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The shapes of light sources such as electron beams can be reconstructed by

inverse Fourier transformation of the complex degree of spatial coherency,

which can be measured using Young’s interferometer. The application of the

phase-retrieval algorithm to reduce phase measurement errors in the complex

degree of spatial coherency is numerically studied using an electron beam with

an asymmetric distribution. This application is demonstrated with experimental

data measured at the diagnostic beamline at the Pohang Accelerator

Laboratory.
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1. Introduction

Over the past several decades interferometer techniques have

been successfully implemented to measure the size of an

electron beam at various storage rings (Mitsuhashi, 1999;

Sakai et al., 2000; Fisher et al., 2001; Masaki & Takano, 2003).

Recently, numerical and experimental studies have improved

the measurement techniques (Naito & Mitsuhashi, 2006; Parc

et al., 2009). The shape of an electron beam can be recon-

structed by using the inverse Fourier transformation (IFT) of

the complex degree of coherency, which can be measured by

experiment. To determine the complex degree of coherency

we need to measure the visibility and the phase of the inter-

ferogram (Mitsuhashi, 1999). In general, the IFT result for the

shape of the electron beam is distorted owing to the

measurement error of the phase. Mitsuhashi (1999) used the

cosine Fourier transformation method to eliminate the phase

measurement error. However, the application of this method

is limited to symmetric distribution as in the case of the

Gaussian shape of the electron beam (Mitsuhashi, 1999).

Alternatively, the size of an electron beam with a Gaussian

distribution can be determined by comparing the measured

spatial coherency and the numerically calculated coherency

(Sakai et al., 2000; Parc et al., 2009). However, this method

requires several trials to match the numerically calculated

result with the measured result under the assumption of a

Gaussian distribution for the electron beam. If the electron

beam shape is not Gaussian, it is impossible to estimate the

source shape by using this method. Therefore, it is highly

desirable to find a method that eliminates the phase error in

reconstructing the non-symmetric distribution of the electron

beam.

In this paper we show that the phase-retrieval algorithm

introduced by Fienup (1980) is appropriate for reconstructing

the distribution of an electron beam that is asymmetric. The

phase information required to reconstruct an image from the

measured diffractogram can be retrieved by using the algo-

rithm. To demonstrate the application of this method in the

electron beam diagnostics, the complex degree of spatial

coherence of light generated from the Pohang Light Source

(PLS) is investigated using the diagnostics beamline at the

Pohang Accelerator Laboratory. The theory of interference

and spatial coherency is reviewed in x2. A numerical study on

the phase-retrieval algorithm and reconstructed image of the

electron beam is described in x3. The experimental application

of the phase-retrieval algorithm is presented in x4. Finally, a

summary is provided in x5.

2. Theory

Using Young’s interferometer the degree of correlation

between two points in a wavefront generated from a light

source can be investigated, as shown in Fig. 1. The degree of

correlation is called the spatial coherency of light. The inter-

ferogram constructed by an interferometer with two slits is

calculated as (Goodman, 1985)
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where P is a point on the screen in Fig. 1, Ki is the amplitude of

the wave at the slit Si for i = 1 and 2, and ri is the distance from

the slit Si to the point P. If K1 and K2 are given by the same

value K, equation (1) can be written as
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where I0 is the initial intensity of light as given by j ~uuðtÞj2, ~��
is the complex degree of spatial coherency, ��� is the central
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frequency of light, c is the speed of light in the air and � is the

phase of the interferogram. The visibility of the interferogram

is defined as (Born & Wolf, 1999)

V ¼
Imax � Imin

Imax þ Imin

¼ ~��
r2 � r1

c

� ���� ���: ð3Þ

The spatial coherency of light from a finite-size source can be

estimated from the van Cittert–Zernike theorem (Cittert,

1934; Zernike, 1938). When d is the distance between the slits,

the van Cittert–Zernike theorem can be expressed as

~��ðdÞ ¼

Z
�

Ið�Þ exp �ik
d

L
�

� �
d�; ð4Þ

where the wavenumber k = 2�/�, � is the position of the

infinitesimal light source, and L is the distance between the

source and the slit. From (4), the complex degree of spatial

coherency is revealed as the Fourier transform (FT) of the

intensity distribution I of the light source (Sakai et al., 2000;

Parc et al., 2009).

