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A method for comparing pixelated density profiles (e.g. obtained from

molecular dynamics or other computational techniques) with experimental

X-ray reflectivity data both directly and quantitatively is described. The

conditions under which such a comparison can be made quantitatively (e.g. with

errors <1%) are determined theoretically by comparing calculated structure

factors for an intrinsic continuous density profile with those obtained from

density profiles that have been binned into regular spatial increments. The

accuracy of the X-ray reflectivity calculations for binned density profiles is

defined in terms of the inter-relationships between resolution of the X-ray

reflectivity data (i.e. its range in momentum transfer), the chosen bin size and

the width of the intrinsic density profile. These factors play a similar role in the

application of any structure-factor calculations that involve the use of pixelated

density profiles, such as those obtained from iterative phasing algorithms for

inverting structures from X-ray reflectivity and coherent diffraction imaging

data. Finally, it is shown how simulations of a quartz–water interface can be

embedded into an exact description of the ‘bulk’ phases (including the substrate

crystal and the fluid water, below and above the actual interface) to

quantitatively reproduce the experimental reflectivity data of a solid–liquid

interface.

Keywords: X-ray reflectivity; diffraction; molecular-dynamics simulations; pixelization;
quartz–water interface.

1. Introduction

A key step in validating concepts concerning the controls

on interfacial structures and processes is the comparison of

experimental and computational results. A system can be

considered to be well understood if these distinct approaches

agree at a quantitative level; that is, when the differences

between results are comparable with or smaller than the

systematic or statistical uncertainties of the respective

techniques.

When using diffraction or scattering-based techniques (e.g.

X-rays, neutrons, electrons), this comparison can be compli-

cated by the ‘phase problem’ (Als-Nielsen & McMorrow,

2001; Giacovazzo, 1992). Stated simply, scattering techniques

measure the scattering intensity as a function of momentum

transfer, Q = kr � ki (where ki and kr are the wavevectors of

the incident and reflected beams, respectively, with magnitude

|k| = 2�/�, where � is the X-ray wavelength). The X-ray

reflectivity (XR) signal, R(Q) (i.e. the fraction of the incident

beam that is reflected by the sample), in the kinematic limit

is proportional to the magnitude squared of the interfacial

‘structure factor’, F(Q), which in turn is the Fourier transform

(FT) of the interfacial density profile, �(r), where r is the

position in space. For specular reflectivity [i.e. Q = 4�/�sin(2�/
2), where 2� is the scattering angle], this is expressed as

(Fenter, 2002)

RðQÞ ¼ 4�re=QAUC

� �2
jFðQÞj2; ð1Þ

where

FðQÞ �
R
�ðzÞ expðiQzÞ dz ¼ jFðQÞj exp½i’ðQÞ�:

Here, re is the classical electron radius, AUC is the surface unit

mesh area, and z is the height to the interfacial plane. If the

phase of the structure factor, ’, were known, the full density

profile could be obtained directly by the inverse FT. However,

the phase information is lost in scattering measurements.
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Consequently, it is necessary to by-pass the phase problem in

order to obtain structural information from diffraction data.

The most common approach to analyzing scattering data is

‘model-based fitting’, in which a structural model is defined

using a set of parameters (e.g. positions, occupancies and

vibrational amplitudes for each atom) (Robinson & Tweet,

1992). These parameters often include both intrinsic factors

(i.e. structure) as well as extrinsic factors [e.g. intensity scale

factors, interfacial roughness (Robinson, 1986)], and they are

optimized to match the data through non-linear least-squares

fitting algorithms. Such an approach, while simple, has some

significant limitations. Most notably, it is difficult to create

an appropriately general model before knowing the salient

features of the structure that is being determined. Conse-

quently, this approach is characterized by substantial trial and

error, and it is often not possible to prove if a given optimized

model is the actual structure of interest (i.e. if it represents

the global minimum in terms of the quality of fit or a local

minimum). Even when a structural optimization is carried out

successfully, the comparison with a computational study can

be less than direct. For example, it can be difficult to assess

whether the experimental and computational results are in

true quantitative agreement, or whether residual disagree-

ments reflect an inherent bias in the experimental data, the

optimized fitting models or deficiencies in the computational

approach. This traditional comparison between experimental

and computational results has been performed recently for the

quartz-ð10�111Þ–water system for various choices of interatomic

potentials (Skelton et al., 2010).

A recent approach is to use phase-sensitive direct methods

that allow the phase problem to be by-passed (Miao et al.,

1998; Lyman et al., 2005; Fenter & Zhang, 2005; Blasie et al.,

2003). In this approach, a ‘model-independent’ electron

density profile is obtained from the data without any reference

to parameterized structural models. The advantage of this

approach is that no assumptions are made in the analysis

process. Unfortunately, such approaches often do not provide

quantitative agreement with the experimental data, because

they do not readily incorporate interfacial structural relaxa-

tions (Fenter & Zhang, 2005) which are present at all inter-

faces, and they can be susceptible to systematic errors

(especially when using only the one-dimensional information

from specular reflectivity). Usually, such model-independent

results are used to develop an appropriate model that can

be optimized through least-squares results, and the model-

dependent fitting results are considered to be more precise.

