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There are many objects for which the attenuation varies significantly as they

are rotated during computerized X-ray tomography, for example plate samples.

This can lead to significant ring artefacts in the subsequent tomographic

reconstructions. In this paper a new method is presented that can successfully

suppress such ring artefacts and is applicable to both parallel and cone-beam

geometries. Rapid correction is achieved via an analytical formula which

involves only a matrix-vector multiplication, for which the matrix is known

and depends on a regularization parameter. The efficacy of the method is

demonstrated for a paleontological sample (calcified shark cartilage) and a

carbon–carbon composite/Ti–SiC metal matrix composite test sample.

Keywords: X-ray absorption computerized tomography; laterally extended objects;
ring artefacts; filtered back-projection; inverse problem; laminography.

1. Introduction

There are many objects which attenuate X-rays very differ-

ently in different directions. For example, this may be

because geometrically they have a large aspect ratio, such as a

plate, and so attenuate significantly more when viewed along

the major axis, or because they comprise differently attenu-

ating phases that are not homogeneously distributed. As a

result when acquiring a series of radiographs (projections)

as the sample is rotated in order to make a tomograph,

the details in some projections, or regions within certain

projections, will be only faintly represented, if at all. This can

lead to significant ring artefacts in the subsequent recon-

structions which vary in strength around the rings. In this

paper a method is presented that can successfully suppress

such ring artefacts.

Let us consider the following typical experimental set-up

for X-ray tomography on a synchrotron X-ray beamline or

laboratory X-ray imager. There is a source of X-rays which

provides a beam of given geometry. The geometry of the

beam may be arbitrary and is not restricted to classical

parallel or cone-beam geometries. The only assumption is

that the intensity of the beam is unchanged during the scan.

The beam passes through a sample that is rotated about a

vertical axis before falling onto a scintillator which absorbs

the photon energy and re-emits it as visible light in turn. The

light then passes through an optical system and is recorded

by a CCD (charged couple device) camera. As a result

a series of two-dimensional radiographs (projections) is

obtained.

Given a set of projections one can apply various recon-

struction algorithms in order to find the structure of the

sample. For example, an FBP (filtered back-projection) algo-

rithm for parallel geometry of the beam and an FDK

(abbreviated from Feldkamp, Davis, Kress) algorithm for

cone-beam geometry are currently the most popular algo-

rithms (Natterer & Wübbeling, 2007; Kak & Slaney, 1988;

Buzug, 2008). Let there be a monochromatic X-ray beam,

having a beam path, L, through the sample, and I0 be the

intensity of the X-ray photons before the sample. Then the

intensity of the X-rays after the sample can be written as I =

I0 � A = I0 expð�pÞ, where the attenuation factor p is the line

integral
R

L �ðrÞ dr along L and �ðrÞ is the linear attenuation

coefficient at a point r. This means that p is the path through

the sample along the beam trajectory. Let x and y denote the

horizontal and vertical coordinates, which are parallel to the

rows and columns of the pixels on the CCD sensor, respec-

tively, and t be a moment of time. Then the reconstruction

algorithms use the attenuation factor pðx; y; tÞ in order to find

the linear attenuation coefficient �ðrÞ at a point r.

In addition to electrons generated by the absorption of

visible photons, the CCD sensor is also sensitive to electrons

(so-called dark-noise electrons) generated by thermal

processes within it. Therefore, to a first approximation the

standard flat-field correction procedure can be defined (see,

for example, Stock, 2008),
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p ¼ ln
W �D

I �D
; ð1Þ

where W is a white (or flat) field (recorded with the sample

removed from the beam) and D is a dark field (recorded with

the beam switched off). Unfortunately, for various reasons

mentioned below the measured attenuation factor ~pp differs

from the real one p, so we can always write

~pp ¼ pþ q: ð2Þ

As a first approximation the term q often does not depend on

time, i.e. ~ppðx; y; tÞ ¼ pðx; y; tÞ þ qðx; yÞ. This case corresponds,

for example, to the case where there are some particles or

pieces of dust/dirt on the surface of the scintillator which

absorb X-rays. However, some other factors can lead to q

being dependent on p or t. For example, the beam may not be

monochromatic. Let the beam have an intensity I0ð�Þ depen-

dent on the wavelength �, and p and q be also functions of �.