3. Numerical study

In our numerical model all infinitesimal fragments of the light

source emit light independently (Parc et al., 2009). For the

numerical study of the interferogram the intensity of the

interferogram on the screen can be calculated by taking into

consideration all of the phase changes owing to the path

differences from an infinitesimal fragment of the light source

to a point P on the screen.

A numerically calculated interferogram with light (wave-

length 650 nm) generated from a Gaussian distribution source

is shown in Fig. 2. The points in Fig. 2 represent the numerical

calculation results of the interferogram with a Gaussian light

source. The inset of Fig. 2 shows the source distribution with a

Gaussian shape, which is used in this numerical study. This

Gaussian distribution will be used several times in this paper.

The formula for the interferogram from the Gaussian shape

source with two slits is given by the relation

IðPÞ ¼ 2
sinðuÞ
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with u = kax=R, v = kd=L and 	 = kdx=R, where the wave-

number k = 2�/�, a is the half-width of the slit, R is the

distance between the center (O) of the slits and a point (P) on

the screen, x is the distance of the observation point from the

screen center, � is the standard deviation of the Gaussian

source, L is the distance between the source and the slit mask,

and d is the distance between the two slits.

The solid line in Fig. 2 is the plot of equation (5) with the

same parameters used in the simulation. The line in Fig. 2 is

well matched with the interferogram from the numerical

model. Thus, the theoretical and numerical models are in good

agreement. In this numerical study the distance L between the

source and the slit is 24.5 m, the slit distance d is set to 1.0 cm,

the half-slit width a is 300 mm, and the distance D between the

slit and the screen is 12 km (Parc et al., 2009).

3.1. Amplitude and phase of FT

In this section the sum of two Gaussians is used to represent

an asymmetric distribution of an electron beam, as shown in

Fig. 3. The standard deviations of the two Gaussian distribu-

tions are 210 mm (�1) and 105 mm (�2) in Fig. 3. The separation

of the two Gaussians (l) is 420 mm. Visibilities obtained from

the numerical study are represented by circles in Fig. 4(a). The

visibility is no longer Gaussian as shown in Fig. 4(a).

From equations (3) and (4) we can see that the amplitude of

the FT of the electron beam distribution should be the same

with this visibility. The amplitude of the FT of the same

electron beam distribution used in the numerical study is

plotted using dots in Fig. 4(a) to compare the numerically
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Figure 2
The numerically calculated result of the interferogram is shown by dots.
The solid line is the plot of the theory in equation (5). The distance
between the slits d is 1 cm and the half slit width a is 300 mm. The electron
beam distribution used in this numerical study is shown in the inset. The
standard deviation of the Gaussian distribution � is 210 mm.

Figure 1
Configuration of interference with finite-size light source. d is the distance
between two slits. Si is the slit position and ri is the distance between
points Si and P on the screen for i = 1, 2. L is the distance between the
source and the slit mask.



calculated visibility. The numerically calculated visibility

(circles) and the amplitude of the FT (dots) are closely

matched.

The phases used in this section come from the FT of the

electron beam distribution in the previous section. In the real

experiment these will be measured from the interferograms.

There will be some errors in the measurement result. These

errors will provide distorted measurement results for a certain

distribution of electron beams in a storage ring (Mitsuhashi,

1999). In Fig. 4(b) the original phases coming from the FT of

Fig. 3 are shown by dots. To study the effects of the errors in

the reconstruction of the electron beam, we assumed random

errors in the original phase as shown in Fig. 4(b). Random

errors within 0.4 (0.8) rad are added to the original phase,

represented by the symbol � (+).