Here, we describe a new approach to directly and quanti-

tatively evaluate the agreement between experimentally

measured XR data and simulated structures (i.e. density

profiles) obtained separately through computational techni-

ques. This approach makes use of the trivial ability to calculate

the scattering intensity for a time-averaged structure, as

defined by a density profile, �(r). The primary challenge is to

generate a time-averaged density profile with sufficient spatial

resolution that can reproduce accurately the XR data within

available computational resources. The importance of spatial

resolution derives from the use of discretized (or ‘binned’)

density profiles from the simulations. For example, increasing

bin size reduces the number of simulation cycles needed to

determine each bin’s density accurately. However, it also

imposes a larger distortion of the density profile owing to

pixelization, leading to systematic errors in the calculated XR

signal. This becomes increasingly important when comparing

non-specular reflectivity data with three-dimensional density

profiles where the number of bins increases substantially.

Specifically, we define the inter-related constraints between

the bin size used in computational studies, the momentum

transfer range of XR measurements and the intrinsic width of

the structure of interest that allow for direct and accurate

comparisons with known errors (e.g. <1%). To demonstrate

the effectiveness of this approach, we also show how a simu-

lated density profile of the quartz-ð10�111Þ–water interface can

be embedded into a bulk medium (i.e. calculated bulk struc-

tures of quartz and water) so that it can be directly compared

with previously measured XR data with negligible artifacts.

These results also define the conditions under which phase-

retrieval algorithms and other model-independent fitting

approaches (Miao et al., 1999; Williams et al., 2003; Blasie et

al., 2003; Lyman et al., 2005; Fenter & Zhang, 2005) can be

performed accurately when they utilize the FT of discretized

structures (i.e. as obtained from a fast-Fourier transform).

2. Methods

We begin with an interfacial structure obtained from mole-

cular dynamics (MD) simulation of the quartz-ð10�111Þ–water

interface (Skelton et al., 2010). A snapshot from an MD

simulation obtained using the Lopes et al. (2006) force field is

shown in Fig. 1(a). The distribution of surface hydroxyls in the

top surface above the silicon–oxygen plane is shown in the top

view of the surface (Fig. 1b). This force field contains partial

charges to model the electrostatic interactions and a Lennard–

Jones potential to model short-range repulsion owing to

electron cloud overlap and attractions owing to dispersion

interactions. The atoms within the quartz surface are fully

mobile, except the central layer of atoms which was held rigid

throughout the simulation (as noted in Fig. 1a) to determine

the intrinsic root-mean-square (r.m.s.) widths of interfacial

species. Bond stretching, angle bending and dihedral poten-

tials are used within the surface to maintain its structure. The

Lopes et al. force field uses the TIP3P water model (Mark &

Nilsson, 2001). The classical MD simulations were performed

using the public-domain parallel-efficient classical MD code,

LAMMPS (Plimpton, 1995). A 1 fs time-step was used with

the velocity Verlet integration and Nosé/Hoover thermostat,

in the NVT (constant number of molecules N, constant volume

V and constant temperature T) ensemble. The simulation

included 5040 atoms in the quartz crystal and 2320 water

molecules. The dimensions of the orthorhombic box were

41.45298 � 39.231 � 80.2286 Å. The simulations were run for

2 ns and the particle–particle particle–mesh (PPPM) method

was used to treat the long-ranged electrostatics (Hockney &

Eastwood, 1988).
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Specular XR measurements are sensitive to the one-

dimensional electron density profile, �(z) (in units e� Å�3),

along the surface normal direction. This is derived from the

time-averaged and laterally averaged number density profiles

for each element, n(z), derived from the simulation (Fig. 1)

�ðzÞ ¼
P

j

ZjnjðzÞ; ð2Þ

where Zj is the atomic number of the jth element. The electron

density profile of the quartz-ð10�111Þ–water interface (Fig. 2a)

was derived from the MD simulation. This was obtained by

making a time-averaged histogram of atom locations using a

bin size of 0.02 Å. These results illustrate features that are

typical of simulated density profiles including the spatial

extent of the simulation cell (�80 Å) with 11 quartz unit-cell

layers.

The XR signal for the quartz-ð10�111Þ–water interface (red

line, Fig. 2b) is calculated from the MD-simulated structure.

This is obtained using an extension of equation (1) that

includes the necessary detail that the Q-dependent X-ray

scattering for each element differs owing to the atomic form

factor, f(Q), of each atom. Here, the total structure factor is

given by

FðQÞ ¼
P

j

fjðQÞFT njðzÞ
� �

; ð3Þ

where the sum is over the j elements in the structure, and the

FT of the discretely binned density profile, n(z), for each

element, j, is obtained from the MD simulation.