The measured attenuation can be written as

~pp� ¼ � ln

R
I0ð�Þ exp½�pð�Þ � qð�Þ� d�R

I0ð�Þ d�

� �
ð3Þ

and in the general case it is a function of p�, q� and I0ð�Þ,
where

p� ¼ � ln

R
I0ð�Þ exp½�pð�Þ� d�R

I0ð�Þ d�

� �
;

q� ¼ � ln

R
I0ð�Þ exp½�qð�Þ� d�R

I0ð�Þ d�

� �
: ð4Þ

This means that ~pp� ¼ ~pp�½ p�; q�; I0ð�Þ�,
i.e. q� is an implicit function of ~pp�, p�

and I0ð�Þ, and ~pp� � p� is only the first

term in the Taylor series of q� for a

given I0ð�Þ. Among the other causes of

q being a function of p and t there are

the following: the scintillator may have

various impurities inside (the attenua-

tion properties of these impurities/

defects may be temperature dependent,

so that intensity variation on passing

through the sample as it is rotated may

lead to temperature variations on the

scintillator); scintillator performance

may be non-linear; some pixels of the

CCD sensor may have a non-linear

response (see Bardelli et al., 2006;

Moszyński, 2006; Krumm et al., 2008). In

such cases the intensity of ring artefacts

will depend on the shape of the sample:

a ring artefact is more intense if the

attenuation factor p has a greater value

because the intensity of X-rays that pass

through the sample is an exponential

function of the attenuation factor p and

the same errors in the measured inten-

sity lead to greater errors in p if the

intensity is small. Therefore for samples

showing very different levels of attenuation in different

directions, i.e. where p varies markedly with projection angle,

the ring artefacts may have irregular shapes. See, for example,

Fig. 1(b) which relates to a plate sample; the artefacts are most

intense for arcs almost parallel to the longest axis of the

sample.

In this paper we try to find a priori information about the

attenuation factor pðx; y; tÞ that will help us to suppress these

irregular ring artefacts. Iðx; yÞ is the intensity of the X-ray

beam just before the scintillator after the beam has passed

through the sample. Let Ivðx; yÞ be the intensity of the visible

light just after the scintillator. Often it can be assumed that the

transform I ! Iv is linear and may be written as a convolu-

tion,

Ivðx; yÞ ¼Kðx; yÞ � Iðx; yÞ

¼

ZZ
Iðx� �; y� �ÞKð�; �Þ d� d�; ð5Þ

where Kðx; yÞ is the point-spread function (PSF). In many

applications Kðx; yÞ has an almost Gaussian shape (Banhart,

2008; Mahajan, 2001), i.e.

Kðx; yÞ ¼ K0 exp½��ðx2 þ y2Þ�; ð6Þ

where K0; � > 0. Since

@

@x
Kðx; yÞ ¼ �2K0� exp½��ðx2 þ y2Þ� ð7Þ
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Figure 1
The sinogram and reconstructed slices of the calcified shark cartilage (the right-hand column
contains magnified regions of images shown in the left-hand column): (a) the sinogram (attenuation
factor p) obtained after applying the standard flat-field correction technique; the slice reconstructed
using FBP with (c) and without (b) the proposed ring artefact suppression method.



and 0 � Iðx; yÞ � Imax, then, owing to the differentiation

property of the convolution, we obtain

@

@x
Ivðx; yÞ

����
���� ¼ Iðx; yÞ

@

@x
Kðx; yÞ

����
����

� 2K0�Imax

ZZ
� exp½��ð�2 þ �2Þ�
�� �� d� d�

� 2K0Imaxð�=�Þ
1=2: ð8Þ

So it can be assumed that Ivðx; yÞ is a smooth function.