3.2. The effect on IFT owing to the phase error

The results of IFT with the phase including random errors

are shown in Fig. 5. The solid line is the result of IFT

with original phases. The dash-dotted (dashed) line shows

the IFT result with a random phase with a maximum error

0.4 (0.8) rad. The solid line is fitted by the two Gaussians; the

standard deviation of one Gaussian is 210.1 mm and that of the

other Gaussian is 105.1 mm. The separation of two Gaussians

is 420.1 mm. The electron beam shape with larger phase errors

is distorted more than that with smaller phase errors. As

expected, the asymmetric shape is reconstructed when there is

no phase error. However, the shape of the electron beam is

distorted when there are random phase errors. Therefore, we

need to find a method to reduce the phase error in this IFT

process.

3.3. Phase-retrieval algorithm

The algorithm of the phase-retrieval method is shown in

Fig. 6. The initial starting function should be the result of the

IFT shown in Fig. 5. The function obtained by the IFT in Fig. 5
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Figure 4
(a) Visibility and amplitude of the FT of the distribution shown in Fig. 3.
The circles are the numerically calculated visibilities. The dots are the
amplitudes of the FT. (b) Phase of the FT. The dots are the original phases
obtained from the FT results with the distribution in Fig. 3. The symbol �
(+) is used for random phases with a maximum value of 0.4 (0.8) rad.

Figure 5
Electron beam shape obtained by IFT for the two Gaussians in Fig. 3. The
solid line represents the result of IFT with the original phase. The dash-
dotted (dashed) line represents the IFT result with random phase of a
maximum value of 0.4 (0.8) rad.

Figure 3
Electron beam distribution used in this numerical study. The standard
deviation of one Gaussian distribution is 210 mm and that of the other
is 105 mm. The distance between the centers of the two Gaussian
distributions is 420 mm.



in the previous section is represented by g in Fig. 6. We first

make the FT of g, and the function obtained in the Fourier

space is denoted by G in Fig. 6. The amplitude of G is

represented by |G|. This amplitude is replaced by the visibility

V obtained in Fig. 4(a) because this visibility will be measured

in the experiment. The vindication of this replacement comes

from the comparison between the visibility and the amplitude

of the FT, as shown in Fig. 4(a). This replacement plays the key

role in this algorithm, and this process is called the Fourier

space constraint.

We need one more strategy to complete the algorithm. The

new function obtained after the replacement is denoted by G 0

in Fig. 6. By IFTwe can obtain a function in real space denoted

by g 0 in Fig. 6. This function usually has negative points.

However, the electron beam distribution should not have a

negative value because a negative distribution has no physical

meaning. Thus, the negative points should be removed from g 0

changing the negative values to zero. This process is called the

real space constraint.

After changing the negative values to zero, the initial

function g is replaced by g 0. We can iterate this process until

the iteration does not show a meaningful difference from the

previous step. This iteration process is called the phase-

retrieval algorithm (Fienup, 1980). Note that the negative

value can be replaced with an arbitrary value if there is any

need to try such a strategy. In this study the simple method of

changing the negative value to zero is sufficient to reconstruct

the electron beam shape.

Fig. 7 shows the recovery process of the electron beam

distribution according to the phase-retrieval algorithm. The

dashed line represents the initial distorted function from Fig. 5

with a maximum phase error of 0.8 rad. The dash-dotted line is

the recovered function after the first iteration. The solid line is

the result after 2000 iterations, which is sufficient to recover

the electron beam shape shown in Fig. 3. The asymmetric

function is recovered with the phase-retrieval algorithm. The

solid line is also fitted by two Gaussians. The standard

deviation of one Gaussian is 216.3 mm and the other Gaussian

is 100.2 mm. The separation of the two Gaussians is 426.59 mm.

Even in the case of the maximum error of 0.8 rad the recov-

ered result is reasonably close to the electron beam shape

in Fig. 3.

4. Experimental study

A schematic diagram of the interferometer at the 1B1 beam-

line of PLS is shown in Fig. 8. The radiation generated from

the electron beam in the storage ring propagates to the end of

the beamline. Three optical mirrors reflect only visible light in

the transport path of the radiation to the interferometer

(Huang & Ko, 1998). Note that these mirrors can be the source

of phase measurement errors of the complex degree of

coherency (Mitsuhashi, 1999). A commercial band-pass filter

[CVI Melles Griot, 03 FIV 022 (F10-650.0-50.0M)] is used

between the slit and the detector in the interferometer. The

FWHM bandwidth of the optical band-pass filter is 10 nm. In

the experiment, 650 nm is selected by the band-pass filter. A

focusing lens is used to overlap two lights passing through

each slit on the CCD plane.

