format. Particles were selected auto-
matically by the software Boxer, which is part of the EMAN
package (Ludtke et al., 1999). Three individual particles were
selected from each micrograph for Boxer to base its selection
criteria on. A total of 10021 particles were selected auto-
matically. The selected particles were windowed into boxes of
size 120 x 120 pixels. Band-pass filtering was used with a high-
pass filter of 15 A and a low-pass filter of 250 A. The images
were centred by cross-correlation to the total sum of the

! Supplementary data for this paper are available from the TUCr electronic
archives (Reference: YS5057). Services for accessing these data are described
at the back of the journal.
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Figure 1

(a) One representative negatively stained EM image of a-crustacyanin
from the 251 total images used to extract 10021 a-crustayanin particles.
Scale bar = 50 nm. (b) Four representative class-averages (1), the EM
three-dimensional reconstruction calculated by angular reconstitution
(2), and views of the final docked model to the EM map (3). Box size =
33.6 x 33.6 nm. The final dimensions of a-crustacyanin are 130 A by
140 A by 180 A. The analysis program used was EMAN.

dataset. Class averages were calculated using reference free
multivariate statistical analysis. A reference set of class
averages was used to refine the alignment and for optimizing
the class averaging. Angles were assigned to the best class
averages and these were used to calculate a preliminary map.
The three-dimensional reconstruction was refined iteratively
until all images were incorporated. The Fourier shell corre-
lation (FSC) was calculated in EMAN by comparing the
models from odd- and even-numbered particles (van Heel &
Schatz, 2005). The FSC at 0.5 indicated a resolution of 30 A.
The EM reconstruction showed an open assembly with no
clear signs of symmetry.

2.3. PISA analyses

The Protein Interfaces Surfaces and Assemblies (PISA)
web server (http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html)
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Thermodynamically stable interfaces predicted by PISA (Krissinel &
Henrick, 2007). Favourable interfaces have multiple bonds, a large
surface area and gain in magnitude of solvation free energy. The EM
model is mostly composed of the lower two interface types.

(Krissinel & Henrick, 2007) explores macromolecular inter-
faces and predicts probable quaternary arrangements or
assemblies. Thermodynamically stable interfaces, based on the
B-crustacyanin crystal structure lgka (Cianci et al, 2002),
predicted by PISA are given in Fig. 2. A putative tetramer or
‘dimer of dimers’ has a surface area of 599.3 A2 but has no salt
bridges or hydrogen bonds identified. Another favourable
quaternary arrangement has a trimeric structure with 461.9 A?
surface area.

2.4. Protein docking to the EM map

B-Crustacyanin dimers (from 1gka) were docked into the
EM envelope using the most energetically stable interfaces
(Fig. 2) as determined by PISA. An interface is considered
more probable if there is a large interface area, a high solva-
tion free energy gain and multiple bonds present. The EM
model for a-crustacyanin is asymmetrical and open, with
evidence of internal holes (Fig. 1b). The narrow density
making up the structure suggests that the structure is made up
of a chain of dimers.

2.5. Rigid-body modelling to the SAXS data

Rigid-body modelling to the experimental scattering data
was performed using SASREF (Petoukhov & Svergun, 2005).
Eight f-crustacyanin dimers were fitted independently to the
X-ray scattering data of o-crustacyanin. The simulations were
repeated at least ten times with each set of parameters. The
model with the lowest/best x value represented an open
elongated arrangement (Fig. 3a).

2.6. Examination of 1gka crystal packing

The 1gka crystal packing layout has a very high solvent
content of ~85% (Cianci et al., 2002). Visual examination of
this layout reveals assembly possibilities that are also of an
open layout. Two of these were extracted as PDB files and
compared with experimental SAXS data of a-crustacyanin
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Figure 3

The experimental SAXS curve of a-crustacyanin with error bars (black)
combining regimes of low and high scattering angles was collected at
station 2.1 of the Daresbury SRS according to standard procedures
(Grossmann, 2002) using sample-to-detector distances of 1 m and 4.5 m.
SAXS curve of a-crustacyanin compared with the theoretical scattering
of (a) the rigid-body model with lowest x value (pink), (b) the EM-
derived model (green) and (c) eight B-crustacyanin dimers extracted from
the crystal lattice of 1gka (blue). In each case the model is shown as a
surface representation.

2.7. Comparison of all theoretical models with the SAXS data

In order to compare the a-crustacyanin model built to the
EM density map with experimental X-ray scattering data from
a-crustacyanin, a theoretical SAXS curve for the model was
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calculated using CRYSOL (Svergun et al., 1995). Fig. 3 shows a
comparison of the theoretical and experimental scattering
curves for a-crustacyanin. Although the x value is relatively
high, the curves show overall similarities across the scattering
range suggesting the model is a good representation of the
shape of a-crustacyanin. The model with the lowest x value
from rigid-body modelling was also compared with the
experimental scattering data. The most plausible assembly of
eight B-crustacyanin dimers extracted from the crystal lattice
of 1gka was compared with the experimental X-ray scattering
data.