Therefore, we can suppose that pðx; y; tÞ is also a smooth

function of x and y.

Various assumptions on p and q have been made in a series

of papers submitted by the authors. In the case of regular ring

artefacts two methods have been proposed in Titarenko et al.

(2009, 2010a). In the former, the correction of ring artefacts is

based on a knowledge of the attenuation coefficients in some

areas of a reconstructed slice. In this case the difference

between the exact image and the image obtained from a

measured sinogram is almost a constant over each half-ring

(all full-rings are concentric with respect to the centre of

rotation of the sample). In the latter, the smoothness of the

sinogram along the horizontal coordinate, as well as equiva-

lence between the first and the final rows of the sinogram (they

should be the same in the case of 360� rotation or flipped with

respect to the axis of rotation in the case of 180� rotation) are

used to obtain a quadratic programming problem whose

solution is a time-independent function, qðxÞ. In contrast to

the former, explicit values of the attenuation coefficients are

not used. For some simple, but often encountered, cases an

analytical formula has been proposed in Titarenko et al.

(2010b); this formula is also used in the method proposed in

this paper. A case of irregular ring artefacts caused by small

vibrations in experimental set-up has been considered in

Titarenko et al. (2010c). In the current paper we consider more

general irregular ring artefacts.

We think it is impossible in principle to develop an algo-

rithm that suppresses ring artefacts for any dataset. The

reason lies in the nature of tomography. Image reconstruction

from a given set of projections is an ill-posed problem. This

means that at least one of the following three requirements is

not satisfied: the solution exists, is unique and stable. Image

reconstruction is always an unstable problem, i.e. small errors

in input data lead to significant variations in the solution,

see examples by Lavrent’ev et al. (2001) and Natterer &

Wübbeling (2007). Also from the theory of ill-posed problems

it is known that without a priori information about properties

of a sample and noise levels in input data you may achieve a

solution which varies significantly from the exact one. Note

that many well known methods of image reconstruction

assume some properties of the solution, which are often not

met in real problems. In the case of filtered back-projection

the solution is to be an infinite number multiplied by the

differentiable function, i.e. it cannot be used to reconstruct a

sample with any edges/boundaries, even a sphere or cylinder.

In addition, the methods have some internal parameters

allowing a user to ‘regularize’ a solution in order to avoid high

noise level in a solution. This ‘regularization’ is often imple-

mented as cutting high frequencies in the input data.

Similar ideas of ‘filtering’ are used in all the methods we

know to suppress ring artefacts, which have been developed

over the last 20 years. Of course, this ‘filtering’ is implemented

in different ways. There seem to be three main approaches.

For the first, a data acquisition is modified in order to ‘blur’

ring artefacts. In Davis & Elliott (1997) time-delay integration

is used, so a detector is moved laterally during acquisition.

This approach allows users to avoid strong rings on a given

slice; however, it may also increase the noise level on several

neighbouring slices. The second approach is based on post-

processing of the reconstructed images (see, for example,

Sijbers & Postnov, 2004; Walls et al., 2005; Yang et al., 2008;

Titarenko et al., 2009). A polar-to-Cartesian coordinates

transform is often used to find the rings. The third approach is

based on applying various filtering techniques to the input

data (often sinograms) (see Antoine et al., 2002; Raven, 1998;

Boin & Haibel, 2006; Titarenko et al., 2010b; Titarenko &

Yagola, 2010). Of course, some methods may combine several

approaches. The method proposed in this paper belongs to the

last group.

In our opinion, owing to the ill-posedness of image recon-

struction, data processing does not allow ring artefacts to be

suppressed without real features being suppressed at the same

time. A good example is a sample with a small dense particle

near the centre of rotation. In this case a sinogram will have a

column which is brighter than the neighbouring ones. The

same sinogram may be formed in the case of a ring artefact

and no dense particle. Other examples may involve samples

with concentric features. It seems the best approach is to

combine data processing and acquisition, so that if there are

any doubts as to whether we see an artefact it is possible to

acquire more data (moving/rotating/inclining a sample) to

check this. Of course, it may be possible to develop a ring-

suppression method specifically for a particular class of sample

such that real features may be easily distinguished. However,

in the case of artefacts developed during acquisition or from

some non-linear effects, e.g. beam-hardening, it can be very

hard to suppress ring artefacts.