This calculated XR signal is compared with experimental

data (black circles, Fig. 2b) [see Schlegel et al. (2002) for

details of the XR measurement and model-dependent

analysis]. Also included in this comparison is a model-

dependent fit to the XR data (blue line,

Fig. 2b) derived from Schlegel et al.

(2002). The XR signal in Fig. 2(b)

exhibits Bragg peaks [at Q = 1.88 Å�1

and 3.76 Å�1 corresponding to the first-

and second-order reflections associated

with the quartz-ð10�111Þ layer spacing,

d10�111 = 3.341 Å]. The bulk electron

density profile derived from the MD

simulation reproduces the main features

of the bulk crystallographic structure

(e.g. the density peak locations), but the

detailed shape of the two profiles differs

significantly (Fig. 2c).

There are two significant artifacts

that appear in the calculation of the XR

from this simulation. First, the substrate

Bragg peaks in XR data are weaker

and broader than that observed in

the model-dependent calculation. The

Bragg peaks have a width in Q corre-

sponding to 2�/L, where L is the spatial

extent of the material probed by the

beam (in this case, controlled by the

X-ray penetration depth). In the XR
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Figure 2
(a) Electron density profile (in units of e� Å�3) plotted as a function of
height (in units of Å) obtained from a MD simulation of the quartz-
ð10�111Þ–water interface (black line). The profile is shown from a side view
as a function of height above the interface of interest near z = 0 Å. The
blue dashed line indicates the slicing function discussed in the text, and
the portion of the electron density shown in red is that extracted from the
total profile using the slicing function. (b) The X-ray reflectivity signal, R,
as a function of momentum transfer, Q (in Å�1), calculated from the full
MD-simulated profile in (a) (red line), a best-fit model-dependent fit to
the XR data (blue line), and the measured XR signal for the quartz-
ð10�111Þ–water interface (black circles with experimental error bars). (c)
Side view of the bulk quartz lattice with a surface unit cell indicated in
the black parallelogram. Also shown is a detailed comparison of the bulk
unit cell structure obtained from crystallographic parameters (black line)
and an MD-simulated quartz structure whose density profile has been
discretized with 0.02 Å bins (red points).

Figure 1
Side (a) and top (b) views of the quartz–water MD simulation cell. The fixed atoms at the center of
the surface slab are indicated. Note that this simulation is periodically replicated in all three
coordinate directions.



study of the quartz–water interface structure, this corresponds

to a thickness of many micrometers, leading to sharp Bragg

peaks with an XR magnitude that approaches �1. The MD-

derived reflectivity calculation also shows additional artifacts

in the form of intensity oscillations corresponding to the sizes

of the simulated density region, with periods of�2�/35 Å�1
’

0.18 Å�1 corresponding to the width of the simulated quartz

crystal, and 2�/80 Å ’ 0.08 Å�1 corresponding to size of the

simulation box (this is mostly apparent at small Q). It is

therefore not possible to make a quantitative (or even a

qualitative) assessment of the level of agreement between the

experimental data and the MD simulation based on this

comparison. These artifacts remain even if one incorporates a

semi-infinite substrate density profile in the XR calculation

(Sakuma & Kawamura, 2009). In this case, intensity oscilla-

tions would be present owing to the artificial truncation of the

water profile near z = 12 Å. A more subtle issue is whether

there are artifacts in the calculated XR data due to the binning

process. Finally, we need to address whether the detailed

differences between the bulk electron density profiles seen in

Fig. 2(c) lead to significant errors.

The quality of agreement between the XR data and the

calculated reflectivity (from both the model-dependent fit and

the MD-simulated profile) is quantified in two ways. The �2

function measures the quality of fit with respect to the

experimental uncertainties in the data, �2 = �i[(Ri � Rci)/�i]
2/

(n � np), where Ri , �i and Rci are the measured reflectivity, its

uncertainty and the calculated reflectivity, the sum is over all

data points (i = 1 . . . n), and np is the number of parameters

used in the optimization. �2
’ 1 for a fit that is consistent with

the data to within the experimental uncertainties. A second

function is the ‘R-factor’, where r = �i|(Ri � Rci)/Rci|/(n � np),

and is the average fractional deviation between the data and

the calculation, independent of experimental uncertainties.

2.1. Structure factor of a binned density profile

We develop a formalism to define the relationships between

the bin size in the binned density profiles and the calculated

XR intensities to define the conditions under which a

comparison between these quantities can be made accurately

and quantitatively. In making such a comparison it is necessary

first to consider the sensitivity of the scattering intensities to

the binning of the density into individual pixels of size �.

Scattering techniques probe a structure through a coherent

summation of the electron density within an associated real-

space ‘resolution’, �zres ’ �/Qmax , characterized by the

maximum momentum transfer, Qmax , along a particular

direction (Fenter & Sturchio, 2004). This concept of X-ray

scattering resolution is fully analogous with that in a micro-

scope or other optical instruments (Halliday & Resnick, 1978).

It therefore can be anticipated that low-resolution data (e.g.