2.8. Analytical ultracentrifugation (AUC)

All experiments were performed in 10 mM sodium phos-
phate (pH 7.4) containing 0.15 M NaCl using a Beckman XL-
A ultracentrifuge (Beckman Instruments, CA, USA) with an
AnS50Ti-8-hole rotor fitted with the standard two-sector open-
filled centrepiece for sedimentation velocity with quartz
glass windows (Fig. 4). Velocity sedimentation analysis was
performed at 40000 r.p.m. at 293 K, with the sedimenting
boundary monitored every 90 s until the sample had fully
sedimented. The protein concentration used was 0.2 mg ml™".
The data were interpreted with the model-based distribution
of Lamm equation solutions C(s) using the software Sedfit
(Schuck, 2000). The frictional ratio (f/f,) was calculated from
the sedimentation coefficient. A bead model of the EM-
derived a-crustacyanin model was generated with the solution
modelling software SOMO (Rai et al., 2005). The theoretical
sedimentation coefficient of the model was 11.1 S which
compares favourably with the experimental sedimentation
coefficient of 11.4 £ 0.5 S for a-crustacyanin.

3. Discussion and conclusions

The negative-stain EM investigation to determine the o-
crustacyanin nanostructure has yielded a new model (Fig. 1).
Here we have shown at 30 A resolution that the protein
is asymmetrical and open. Predicted S-crustacyanin inter-
molecular interfaces have been incorporated and have helped
eliminate bias when a subjective approach to the model
building became necessary. The EM model has very similar
theoretical hydrodynamic properties to the experimental
sedimentation velocity AUC data. The hydrodynamic radius
of a-crustacyanin was determined as 6.8 nm from the AUC
data which is the same as the radius of gyration as measured
by SAXS (Chayen et al., 2003).

The theoretical scattering curve for the EM model is fairly
consistent with the experimental SAXS curve to 30 A reso-
lution (g < 0.21 A_l), which is the resolution limitation of this
model. However, there is some deviation at ~125 A (g ~
0.05 A‘l) resolution which implies that there are some
inconsistencies between the EM model and the actual struc-
ture of a-crustacyanin (x = 10.4) (Fig. 3b). The theoretical
scattering curve for the SAXS rigid-body model with the
lowest x fitting value is also displayed in Fig. 3(a). This shows a
good superimposition with the experimental data (x = 5.8).
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(a) Size exclusion chromatography profile of «-crustacyanin. The
absorbance is measured at two wavelengths, 280 nm (dashed line) and
630 nm (solid line). The major peak corresponding to purified «-
crustacyanin is indicated with an asterisk. There is a smaller peak eluting
later which corresponds to p-crustacyanin. (b) C(s) analysis of «-
crustacyanin derived from sedimentation velocity AUC. «-Crustacyanin
has a sedimentation coefficient of 11.4 £ 0.5 S, hydrodynamic radius of
6.8nm and frictional ratio of 1.5. The experimental sedimentation
coefficient is very similar to the theoretical value of 11.1 S for the EM-
derived a-crustacyanin model.

The rigid-body model has an open elongated structure with
loose packing between dimers. Additionally, a model of eight
B-crustacyanin dimers extracted from the crystal lattice of
lgka was compared with the SAXS data (Fig. 3c). The fit to
the experimental data looks adequate with a slightly higher
goodness-of-fit value (x = 11.5) than that obtained for the
EM model.

These three models for a-crustacyanin from EM, SAXS and
the 1gka crystal lattice all have in common an open squashed-
ring structure which would appear to have small interfaces
stabilizing the assembly. The apparent high degree of hydra-
tion of a-crustacyanin would fit with the high solvent content
in the B-crustacyanin crystal and the difficulties so far in
growing diffraction quality crystals of «-crustacyanin. o-
Crustacyanin has also been reported to be relatively unstable
and can dissociate over time and in the presence of light to
B-crustacyanin.

Structural models for a-crustacyanin proposed by the two
reports published in 2003 (Chayen et al., 2003; Dellisanti ef al.,
2003) are at variance (even though the experimental SAXS
profiles are essentially identical). Each report based their
interpretation of the experimental data on a particular high-
order symmetry (fourfold or helical symmetry). However,
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both symmetry constraints were put forward to be in harmony
with the two models suggested from early EM data (Zagalsky
& Jones, 1982) but lead to differing SAXS models. Detailed
results for a possible fourfold symmetry model have not been
pursued (published) until further more compelling EM data
are available. The current results therefore provide important
additional complementary insights and highlight that the
overall shape is characterized by a less stringent stringing
together of B-crustacyanin dimers as is also indicated by the
observed crystal packing of B-crustacyanin (PDB code 1gka).

In order to improve the resolution of the EM reconstruc-
tion, further research should turn to using cryo-electron
microscopy. For this method the sample can be visualized
without unwanted effects from dehydration or negative
staining. There is still the possibility that flattening of the
sample upon adsorption to the EM grid has introduced some
distortion. An alternative method is a renewed effort to
produce new diffracting crystals of a-crustacyanin (Nneji &
Chayen, 2004) along with microfocus X-ray beam scanning
over the crystal, which, even if they only diffracted to 10 A
resolution, would be a significant further step forward in the
pursuit of the structure of w-crustacyanin. Nevertheless, this
30 A EM reconstruction and models presented herein provide
a good basis for future work.

JRH thanks Professor Naomi Chayen, Imperial College,
London, and Dr Peter Zagalsky for long-standing collabora-
tive studies involving crustacyanin, and Dr Madeleine Helli-
well, University of Manchester, for collaborations on non-
protein-bound carotenoids seeking to mimic the colour
changes evident in crustacyanin. We would like to acknowl-
edge Marge Howard at the biomolecular analysis facility,
Adam Huffman at the bioinformatics facility and the staff
at the EM facility for technical assistance (University of
Manchester).
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