2. Ring artefact suppression

Let us take a horizontal slice of data, i.e. the data recorded by

a single row of pixels over all projections. This can be repre-

sented by the matrix ~ppij ¼ ~ppðxj; y; tiÞ, where ti, i ¼ 1; . . . ;m,

and xj, j ¼ 1; . . . ; n, are grids (m and n are numbers), i is the

projection number and j the pixel in the row. In many cases,

e.g. when the sample rotates at constant speed, the variable t

(time) may be replaced by the angle of rotation of the sample

	. However, in the case of variations in beam intensity, the

temperature of the scintillator or the camera or the strength of

the artefacts depends not only on 	 so it is better to use t. The

grid fxjg
n
1 is uniform (xj � xj�1 is often the pixel size), ftig

m
1 may

be arbitrary, since we have not assumed that pðx; y; tÞ is a

smooth function of t. Therefore
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~ppij ¼ pij þ qij; ð9Þ

where pij must be found. Finding pij is equivalent to finding qij,

which we will use thereafter. q denotes the matrix qij. Since

pðx; y; tÞ is a smooth function of x, we require that

GðqÞ ¼
Xm

i¼1

Xn�1

j¼1

jpij � pi;jþ1j
2

ð10Þ

attains its minimal value for a given error in measurement.

Another assumption is that the error in measurements is

relatively small, i.e.

HðqÞ ¼
Xm

i¼1

Xn

j¼1

jqijj
2

ð11Þ

should tend to zero.

Let us introduce a smoothing (Tikhonov’s) functional

M
½q� ¼ GðqÞ þ 
HðqÞ; ð12Þ

where 
 > 0 is a regularization parameter. Then the mini-

mizer q
 of this equation tends to the exact solution as all

errors in the measurements tend to zero. Note that the regu-

larization parameter 
 depends on errors and cannot be

chosen arbitrarily. However, for given non-zero errors one

could vary 
 in order to satisfy some restrictions on the image

structure. More information about methods of solving ill-

posed problems can be found in Titarenko et al. (1995, 1998),

Engl et al. (1996), Bakushinsky & Kokurin (2004) and Ivanov

et al. (2002).

Now we assume that qij can be written as a final sum

qij ¼
XS

s¼1

fiscsj; ð13Þ

where fis are orthonormal vectors, i.e.

Xm

i¼1

fis � fiv ¼
1; s ¼ v;
0; s 6¼ v:

�
ð14Þ

The vector ~ppij is defined for 1 � j � n. Let ~ppi0 ¼ ~ppi1 and

~ppi;nþ1 ¼ ~ppi;n. Then the vectors cw and gw are introduced such

that

cw ¼ ðcw1; cw2; . . . ; cwnÞ; ð15Þ

gw ¼ ðgw1; gw2; . . . ; gwnÞ; ð16Þ

with elements defined as

gwj ¼
Xm

i¼1

ð� ~ppi;j�1 þ 2 ~ppij � ~ppi;jþ1Þfiw: ð17Þ

Now our aim is to find a global minimizer csj of the smoothing

functional (12). As shown in Appendix A the property (14)

allows us to obtain S systems of linear equations (n equations

with n variables)

AcT
w ¼ gT

w; ð18Þ

where T is a transposed vector, i.e. a column. All these systems

have the same matrix A.