Qmax < 1.5 Å�1 or �zres > 2 Å) would be relatively insensitive

to perturbations from discretizing a density profile into small

(e.g. � < 0.1 Å) bins. However, specular XR data are often

collected to Qmax = 6 Å�1 to 8 Å�1, corresponding to real-

space resolutions of�0.5 Å. At what point does the calculated

reflectivity profile become sensitive to the discretization of the

density profile?

We first define the binned density, �b, from the intrinsic

continuous density profile, �(z). Here, the density functions

are assumed to be one-dimensional and have an integrated

weight, NZ, where Z is the atomic number of each atom and

N = �n(z) is the total number of atoms in the profile. (For

simplicity in this derivation, we initially ignore differences in

the atomic form factors for each atom.) From this we obtain

�bðzbÞ ¼
R1
�1

�ðzÞW z; zbð Þ dz ¼ �ðzÞ 	WðzÞ; ð4Þ

where 	 denotes the convolution of two functions, and W is a

window function defined as

W z; zbð Þ ¼
1 for jz� zbj<�=2;
0 otherwise;

�
ð5Þ

where W is a continuous function of z, for discrete values of zb.

In the case of the MD-simulated profiles, �b is a discrete

profile sampled at the bin size � (i.e. zb = 0, �, 2� . . . ), as

shown in Fig. 3 (circles) compared with the intrinsic density

profile (red lines, Fig. 3). The integrated weight of the window

function is
R 1
�1

W dz = �. Notably, the sum of the integrated

weight of the profile is unaffected by the transformation

[i.e.��b =
R 1
�1
�(z) dz]. However, in order to compare the

absolute electron densities for the binned and intrinsic

profiles, we scale the binned profile by a factor of �z/�zb,

corresponding to the change of coordinates from z to zb. From

this the structure factor of the binned profile, Fb, can be

calculated,

FbðQÞ �
P
zb

�b zbð Þ exp iQzbð Þ: ð6Þ

The binned density profile, �b, in turn is the convolution of the

continuous density profile with a window function [equation
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Figure 3
Intrinsic (red line) and discretely binned (blue circles) density profiles for
a Si atom having an intrinsic width of � = 0.2 Å for bin sizes of (a) 0.1 Å,
(b) 0.4 Å and (c) 0.8 Å, shown as a function of position (in Å). Also
plotted are the discretely binned density profile shown as a step-wise
continuous profile (black dashed lines) and the continuously binned
density profiles, �b_cont (blue line).



(4)]. When calculating the binned structure factor of multi-

element systems, one needs to apply (6) for each element and

then obtain the total structure factor that takes into account

the atomic form factor of each element using (3).

Equation (6) has a notable short-coming when the binned

density profile, �b, is sampled at the bin size, � (as is typical

for creating a binned density profile). In this case the calcu-

lated structure factor depends on the details of the binning

process, both in terms of the bin size, �, and in terms of the

offset between the bin location and the intrinsic profile. While

the former factor can be corrected for (see below), the latter

factor cannot. This can lead to significant numerical errors

in the calculated reflected signal. For example, when the bin

size is comparable with the intrinsic width of a feature (for

example, a Gaussian profile with r.m.s. width �), the structure

factor of the discretely binned density profile (e.g. a single bin)

shows intensity minima when the momentum transfer, Q,

‘resolves’ the bin size (i.e. at Q ’ �/�). Such minima are not

present in the structure factor of the intrinsic Gaussian profile,

and cannot be exactly corrected for without prior knowledge

of the intrinsic profile (which is not available). As will be

shown below, these factors do, however, depend in a

systematic way on the relative sizes of �, � and the

momentum transfer, Q, for a desired accuracy (e.g. 1%).

A more accurate and precise result is obtained by consid-

ering a ‘continuously binned density profile’, �b_cont , with a

point spacing, �zb, obtained using (4) when zb is considered

to be an almost continuous variable (i.e. when �zb
 �; blue

lines, Fig. 3). In particular, when a continuously binned profile

is used, the structure factor of this quantity can be obtained

exactly through the FT of the continuously binned profile of

�b_cont(zb),

Fb contðQÞ ¼
R1
�1

�b cont zbð Þ exp iQzbð Þ dzb

¼ FT½�ðzÞ 	WðzÞ�: ð7aÞ

Using the convolution theorem (Giacovazzo, 1992), we obtain

Fb contðQÞ ¼ FT½�ðzÞ�FT½WðzÞ�

¼ FðQÞ½sinðQ�=2Þ=ðQ�=2Þ�: ð7bÞ

Here, F(Q) is the intrinsic structure factor of the original

continuous density profile. Consequently we can define the

‘bin-corrected’ structure factor as

Fb corrðQÞ ¼ FbðQÞ=½sinðQ�=2Þ=ðQ�=2Þ�: ð8Þ

This quantity provides an estimate of the intrinsic structure

factor, F(Q), directly from the simulated density profiles.

