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A new version of the popular X-ray tracing code SHADOW is presented. An

important step has been made in restructuring the code following new computer

engineering standards, ending with a modular Fortran 2003 structure and an

application programming interface (API). The new code has been designed

to be compatible with the original file-oriented SHADOW philosophy, but

simplifying the compilation, installation and use. In addition, users can now

become programmers using the newly designed SHADOW3 API for creating

scripts, macros and programs; being able to deal with optical system

optimization, image simulation, and also low transmission calculations requiring

a large number of rays (>106). Plans for future development and questions on

how to accomplish them are also discussed.
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1. Introduction

One step before the construction of any X-ray instrument,

such as a synchrotron beamline, is the accurate conceptual

design of the optics. The beam should be propagated to a given

image plane (usually the sample position) and its character-

istics should be adapted to the experimental requirements in

terms of flux, monochromatization, focal dimensions, etc. The

designer’s goal is not only to verify compliance to a minimum

set of requirements, but also to find an optimum matching

between the source and the optics phase space to obtain the

best possible performances.

SHADOW is a widely used program for the simulation of

optical systems, specifically geared to the synchrotron radia-

tion domain. It is based on a geometrical ray-tracing approach,

but also traces field amplitude with phase difference, and

therefore wave features beyond the validity domain of

geometric optics. This is called the phase ray-tracing method

(Lee & Zhang, 2007). While there are many optical ray-tracing

programs, SHADOW is unique because of its special focus on

synchrotron radiation. This is evident in the interface, but is

also present in its core or engine where models are built to

specifically address problems of synchrotron radiation beam-

lines such as crystal diffraction, glancing optics and photon

energies in the X-ray range. In fact, the code SHADOW has

become the de facto standard for synchrotron radiation ray-

tracing calculations because it is flexible and capable of

adapting to any beamline configuration. It has also demon-

strated its reliability during more than 25 years of use, as

shown in hundreds of publications. Ergo, it is relatively simple

to use and well documented, and is freely available (open

source).

Indeed, almost all of the synchrotron beamlines today in

existence have in some way benefited from the help of

SHADOW. In most facilities a large number of beamline

optics have been designed and verified using the program,

including applications in: mirror optics, from microscopes to

X-ray lithography beamlines; grating monochromators, fixed-

and variable-line spacing; capillary optics, crystal optics, both

in reflection and transmission, and polarized sources and

polarization transfer.

2. History of SHADOW and the birth of SHADOW3

The birth of SHADOW is linked to the first dedicated use of

synchrotron radiation at the University of Wisconsin during

1965–1967. A team led by particle physicist Ednor Rowe built

Tantalus. He quickly adapted the machine to make synchro-

tron radiation and soon the facility was crowded with

experimentalists from all over the world. In 1977, Aladdin,

a new and larger synchrotron radiation source, began

construction. SHADOW was born during the Tantalus–

Aladdin transition with a clear scientific motivation: Monte

Carlo simulation of X-ray optical systems, in particular grating

monochromator design (toroidal grating monochromator and

the extended range grasshopper) and reflection by toroidal

and spherical mirrors. The requirements were ambitious† Deceased.
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enough to promote SHADOW to a universal level indepen-

dently of Aladdin’s beamlines. Among these requirements one

can mention: accuracy and reliability, ease of use, flexibility,

economy of computer resources, VAX-11 computers, efficient

Monte Carlo approach, use of reduced number of rays, exact

simulation of synchrotron radiation sources, use of vector

calculus for directions and operations rather than angles and

trigonometry, implementation of a structured code, easy-to-

use user-interface, and to be available to users. It took about

two years of development to finish the first SHADOW1

version, written in Fortran 77 with deep usage of the VAX/

VMS extensions. The program was introduced in 1982, and has

continued growing since. A first publication (Cerrina, 1984)

explained the main philosophy of the new ray-tracing code

and its application to grating monochromators. Between 1984

and 1990, SHADOW was exclusively used in the VAX-VMS

mainframes, and the code was distributed in magnetic tapes

sent by post. C. Welnak supported the increasing users

community, by writing documentation and debugging, etc.

SHADOW was upgraded to include new models with the help

of F. Cerrina’s students: B. Lai (Lai et al., 1988, 1989),

K. Chapman (Chapman et al., 1989), G. J. Chen (Chen,

Cerrina et al., 1994; Chen, Guo et al., 1994), S. Singh (Singh et

al., 1996), etc. Some papers on SHADOW and its upgrades

appeared (Lai et al., 1988, 1989; Welnak et al., 1992, 1994).