To find the solution of (18) we use the analytical formula

found in Titarenko et al. (2010b). Then

cwj ¼
Xn

k¼1

Hjkgk; ð19Þ

where

Hjk ¼
tanhð�=2Þ


 sinhðn�Þ

n
cosh ðn� jj� kjÞ�½ �

þ cosh ðnþ 1� j� kÞ�½ �

o
ð20Þ

and � ¼ 2 arcsinhð
1=2 2=2Þ. To avoid large numbers the last

formula can be rewritten as

Hjk ¼
exp½�ð j� kÞ��

½
ð
þ 4Þ�
1=2

	

�
1þ exp½�ð2n� 2jþ 1Þ��

��
1þ exp½�ð2k� 1Þ��

�
1� expð�2n�Þ

ð21Þ

for j 
 k. The matrix Hjk is symmetric, so j < k is trivial.

For the practical applications described below we use the

following set of orthonormal vectors (see Hsu, 1995),

fi1 ¼
1

m1=2
� 1; 1; . . . ; 1ð Þ;

fi2 ¼
2

m

� �1=2

� cos
2�

m

� �
; cos

4�

m

� �
; . . . ; cos

2�m

m

� �	 

;

fi3 ¼
2

m

� �1=2

� sin
2�

m

� �
; sin

4�

m

� �
; . . . ; sin

2�m

m

� �	 

;

fi4 ¼
2

m

� �1=2

� cos
4�

m

� �
; cos

8�

m

� �
; . . . ; cos

4�m

m

� �	 

;

fi5 ¼
2

m

� �1=2

� sin
4�

m

� �
; sin

8�

m

� �
; . . . ; sin

4�m

m

� �	 

; . . . : ð22Þ

These vectors may be abbreviated to

fi1 ¼
1

m1=2
;

fi;2s ¼
2

m

� �1=2

cos
2�is

m

� �
;

fi;2sþ1 ¼
2

m

� �1=2

sin
2�is

m

� �
: ð23Þ

Note that there are only m independent vectors, so m � S.

3. Practical applications

3.1. Test object 1: a high-aspect-ratio (laterally extended)
sample

Test object 1 is calcified cartilage from the pectoral girdle of

a fossilized symmoriid shark. A series of projections was

acquired at the microtomography beamline 2-BM at the

Advanced Photon Source (APS) at Argonne National

Laboratory, USA. A double multilayer monochromator was

used. The X-ray beam had a parallel geometry so a standard
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filtered back-projection (FBP) algorithm (see e.g. Natterer &

Wübbeling, 2007; Kak & Slaney, 1988) was applied to the

sinograms preprocessed by the algorithm proposed above.

Although the sample comprises phases of similar attenuation

coefficients it has a large aspect ratio (5:6 : 1:0) in the

projections.

From Figs. 1(a) and 1(b) it can be seen that the standard

flat-field correction technique is not effective owing to the

large aspect ratio. As a result the strength of ring artefacts

seen in the reconstructed horizontal slice in Fig. 1(b) varies

with angle about the centre of the slice, being largest normal to

the long axis of the sample, i.e. the arcs are most significant

essentially where they are parallel to the long axis. After

applying the proposed ring-suppression method [taking


 ¼ 0:001, S ¼ 21 and the functions fis defined in (23)] the

artefacts have been suppressed, as demonstrated in Fig. 1(c).

Note that weak ring artefacts still persist near the edge of the

reconstructed slice. However, they are

not intense and can be suppressed

further if a larger value of S is used.

The value S ¼ 21 means that the

minimal period of the orthogonal

functions defined in (23) is one-tenth of

the height of the sinogram (the height

is measured along variable t). Roughly

speaking one can expect that artefacts

whose period is greater than the

minimal period will be suppressed,

whereas artefacts with a smaller period

may still persist but with decreased

strength. The parameter S controls how

ring artefacts are suppressed along a

radial coordinate (in a polar frame)

and 
 along the angular coordinate.

S ¼ 21 is taken, since the minimal

period of artefacts seems to be about

one-tenth of the sinogram’s height, and


 ¼ 0:001 seems to be optimal for the

suppression along the angular coordi-

nate (for a larger 
 some rings remain

while for a smaller 
 some genuine

features become suppressed). Note

that there is also a ‘spider’ artefact near

the centre of Fig. 1(c) which is

discussed below.