Its accuracy is evaluated below. While we do not explicitly

convolute the simulated density profile with the window

function, we note that the discretely binned density profile, �b

(circles, Fig. 3), simply samples the continuously binned

density profile, �b_cont (blue line, Fig. 3). Consequently we

anticipate that this formalism can be used for the discretely

binned profiles and will become more accurate as the bin size

is reduced.

2.2. Comparison of binned versus intrinsic structure-factor
magnitudes

The utility of this formalism is assessed by making a closed-

form comparison of X-ray scattering intensities calculated for

an intrinsic structure and the structure after it has been

binned. The deviations between the two approaches reflect the

limitations of calculating the scattering intensities from binned

profiles. Here, we choose an atom with a Gaussian distribution

located at the origin as the intrinsic density distribution. This

choice is made for two reasons. First, the ability to accurately

calculate the scattering intensity from an atom implies the

same ability for any arbitrary structure. Second, the structure

factor is easily calculated, F(Q) = f(Q)exp[�0.5(Q�)2], where

� is the r.m.s. width of the atom distribution. We choose a

single Si atom located at z = 0 Å, with � = 0.2 Å (with a full

width at half-maximum, FWHM = 2.35� = 0.47 Å). The

comparison of the intrinsic and binned structures is made for

bin sizes � = 0.1, 0.4 and 0.8 Å, and as a function of Q.

The intrinsic and binned electron density profiles are shown

in Fig. 3. The choice of � = 0.1 Å leads to a binned density

profile that closely resembles the intrinsic profile, with only

small perturbations. The use of larger bin sizes, � = 0.4 and

0.8 Å, leads to substantial modifications in the density profile.

The effect of binning on the calculated XR signal is shown

in Fig. 4(a). These calculations compare the modulus square of

the intrinsic structure factor [i.e. related to the scattering

intensity by equations (1) and (3)] with that from the bin-

corrected structure factor [equation (8)]. In each case the

modulus square of the bin-corrected structure factor appears

to reproduce the exact calculation at small Q, but with

substantial deviations that appear at Q� = �, typically seen as

a sharp minimum in the intensity, corresponding to the point

where the individual bins are resolved. A finer-scale assess-

ment of this formalism can be obtained by plotting the frac-

tional errors in the calculated intensities [i.e. (|Fb_corr|
2
� |F |2)/

|F |2] between the magnitudes of the bin-corrected structure

factor, Fb_corr , and the intrinsic structure factor, F (Fig. 4b).

Here, we plot the data as a function of Q�, which puts the

node from the width of each pixel size at the same value. These

plots show that each calculation is essentially exact at suffi-

ciently small values of Q�, but that the range of Q over which

the calculation has a specified accuracy (e.g. 10%) depends on

the bin size. For � = 0.1 Å, the results are accurate to within

1% error for Q� < 2.8 (i.e. Q < 28 Å�1). Meanwhile, the

calculation for � = 0.8 Å shows that 1% accuracy is achieved

only for Q� < 0.3 (Q < 0.38 Å�1). That is, the accuracy is

controlled by two factors: the resolution of the data (Q < �/�)

as well as the relative bin size, �, with respect to the intrinsic

r.m.s. width, �.

The systematic variation of the calculation error is shown, in

Fig. 5, as a function of the dimensionless variables Q� and

�/�. Since the calculated reflectivity varies with the exact

details of the pixel locations, the results shown in Fig. 5

represent the worst case evaluated by comparing the results

for different pixel locations (calculated for bins shifted by all

increments of �/8). These results confirm the general obser-
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vations shown above and reveal the systematic trends in the

accuracy of the bin-corrected structure-factor calculations.

There are two distinct regimes. The accuracy is ultimately

controlled by the resolution of the data, Q� < �, when the

pixel size is comparable with, or smaller than, the intrinsic

width (i.e. � < 1.5�). This is the expected result. When the

pixel size becomes larger than the intrinsic width, however, the

Q-range over which the calculations are accurate becomes

substantially reduced, with a continuous transition between

these two extreme limits. For calculations with 1% accuracy,

the Q-range is modified by the sensitivity to factors such as the

specific offset between the bins and the center of the intrinsic

distribution. The range of parameters consistent with 1%

accuracy can be summarized as Q� < 1.8 when �/� < 1.5, and

Q� < 0.5 for �/� > 3.

This calculation provides a quantitative and practical

approach to determine the optimal binning size when an MD

simulation result is compared with the experimental XR. For

example, for the quartz structure, the most limiting component

to the structure factor calculation is due to the silicon atom,

with an r.m.s. vibrational amplitude of 0.09 Å. A bin size of

0.02 Å leads to �/� ’ 0.2. With Qmax ’ 5 Å�1, we obtain

Qmax� = 0.1. These parameters are therefore well within the

region in which the reflectivity is accurate to <1%. Under

these conditions an accurate calculation of the XR signal can

be obtained.