Other scientists collaborated with F. Cerrina to develop

models for new optical elements, like J. Underwood for

multilayers or M. Sanchez del Rio for several types of crystals

(Sanchez del Rio et al., 1992, 1994; Sanchez del Rio & Cerrina,

1992).

During the early 1990s the use of VAX-VMS mainframes

started to decline, with the incipient use of UNIX workstations

for scientific computing. SHADOW required a significant

remodelling and restructuring to run with the new machines.

M. Khan performed this conversion and SHADOW2 was

born. This version was completed by a new user interface and

new graphic tools based on the PLPLOT libraries, replacing

the TopDrawer library in VAXes. During this period

SHADOW was essential for the development of the third-

generation X-ray sources, in particular at the ESRF. A new

complete and independent graphical user interface (GUI)

called ShadowVUI was developed at the ESRF, and it was

soon made available to the user community through the X-ray

optics toolbox XOP (Sanchez del Rio & Dejus, 2004). During

this time some tools for mirror roughness (Singh et al., 1996)

or a pre-processor for slope errors (Sanchez del Rio &

Marcelli, 1992) were also developed.

At the turn of the millenium, SHADOW continued to give

services using the SHADOW2 kernel. Much of the graphical

tools and post-processors were replaced by the ones built with

the ShadowVUI interface. The fact that it is still widely

used today is a testament to the original architecture of the

program, created with extensibility and accuracy as the main

goals. As the field of synchrotron radiation instrumentation

advances, the requirement on the optics become more strin-

gent. Today, third- and fourth-generation sources often use

diffraction-limited optics in a broad domain of wavelengths,

from the infrared to hard X-rays. There is a clear need for an

optical modelling tool capable of simulating not only the

behaviour of an ideal optical system but also the effect of

imperfections, misalignments and other issues found in real

beamlines.

Today’s computers are very powerful tools, and easily

surpass the old mainframes. Thus, it is important to take

advantage of new possibilities for performing studies and

analysis that would have been impossible on machines with

lower speed and smaller memory. It was becoming more and

more urgent to update SHADOW because: the binaries

available presented problems in new machines using new

libraries; the current version became heavy and hard to

recompile (e.g. the g77 compiler used to build SHADOW2 is

no longer supported); some limitations that were inherited

from the old computers (like the limitation in number of rays)

became important drawbacks; and it became difficult to add

new features owing to an old structure that became complex

after the many upgrades over more than 20 years.

The path towards SHADOW3 was discussed on several

occasions, but no commitment was made because of the lack of

manpower and funds. It is notable that SHADOW, together

with its ShadowVUI interface available today, was created and

developed without its own budget. It used resources for the

beamline design and construction of Aladdin and other

synchrotrons including the time and dedication of some of the

authors through their institutions (like the ESRF). The birth

of SHADOW3 was fuelled by the ESRF Upgrade Programme

2008–2017. The design and construction of the new beamlines

require a powerful ray-tracing tool, and SHADOW still was

the most advanced X-ray tracing code for that. M. Sanchez del

Rio discussed this issue in 2008 with F. Cerrina, defining an

upgrade planning with clear requirements, specifications and

time scheduling, that ends now with SHADOW 3.0 .

3. Specifications and implementation

From the user point of view, the SHADOW package can be

divided into several parts:

(i) A kernel consisting of two main programs, one for

calculating the sources (gen source) and a second one for

tracing this source though the beamline (trace).

(ii) A set of pre-processors linked to an optical library

(X-ray cross sections) for dealing with reflectivity and trans-

mission of mirrors (prerefl), multilayers (pre mlayer) and

crystals (bragg). Another useful pre-processor is used for

preparing mesh surfaces (presurface).

(iii) A set of utilities to visualize and analyze results files

(star:xx, mirr:xx, screen:xx files), such as histo1, plotxy,

focnew, etc.

(iv) Other utilities (graphic libraries, menu, etc.).

(v) Graphical user interface.

The key part of SHADOW is its kernel, consisting of two

main programs: gen source and trace. A minimum set of

utilities were also upgraded, and others that could be replaced

by external user interfaces were suppressed. The GUI, the

graphics based on PLPLOT, and the terminal MENU are
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no longer supported (these are very complex and system-

dependent). The SHADOW primer, a useful manual for

getting started with SHADOW, has been updated for

SHADOW3.