3.2. Test object 2: compound sample

In order to more seriously challenge

the correction algorithm a sample

was devised showing more extreme

heterogeneity of the attenuation coef-

ficient. In essence the sample comprises

a (5.5 mm thick) carbon–carbon

composite (CX-270G grade material

supplied by Toyo Tanso Ltd, fully

graphitized with a nominal density of

1.67 g cm�3; the material has a flat two-dimensional woven

architecture of high modulus fibres) sandwiched between two

(2:5	 1:0 and 6:5	 1:2 mm) blocks of Ti matrix/unidirec-

tional 140 mm-diameter SiC monofilament composite all

wrapped up in (30 mm) aluminium foil. The dataset was

acquired at the B-16 beamline of the Diamond Light Source,

UK. The X-ray beam had a white spectrum and parallel

geometry. FBP was used to reconstruct slices. While the aspect

ratio of the sample is relatively small (1.5 : 1.0) the attenuation

coefficient is highly anisotropic because the carbon composite

at the centre attenuates only slightly whereas the metal

composite attenuates the X-ray beam significantly. In addition,

the presence of the SiC fibres in the metal composite makes

this region locally heterogeneous. Beam hardening arising

from the white beam is also apparent as black lines parallel to

the metal composite blocks and diagonal lines in Fig. 2,

making the treatment of the ring artefacts more complicated.
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Figure 2
The compound sample (Ti–SiC composite/CX-270G carbon–carbon composite sandwich wrapped in
aluminium foil): (a) the full sinogram; (b), (c) enlarged regions (marked by white boxes) of the
sinogram; (d), (e) the standard flat-field correction is applied; ( f ), (g) the proposed method is applied
(
 ¼ 0:0001, S ¼ 20).



4. Discussion

In applying our approach a key issue is the choice of 
 and S.

First let us discuss how 
 should depend on s. One may use the

same 
 for all fis. However, the function qðxi; y; tÞ is assumed

to be smooth along t. Note that Fourier coefficients of a

smooth function decrease as 1=s (see Beerends et al., 2003).

Since the functions fis defined in (23) are discrete Fourier

coefficients, the use of 
s = 
1 � s
2 would seem to be more

reasonable than 
s = 
1. This strategy can be assessed by

comparing images from the right- and left-hand columns of

Fig. 3. For small values of S the quality of the reconstruction of

the titanium composite blocks is almost

the same for both cases, while for large

S the case of 
 being constant for all s

provides more wave artefacts. For

example, the carbon cores of the 140 mm

SiC fibres are clearer in many of the

fibres in Fig. 3(b), while there are

additional wave features around the

blocks in Fig. 3(c) which decrease the

quality of the image.

Another important question is the

most appropriate value of S. From the

arguments of the previous section one

might suppose that increasing S indefi-

nitely might give better and better

results. However, increasing S can have

important implications with regard to

periodic structures. Compare Figs. 3(b)

(S = 5) and (d) (S = 51) where there are

new dark arcs near the C cores of the

SiC fibres. In Figs. 4(a)–4(c) it can be

seen how genuine features (thin curves)

in the sinogram are suppressed and how

the sinogram flattens as S increases.
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Figure 3
Reconstructed slices of the compound sample: left-hand column (a) and (c) 
s ¼ 0:0001, right-hand
column (b) and (d) 
s ¼ 0:0001s2; with top row (a) and (b) S ¼ 5 and bottom row (c) and (d)
S ¼ 51.

Figure 4
Reconstructed slices of the shark cartilage preprocessed by the proposed algorithm: a region of the sinogram (top row) and the central region of the slice
(bottom row). Left-hand column (a) and (d) S ¼ 5, central column (b) and (e) S ¼ 20, right-hand column (c) and ( f ) S ¼ 51; in all cases 
s ¼ 0:0001s2.