4.1. Measurement of visibility and phase

A measured interferogram is shown in Fig. 9 by squares. In

the measurement the slit width is 500 mm, the slit length is

6 cm and the distance d between two slits is 6 mm. The

distance L between the source and the slit is 24.5 m. The fitting

formula on the basis of equation (5) is given by

I ¼ 2
A sinðBxÞ

x

	 
2

1þ E cos CxþDð Þ½ �; ð6Þ
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Figure 7
Electron beam shape obtained by iterations. The dashed line represents
the initial function with random phase errors with a maximum value of
0.8 rad, as shown in Fig. 4(b). The dash-dotted line is the reconstructed
function g 0 after one iteration. The solid line is the result after 2000
iterations.

Figure 8
Schematic diagram of 1B1 beamline at PLS.

Figure 6
Scheme of the phase-retrieval algorithm.



where x is the pixel position. The dotted line in Fig. 9 is the

fitting line with equation (6). The constants are given for the

fitting line as A = 2.281, B = 0.4145, C = 7.995, D = 1.817 and

E = 0.7943. D is the experimental phase of the complex degree

of coherency. In this fitting result D, a fitting error and

measurement error exist. Our objective is to reduce this error

using the phase-retrieval algorithm.

The visibilities are measured by 25 slit masks with different

slit distances d and the results are represented by circles in

Fig. 10(a). Note that these visibilities are not obtained from

the fitting results but from the maximum and minimum values

from the measured interferograms. The dots in Fig. 10(a) are

the amplitudes of FT results with a single Gaussian distribu-

tion. Two results are different, which means that the electron

beam distribution may be not Gaussian at PLS. The measured

phase is shown by dots in Fig. 10(b).

4.2. Reconstruction of electron beam shape by IFT and the
phase-retrieval algorithm

The IFT result in Fig. 10 is shown by a dashed line in Fig. 11.

As expected, the result is distorted (Mitsuhashi, 1999). The

recovery of the electron beam is attempted by the phase-

retrieval algorithm and the result is shown in Fig. 11. The dash-

dotted line is the first iteration result. The result after 100

iterations is plotted with a solid line. The distribution of the

electron beam at PLS is revealed as not a Gaussian distribu-

tion. This fitting result tells us that the half width at half-

maximum is 317 mm. The right-hand side of the recovered

electron beam distribution in Fig. 11 can be fitted with a

Gaussian function. The standard deviation of the fitted result

is 273 mm.

5. Summary

A theory of interference is reviewed in order to understand

the relation between the source shape and the spatial coher-

ency of light. A random phase error is added in the phase part

of the FT of the given electron distribution to simulate the
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Figure 11
Results obtained by IFT with measured visibility and phase. The dashed
line represents the initial function obtained by IFT. The dash-dotted line
is the reconstructed function after first iteration with the phase-retrieval
algorithm. The solid line is the result after 100 iterations.

Figure 9
Measured interferogram (squares) at PLS and the fitting result (lines)
when the distance d between two slits is 6 mm. The constants for this
fitting after equation (6) are obtained as A = 2.281, B = 0.4145, C = 7.995,
D = 1.817 and E = 0.7943.

Figure 10
(a) The circles are measured visibilities. The dots are the amplitudes of
the FT of a Gaussian distribution with � = 210 mm. (b) Measured phase.



experimental situation. A distorted distribution is obtained

by the IFT with a random phase error. The phase-retrieval

algorithm is applied to recover the electron distribution used

in the numerical study from the distorted IFT result. The

phases are obtained from the fitting result of the measured

interferograms. The phase errors from the fitting and experi-

mental measure are decreased by the phase-retrieval algo-

rithm, and the results show us that the electron distribution

in PLS is not a Gaussian distribution. This technique can be

applied to measure the distribution of the electron beam in

fourth-generation light sources such as XFEL. This method is

applicable to the reconstruction of any kinds of light sources

such as stars.
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