The update of SHADOW was evaluated facing the possi-

bility of rewriting everything from scratch, perhaps using a

new language. However, this option was discarded because of

the inability to meet the resources needed; for example, the

lack of specialized man-power to write, review and test the

new version.

It was decided to rebuild SHADOW using the new Fortran

standards, to match important requirements:

(i) Back-compatibility, meaning that SHADOW’s users will

feel ‘comfortable’ with the new version, and files created by

the old version are accepted by the new one.

(ii) Solve important limitations of the old versions, such as

the limitation in number of rays.

(iii) Flexibility: adding and modifying features must be

easier, helped by a simple compilation mechanism.

(iv) Interoperability: SHADOW should be callable from an

API. The advanced user or programmer can easily modify the

main code and create ad hoc codes. The API also will allow the

possible use of different GUIs, implementation of new ones

and also the integration of SHADOW into other packages.

The structured code of SHADOW2, split into many Fortran

functions and subroutines, allows the re-use and reorganiza-

tion of most routines and code parts. In addition, the original

architecture of SHADOW is well suited to the new modular

programming typical of modern languages. The Fortran 77

common blocks used massively in SHADOW2 have been

completely removed, and replaced by global variables within

Fortran 90 modules, in accordance with modern programming

recommendations. Changes and improvements are still

needed on the computational side, like the encapsulation of

variables in Fortran types (i.e. structures or packs of variables)

or to make standard the use of implicit none, a good

programming practice, which was not followed in SHADOW2.

The new changes will be implemented gradually, maintaining a

balance between user support and new development.

4. The new SHADOW3 code structure

4.1. Modules and variables

The new SHADOW source uses the modular approach

made available by Fortran 90. This was a major Fortran

upgrade from Fortran 77. Since then, Fortran 95 was a minor

release, and Fortran 2003 (and its Fortran 2008 update)

introduced new concepts in object-oriented programming not

yet exploited in SHADOW. The SHADOW functions and

subroutines have been distributed in a few modules. The

SHADOW kernel consists of:

(i) shadow globaldefinitions: basic definitions used

everywhere, like variable kind, etc.

(ii) stringio: some string manipulation tools.

(iii) gfile: a new Fortran module to manipulate files with

list of input/output variables (called g-files in SHADOW).

(iv) shadow beamio: routines to access to binary beam files

(start:xx, mirr:xx, screen:xxyy).

(v) shadow math: mathematical tools.

(vi) shadow variables: definition of variables and Fortran

types used by the kernel, plus the routines to manipulate them.

(vii) shadow kernel: contains the global variables (ex-

common blocks) and the routines in the SHADOW kernel.

In addition to the kernel, SHADOW3 contains the

following:

(i) shadow synchrotron: synchrotron sources (bending

magnets, wiggler and undulators).

(ii) shadow preprocessors: pre-processors, like prefefl

or bragg.

(iii) shadow pre sync: pre-processors for shadow

synchrotron.

(iv) shadow postprocessors: post-processors, like

histo1 or ffresnel.

(v) Main programs: all SHADOW3 is included into a single

command line executable: shadow3. All pre- and post-

processors are included in this executable. In addition,

gen source and trace are also created for being 100%

compatible with the old versions.

The modules map is schematized in Fig. 1. In the old

SHADOW, the variables were imported from the start:xx
files. For that, SHADOW1 used NAMELIST, a non-standard

Fortran 77 extension, whereas SHADOW2 used a set of C

routines linked to Fortran. Once imported, the variables were

sent directly into common blocks. In SHADOW3, the vari-

ables defined in the start:xx files are now put into three

levels: (i) from the files, they are read into a gfile Fortran

type which is just a table of variable names and values,

(ii) these values are then copied to two Fortran types, called

pool (poolSource and poolOE), which are binded to C,

and (iii) the pool variables are copied to global variables

in shadow kernel. This three-level scheme may appear

complex, but it was considered necessary to gain in modularity

and portability, and to be able to define an API. In the future,

the copy of the pool variables into global variables in

shadow kernel will be removed, thus directly using the pool

variables in the computation.