2.3. Comparison of MD simulations with experimental XR
data

We now describe the process of incorporating this calcula-

tion of an MD-simulated structure into a structure-factor

calculation of a solid–liquid interface. The main challenge is

to avoid artifacts associated with discontinuities in the density

profile at the boundary between the simulated and known

structures. The total structure factor of an interface, Ftot, is the

sum of the structure factors of the individual components

[equation (3)]. In order to calculate reflectivity data that can

be compared with experimental values, it is necessary to

‘embed’ the simulated structure into the calculated density

profiles of the two bulk phases whose structures are known

(the unrelaxed bulk substrate crystal, and the featureless fluid

phase far above the interface). When including the structure

factor of the portion of the density profile simulated by MD,

FMD, the total structure factor can be written as

Ftot ¼ FUC FCTR þ Fint þ FMD þ Fwater; ð9Þ

where FUC, FCTR, Fint and Fwater are the structure factors of

the bulk unit cell, the ‘crystal truncation rod’, the interfacial

region (including any relaxed layers, adsorbed species,

modulation of the bulk water, etc. that are not included in

FMD) and bulk fluid, respectively. For the case of specular

reflectivity, FCTR = 1/[1 � exp(iQc)], where c is the substrate

layer spacing along the surface normal direction. Since the

water structure factor is meant only to reproduce the bulk

water properties, it can be written as an error function profile

defined by a position, zw, an r.m.s. width, uw, and the bulk
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Figure 5
Systematic variation of errors between the bin-corrected structure-factor
magnitude, |Fb_corr|

2, and the exact structure-factor magnitude (indicated
as a color map), as a function of the dimensionless quantities Q� and
�/�. The yellow-dashed, red and black lines indicate the contours
associated with 1%, 5% and 10% errors. The condition associated with
‘resolving’ a structure, Q = �/�, is indicated by the dashed white line. For
the sake of clarity, errors are shown with a maximum value that saturates
at a value of 20%.

Figure 4
(a) The variation of the structure-factor magnitude, |F |2, as a function of
momentum transfer, Q (in units of Å�1) of the distributions shown in
Fig. 3, including the intrinsic structure factor (red line), and the bin-
corrected structure factors, |Fb_corr|

2, for each of the bin sizes, � = 0.1, 0.4
and 0.8 Å (blue, black and green lines, as indicated). Note how the results
for � = 0.1 Å provide an almost exact reproduction of the intrinsic
structure factor. (b) Fractional errors between the intrinsic and bin-
corrected intensities, plotted as a function of the product of the
momentum transfer and bin size, Q�.



electron density of water, �w = �Zi /VW = 0.33 e� Å�3, where

VW = 30.3 Å3 is the volume of one water molecule in bulk

water. In this case, Fwater = (AUC/VW) fwater(Q)exp(iQzw)

exp[�0.5(Quw)2]/iQ, where fwater describes the atomic form

factor from a single water molecule.

Embedding the simulated profile into the bulk-like struc-

tures of the substrate and fluid profiles must be done without

any artificial discontinuities at the boundaries of any two

structure components. This is a two-step process. First, we

select a portion of a MD profile that is of interest, by multi-

plying the simulated profile by a slicing function: [erf(z, z1, �1)

+ 1][1� erf(z, z2, �2)]/4, where erf is the error function profile,

zi are the top and bottom limits of the simulation that will be

incorporated, and �i are the widths of the interfacial slicing

function, as shown in Fig. 2(a). Within the crystal, the inflec-

tion point of the error function profile can be set to a zero-

density region between crystalline layers so that there is no

discontinuity between the ‘bulk-like’ material and the density

obtained from the MD simulation. On the fluid side of the

crystal, the slicing position is chosen as any location where the

MD-simulated fluid density profile matches the bulk water

density. The same position and width (z2 and �2) are used to

define the termination of the MD-simulated profile and the

start of the bulk water profile so that there is no discontinuity

in the density profile at this boundary.

2.3.1. Comparison with the MD-simulated quartz-ð1011Þ–
water interface. Using the process described above, we can

calculate the reflectivity corresponding to the quartz-ð10�111Þ–

water interface using the MD-simulated density profile for the

top three quartz layers as well as the first �10 Å of the

interfacial water profile (red line, Fig. 6b). This is embedded

within the closed-form calculation for the respective bulk

structures, including the ideal quartz crystal substrate density

profile and the bulk water profile (black line, Fig. 6b).

The embedding process has a few parameters that need

to be optimized. First, the reflectivity calculation is critically

sensitive to surface structural relaxations. In the case of

specular reflectivity, this is controlled by the vertical displa-

cements of the MD-simulated density profile with respect to

the crystallographic atom positions in the substrate crystal.

This can be defined, initially, with reasonable precision by

allowing the binned density profile to overlap with that of the

ideally terminated layer, and adjusting their relative positions

so that the two structures overlap. It is necessary, however, to

allow this relative spacing to be optimized as a fitted para-

meter.