Note the horizontal lines in Figs. 4(a)–4(c) are due to intensity

profile variations (see Titarenko et al., 2010c). Therefore, if the

value of S is increased then the genuine features in the

reconstructed image may be suppressed.

An interesting feature is the ‘spider’ feature that is absent

for S = 5, but becomes increasingly prominent as S increases

(see Fig. 4). In order to consider its origin let us undertake a

gedanken experiment. Consider imaging a simple ball for

which we vary the distance between the ball and the centre of

rotation, and for which there are no errors in the simulations

(see Fig. 5). The proposed correction is applied to both sino-

grams using the same parameters (S = 100, 
 = 0.0001s2).

Comparing Figs. 5(a) and 5(b) one can see that the footprint of

the ball over the sinogram is affected more drastically when it

is closer to the axis of rotation. It would seem that features

which are closer to the centre of rotation are suppressed

earlier when S increases and/or 
 decreases. Clearly this is

unsatisfactory and leads to flattening of the detail very near to

the centre of rotation, giving rise to the characteristic ‘spider’

noted above [see Figs. 4(d)–4( f)].

In order to circumvent this problem it is preferable to

increase S with the distance from the centre of the sinogram.

For example, see Fig. 6 where S ¼ 5 inside the dashed circle

and S ¼ 30 outside. Of course, one can also vary S continu-

ously from the centre to the edges; however, even the stepwise

approach gives good results. In the general case when varying

S a compromise between suppression of the ring artefacts

towards the periphery of the slice and the suppression of

genuine features towards the centre of the slice should be

found.

Now we provide some estimates for the times required to

preprocess a sinogram with the method proposed in this

paper. We have used a desktop computer with a dual core

processor (E7200, Intel Core 2 Duo, 2.53 GHz) and Intel

performance libraries. To form the n	 n matrix H, see (21), it

takes 0.11 s for n ¼ 2048 (the case of the shark cartilage) and

0.44 s for n ¼ 3880 (the case of the compound sample). Once

the matrix is found the solution can be obtained in less than

0.01 s in both cases. Therefore, in order to process a three-

dimensional volume it is better to find S n	 n matrices first

and store them to memory.

5. Conclusions

We have developed a new method for the suppression of ring

artefacts suited to anisotropically attenuating objects which

can be applied to both parallel and cone-beam geometries.

This anisotropy may be because the object is laterally

extended such as a plate, or because the attenuation across the

sample varies heterogeneously. The series of projections can

be processed as a set of parallel two-dimensional slices. The

slices can be chosen by fixing either rows or columns of the

CCD sensor. A solution can be quickly realised because an

analytical solution exists that is a product of a known matrix

and a vector. Critical to the method are appropriate choices of


 and S. We have found that 
s ¼ 
1s2 works well. As to the

number of terms, S, we found that increasing S ends to

preferentially suppress genuine features towards the centre of

the slice, giving rise to a ‘spider’ artefact. As a result a better

solution is to increase S with distance from the centre of the

sinogram.
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Figure 5
Sinograms of a ball after the proposed method has been applied. The
width of the sinogram is 2000, the radius of the ball is 20, and the distances
of the ball from the centre of rotation are (a) 500 and (b) 50; the
attenuation coefficient is the same for both cases; 
s ¼ 0:0001s2, S ¼ 100.

Figure 6
The central region of a slice of the shark cartilage reconstructed using the
proposed algorithm: (a) S ¼ 30 everywhere, (b) S ¼ 5 inside the dashed
circle, otherwise S ¼ 30; 
s ¼ 0:0001s2.



Two datasets preprocessed by the proposed method were

acquired at different synchrotron sources, i.e. using a parallel

geometry of the beam, and reconstructed by FBP. Of course,

the method can also be applied to data obtained by laboratory

tomography, i.e. in cone geometry of the beam, if one

preprocesses the data taken by a given row of the CCD sensor.