In the old version, SHADOW sources (gen source) dealt

with all kinds of sources (geometrical, bending magnet,

wiggler and undulator). The new version contain three sepa-

rated identities in the code:
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Figure 1
Module dependencies in SHADOW3. Modules are in light grey boxes
(yellow online) and main programs in dark grey boxes (green online).



(i) sourceGeom: a routine in the shadow kernel module

used to generate geometrical sources.

(ii) shadow synchrotron: an independent Fortran module

for bending-magnet and insertion devices sources. It has been

separated from the kernel. The synchrotron pre-processors

are in a new module shadow pre sync. The old make id

script is now fully implemented in the shadow3 executable.

(iii) source cdf: a new generic source. It reads the char-

acteristics from external files, e.g. produced by external

programs [SRW (Chubar & Elleaume, 1998), SPECTRA

(Tanaka & Kitamura, 2001), XOP (Sanchez del Rio & Dejus,

2004), etc.] and sample rays using these distributions. This is

still under development and will be available in SHADOW3.1.

SHADOW has an optical library populated with informa-

tion on cross sections and scattering factors which is used to

obtain the material properties, refraction index and crystal

structure factors. The SHADOW kernel does not directly call

the optical library, but only reads material data files filled with

physical constants that were created using pre-processors

linked to the optical library. Thus, the optical library is

external to the kernel, simplifying the scheme. The old optical

library is still used, but new libraries with updated values are

also provided. In addition, the pre-processors can also be built

using other well established optical libraries, such as xraylib

(Brunetti et al., 2004). The two principal graphic post-

processors, plotxy and histo1, have been modified to

produce gnuplot graphics (see http://www.gnuplot.info/), a

powerful free and multiplatform graphics package.

4.2. The SHADOW3 API

Ray-tracing calculations can sometimes be tedious owing to

the high number of beamline parameters and combinations to

analyze. The optimization of a single parameter can be done

manually or automatically by sampling the parameter and

performing a loop of SHADOW runs. However, to simulta-

neously optimize several parameters, it is obvious that an

exhaustive search of the best value is impractical so the only

solution, at present, is the heuristic intuition of the developer.

An automation of such a global search of optimal parameters

can be done using genetic algorithms, simulating annealing or

any other global optimization technique. An API is needed for

such techniques, and for allowing the programmer to create

loops, macros and scripts with SHADOW.

SHADOW3 has been first interfaced to C, with not only the

idea of writing new programs in C, but also as an intermediate

step to using other higher-level languages, such as Python

(http://www.python.org/) and IDL (http://www.ittvis.com/).

The memory allocation of the beam (a collection of rays) is an

important issue of the API. This must be done at the main

level (Fortran, C, etc.). The API module imports a reduced

number of procedures from Fortran, all of them considered

functions in C (the exposed functions). Although it is techni-

cally possible to directly use the Fortran functions from C, it

creates problems for a C programmer, because in Fortran all

the arguments are passed by reference and the definition of

strings is not compatible. Therefore, a solution has been

chosen where only a set of C-functions (named with the prefix

CShadow) and C-structures access the Fortran procedures and

types. These C-functions are documented, and their names

mimic the Fortran counterparts. This C-API also puts the basis

for a C++ layer that utilizes the C-structures and the exposed

functions to define classes. Source, Optical-element and Beam

are classes in the C++ layer. The C-API is also the ground

level for developing Python classes. Python comes with an

advantage: it is a script language, thus the user has direct

access to the SHADOW kernel permitting any batch or macro

programming without any compilation. SHADOW3 has also

been interfaced to IDL, because the ShadowVUI GUI is

written in IDL. Fig. 2 shows an example of a simple main code

to run a source and a single optical element written in Fortran,

C, C++, Python and IDL.

4.3. GUIs

SHADOW3 is delivered without a GUI. The old TCL/TK

SHADOW GUI shipped with previous versions of SHADOW

is now obsolete and has been discontinued. Work is invested

in improving and updating ShadowVUI, an IDL-based GUI

that is available free to users as part of the XOP package.

ShadowVUI has been adapted to SHADOW3 and can be

configured to either select SHADOW3 or the previous

SHADOW2. The ShadowVUI also has powerful scripting

capabilities, using script commands based on IDL and calling

directly the IDL functions used in ShadowVUI. See Fig. 3 for

an example. The IDL scripting will slowly migrate to the more

powerful Python scripting.