A few non-structural parameters influence the XR signal

and need to be optimized. These include an intensity scale

parameter (to compensate for errors in the estimated absolute

reflectivity signal), as well as parameters that describe the

surface roughness and the attenuation of the X-ray beam

through the sample cell. The structure factor of an ideally

rough surface (i.e. one in which the surface height changes

with position, but exposes the same local structure at every

point) can be written F = Frough(Q)Fideal(Q). There are

multiple functional forms that have been developed for

different types of surface roughness. A widely used form

assumes that the surface has a series of partial layers having

occupation factors 	, 	2, 	3 . . . (Robinson, 1986). In this case,

Frough = (1 � 	)2/[1 + 	2
� 2	cos(Qc)], where the r.m.s.

interfacial roughness has a value of c	1/2/(1 � 	). A second

parameter is needed to describe the attenuation of the X-ray

beam through the water and Kapton film above the sample

surface. The lack of data for Q < 1 Å�1 make these data

insensitive to this parameter (i.e. its uncertainty is very large

when it is allowed to vary). It was set to a typical value

of 20 mm.

Using this approach, we can see that the qualitative features

of the reflectivity data, e.g. the expected crystal truncation rod

shape, are reproduced by the combined MD-simulated inter-

facial profile and the closed-form calculation of the bulk

contributions (red line, Fig. 6a). At this level, there do not

appear to be any obvious artifacts in the simulation. For

instance, if there were errors in matching the MD-simulated

and closed-form calculations, one would expect to observe

oscillations in the reflectivity profile with a period of about

2�/20 Å = 0.3 Å�1, associated with the size of the MD-simu-

lated region, �20 Å (e.g. as seen in Fig. 2b).
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Figure 6
(a) X-ray reflectivity calculations (i.e. reflectivity versus Q, in units of
Å�1) for the quartz-ð10�111Þ–water interface structure, compared with the
data obtained experimentally by Schlegel et al. (2002). The electron
density profile (with density and height plotted in units of e� Å�3 and Å,
respectively) in (b) corresponds to the structure used to calculate the red
line in (a), while the profile in (c) corresponds to the blue line in (a). In
(b) and (c) the red and blue lines, respectively, indicate the portion of the
profile obtained from the MD simulation. The black line in (b) indicates
a bulk-like structure for both quartz and water. In (c), the black line
indicates a bulk-like quartz layer along with three relaxed interfacial
layers (optimized by least-squares fitting) and the bulk water structure.
The heights in (b) and (c) are plotted in units of Å.



An evaluation of the simulated data shows that the

embedded MD-simulated profile does not, however, provide

quantitative agreement with the experimental data. The

reflectivity calculation in Fig. 6(a) has a quality of fit of �2 = 28

and r = 0.4 (with np = 3); that is, the average deviation is

substantially larger than the uncertainty for each data point

and is substantially worse than the model-dependent fit [the

blue curve in Fig. 2(b) is the result of a re-analysis of the XR

data having a quality of fit of �2 = 0.63 and r = 0.034, which is

improved with respect to that reported previously (Schlegel et

al., 2002)]. The poorer quality of fit for the MD-simulated

profile is not due to the binning process since the data are

characterized by Qmax = 4 Å�1 and a bin size � = 0.02 Å.

Comparing with the results in Fig. 5, these results correspond

to conditions for which we expect to be able to obtain a

quantitative calculation with <1% errors for Qmax� ’ 0.1 and

�/�Si ’ 0.2, which are well within the region for accurate

calculation of the reflectivity signal. Therefore, we tentatively

conclude that the poorer quality of fit is because of some

aspect of the MD-calculated profile.

2.3.2. Comparison with the MD-simulated interfacial
water profile. It is apparent that the simple reflectivity

calculation based on the interfacial profile from the MD

simulation, combined with the extrinsic parameters, does not

provide a quantitative reproduction of the measured data. It is

reasonable to expect that the lack of full quantitative agree-

ment may be due to deficiencies in the simulated structure of

the quartz substrate, especially given the detailed differences

in electron density between the simulated density profile and

that obtained from the crystallographic structure for the bulk

portion of the structure, seen in Fig. 2(c). This idea can be

tested by using only the simulated water and by treating all

other aspects of the interfacial structure (i.e. the substrate

structural relaxations) through a model-dependent fitting

approach. This comparison is a hybrid of the model-depen-

dent fitting approach along with the MD-simulated water

profile (i.e. without the substrate portion; Fig. 6c). This was

performed by fitting the interfacial quartz structural para-

meters to describe the correlated relaxation profiles of the top

three layers of quartz, as described previously (Schlegel et al.,

2002). We also optimized the relative location of the MD-

simulated and calculated profiles, as described above. The

total number of fitted parameters was then 14. This approach

leads to a significantly better fit to the reflectivity data (Fig. 6a),

with quality of fits of �2 = 0.93 and r = 0.042, indicating a

quantitative reproduction of the experimental data. This is

only marginally worse in quality to that obtained by model-

dependent fitting (i.e. �2 = 0.63 and r = 0.034 when all aspects

of the interfacial structure were optimized), suggesting that

any deviation in the calculation of the reflectivity owing to the

binning of the MD-simulated profile are small compared with

the experimental uncertainties. A comparison of the quartz

portion (i.e. for z < 0) of two interfacial profiles shows that the

interfacial structure obtained by fitting to the XR data (Fig. 6c)

differs significantly from that obtained from the full MD

simulation (Fig. 6b). Given the high sensitivity of XR to

interfacial structure, we infer that the inability of the quartz–

water MD simulation to quantitatively reproduce the XR data

is associated with differences in the MD-simulated quartz

structure, which ultimately would be due to the potentials that

describe the quartz interfacial region in the MD simulation.