The method is based on preprocessing two-dimensional data,

i.e. data taken by one row of the sensor. This means that

neighbouring slices/sinograms are preprocessed indepen-

dently. However, in forthcoming papers the authors intend to

extend the proposed method to three-dimensional data, i.e.

use the assumption that two neighbouring slices should vary

slightly. The authors believe that the studies presented here

suggest that the method will be widely applicable to biological

and medical specimens taken using white X-ray beams.

APPENDIX A
Formula derivation

Let there be a smoothing functional

M
½q� ¼
Xm

i¼1

Xn�1

j¼1

jpij � pi;jþ1j
2
þ 


Xm

i¼1

Xn

j¼1

jqijj
2; ð24Þ

with the regularization parameter 
 > 0. We know that an

element qij can be written as a final sum

qij ¼
XS

s¼1

fiscsj; ð25Þ

where vectors fis are orthonormal, i.e.

Xm

i¼1

fis � fiv ¼
1; s ¼ v;
0; s 6¼ v:

�
ð26Þ

Function (24) is continuously differentiable at any point c with

elements csj , 1 � s � S, 1 � j � n. A point c can be a local

minimizer of the smoothing functional only if

@

@cwu

M
½q� ¼ 0; w ¼ 1; . . . ; S; u ¼ 1; . . . ; n; ð27Þ

see, for example, Dennis & Schnabel (1996).

Taking (26) into account we obtain

@

@cwu

Xm

i¼1

Xn

j¼1

jqijj
2

 !
¼

@

@cwu

Xm

i¼1

Xn

j¼1

XS

s¼1

fiscsj

 !2" #

¼
Xm

i¼1

2
XS

s¼1

fiscsu

 !
fiw

¼ 2
XS

s¼1

csu

Xm

i¼1

fis fiw

 !
¼ 2cwu: ð28Þ

Since we have defined pi0 ¼ pi1 and pi;nþ1 ¼ pin, then

Xn�1

j¼1

jpij � pi;jþ1j
2
¼
Xn

j¼0

jpij � pi;jþ1j
2

¼
Xn

j¼0

jðqij � qi;jþ1Þ � ð ~ppij � ~ppi;jþ1Þj
2: ð29Þ

Therefore

@

@cwu

Xm

i¼1

Xn�1

j¼1

jpij � pi;jþ1j
2

 !

¼ 2
Xm

i¼1

XS

s¼1

fisðcsj � cs;jþ1Þ

" #
� ð ~ppij � ~ppi;jþ1Þ

( )
fiw

þ 2
Xm

i¼1

XS

s¼1

fisðcsj � cs;j�1Þ

" #
� ð ~ppij � ~ppi;j�1Þ

( )
fiw

¼ 2
XS

s¼1

ð2csu � cs;u�1 � cs;uþ1Þ
Xm

i¼1

fis fiw

� 2
Xm

i¼1

ð2 ~ppiu � ~ppi;u�1 � ~ppi;uþ1Þfiw

¼ 2ð2cwu � cw;u�1 � cw;uþ1Þ

� 2
Xm

i¼1

ð2 ~ppiu � ~ppi;u�1 � ~ppi;uþ1Þfiw: ð30Þ

Using vectors cw, gw defined in (15) and (16) the local mini-

mizer of the smoothing functional (24) should satisfy systems

AcT
w ¼ gT

w; ð31Þ

where the matrix is the same for all w,

A ¼

1þ 
 �1 0 . . . 0 0

�1 2þ 
 �1 . . . 0 0

0 �1 2þ 
 . . . 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 . . . 2þ 
 �1

0 0 0 . . . �1 1þ 


0
BBBBBB@

1
CCCCCCA
: ð32Þ

Note that the Hessian matrix of M
½q� with respect to vari-

ables cwu is a diagonal matrix with diagonal elements

4þ 2
 > 0, i.e. it is positive definite. Therefore, the solution

found is a local minimizer (see Dennis & Schnabel, 1996).

Since the systems have only unique solutions, the element

found, c, is the global minimum of Tikhonov’s functional

M
½q�.
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