This observation is also reinforced by the small but significant

differences between the bulk quartz structure derived from

MD simulation with respect to the known crystal structure, as

seen in Fig. 2(c).

We also have evaluated the role of bin size by comparing

the data with the same simulation while using a fivefold-larger

bin size, � = 0.1 Å, again using only the MD-simulated water

profile. All other details in the comparison were equivalent,

including the optimization of the interfacial roughness and the

intensity scale factor. This comparison leads to qualities of fit,

�2 = 0.95 and r = 0.042, which are almost identical to those

obtained with 0.02 Å-sized bins. This is expected since the

values of Qmax� = 0.1 and �/� = 1 for this comparison are well

within the parameter region defined by intrinsic systematic

errors of <1% (Fig. 5).

3. Discussion and conclusions

The present results demonstrate a procedure by which a

pixelated structure (e.g. from a MD simulation, or other

computational approach) can be compared directly with XR

data to test the consistency between the computational and

experimental results. This process is attractive for a number of

reasons. This provides a distinct route to understanding the

experimental XR data because it makes no detailed assump-

tions about the nature of the interfacial structure (i.e. as would

be implicit with the creation of any parameterized model to fit

the XR data), except those that are implicit to the computa-

tional studies (e.g. parameterized interaction potentials). Such

an approach could be used, for instance, to identify likely

interfacial structures so that an appropriate choice of struc-

tural model can be made for fitting. On the other hand, this

approach opens up a new window through which the quality of

interaction potentials used in the MD simulations can be

evaluated. Normally, interaction potential parameters are

obtained by fitting to experimental bulk properties (densities

etc.) or quantum mechanical calculations. This ability to

directly and quantitatively compare the MD profiles with

measured XR data opens up the possibility of evaluating the

relative accuracy of various potentials to reproduce the

measured interfacial structures of a given system [e.g. the

Lopes force field versus ClayFF (Cygan et al., 2004)]. More

generally, it might be possible to optimize the interaction

potentials based on measurements of interfacial structures.

One result of this comparison was the demonstration that

the systematic errors in comparing the measured data with

pixelated density profiles is controlled by two factors: the

inter-relationships between the pixel size, �, and the data

resolution (�/Qmax), and the intrinsic width of the structural

features, �. These relationships are defined by the dimen-

sionless quantities Qmax� and �/�. One implication of this

observation concerns model-independent data analysis

approaches that involve the FT of pixelated densities derived
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from data [e.g. for XR data (Blasie et al., 2003; Lyman et al.,

2005; Fenter & Zhang, 2005) or more generally approaches

such as coherent diffraction imaging (Miao et al., 1999;

Williams et al., 2003)]. These approaches will be subject to

systematic errors whenever a component of the intrinsic

structure is sharp compared with the resolution of the data.

We obtained quantitative agreement between the XR data

and MD simulation only when the structure of the MD-

simulated quartz surface was excluded from the calculation.

This suggests that the Si and O potentials of the Lopes force

field did not reproduce the actual quartz interfacial structure

that is observed experimentally. This highlights a benefit of

this approach in that it can help to isolate the features in the

simulation that do not agree with the data. (A complete

analysis would also consider whether there exists any inter-

facial water profiles that, when combined with the MD-

simulated quartz structure, would reproduce the experimental

XR data.)

The present results made a comparison using only specular

reflectivity data which are sensitive to the vertical structure at

an interface (i.e. along the surface normal direction). Inclusion

of non-specular reflectivity data (i.e. ‘crystal truncation rod’

data) provides information about the lateral interfacial

structures. One challenge in making a similar direct compar-

ison between MD simulated structures and the non-specular

data will be the need to define the density in each voxel of

linear dimension, �, in a simulation cell of volume V ’ 80 Å

� AUC = 2600 Å3. For � = 0.02 Å, this would require that the

density in each of �108 voxels be independently and accu-

rately defined (compared with the current one-dimensional

result requiring only �103 pixels), therefore requiring

substantially greater computational resources (both in the

amount of time that would be needed to simulate to obtain

adequate statistics and the computational power required for

the binning itself). However, the generalized assessment of the

systematic errors as a function of the dimensionless para-

meters Qmax� and �/� (Fig. 5) provides a way of making an

intelligent choice of voxel dimensions. This would be defined

by the details of the structure of interest, �; the quality and

extent of the experimental data (e.g. defined by the resolution

of the data, Qmax , which may differ in the vertical and lateral

directions); and ultimately the experimental uncertainties

which provide an estimate for the level of accuracy that is

needed.
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