4.4. SHADOW3 distribution

Two servers have been set for SHADOW3. The first one,

http://ftp.esrf.eu/pub/scisoft/shadow3/, is used for downloading

the SHADOW3 binaries compiled for different platforms

(Windows, MacOS and Linux) and related documentation. It

is intended for use by users only interested in running

SHADOW. The SHADOW source code is distributed and

managed using the version control system git (http://www.git-

scm.com/). Sources can be downloaded by any user using

the command: ‘git clone git://git.epn-campus.eu/repositories/

shadow3/’. The http://forge.epn-campus.eu/projects/shadow3/

server contains the complete history and full revision tracking

of SHADOW3 plus other services like an issue or bug tracker

and a developer forum (wiki). Any user can see it but, for

entering new issues and uploading new code, the developers

must apply for an account. We propose that any registered

developer could upload new applications, macros, post-

processors, etc., but modifications in the SHADOW kernel will

be subject to the acceptance of the manager. However, git is

flexible enough to allow any registered developer to create a

new code branch in the server, that can be incorporated in the

master branch by the manager.
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5. Examples

The main objective of SHADOW3 is to provide the full

functionality of previous versions, so there is no new devel-

opment from the point of view of models and algorithms. The

installation is made much more simplified by the use of a

single executable shadow3 that allows calling the main

commands (source and trace) plus the pre- and post-

processors in a simple and integrated environment.

The SHADOW primer, available to users since 1994,

explained in detail all aspects of the code that the user needed

for setting the calculations. It contains the basic explanations
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Figure 2
Example of a simple SHADOW3 main program in Fortran, C, C++, Python and IDL.



of the SHADOW reference system, and explains in great

detail how to run in command mode using several important

examples, like the creation of geometrical and synchrotron

(bending-magnet) sources, mirror focusing, and grating and

crystal monochromators. We have updated the SHADOW

primer to SHADOW3, including the new features, mainly the

graphics output now based in gnuplot. Moreover, all the

examples are also provided as text input files, thus it is very

easy to rerun the examples using these files as standard input

for SHADOW3. In addition, a script is available to run all the

examples in the primer from a single command. The new

primer and input files are available from the SHADOW3

repository mentioned before. They also constitute a collection

of tests to check back-compatibility of future upgrades.

Good practice when performing Monte Carlo simulations is

to complement the calculation of a given parameter P with

error estimation. Errors can be estimated in two ways. The first

uses the fact that the Monte Carlo estimate is asymptotically

normally distributed (approaches a Gaussian density) (James,

1980). Therefore, if one performs M SHADOW runs with N

rays per run, one obtains M independent results for P (pi, i =

1, . . . , M) that can be used for computing the average �pp and its

standard deviation, a good estimator of the error. It is also

possible to calculate the value and the error of P from a single

SHADOW run of N rays. Following James (1980), in order to

calculate the average and the standard distribution of a scored

parameter P it is necessary to accumulate: the sum of the

weights w of the scored rays, p =
P

wi, where the sum extends

to all scored rays; the sum of the squares of the weights, q =P
wi

2; and the total number of rays, N. The final total counting

for the parameter P (plus and minus one standard deviation)

is

P ¼ p� q� p2=N
� �� �1=2

: ð1Þ

Consistently, in the case that one scores non-weighted rays (i.e.

‘reflectivity’ is not set in SHADOW, in other words, we are

‘counting rays’), every ray has the same weight equal to 1, so

q = p and, for N!1, one obtains P = p� p1=2, an expression

typically used with counter detectors (Poisson statistics). The

error estimation based on this idea has been implemented in

post-processors like histo1 and intens.

Both ways of computing errors are easily applied to

SHADOW3, that can now trace any number of rays in a single

run, limited only by the computer memory. In many cases it is

prefereable to perform M runs with N rays and accumulate the

results, rather than performing a single run with M � N rays.

This is more efficient from the computer’s point of view, as not

all the rays are stored in the memory at the same time (and

perhaps in a large file) but only a small number of rays are

traced at once, then the required results are scored, before

returning and processing the next run that will calculate

another bunch of rays and accumulate the results. Fig. 4 shows

an example where SHADOW runs in a loop and accumulates

results in a histogram. The loop continues until a ‘quality’

criterium is reached. In this case, that error (standard devia-

tion) in intensity at the centre of the histogram must be less

than 2%. This program runs very fast, as no files are written.

Obviously, more runs are needed if the number of bins of the

histogram is increased.

The power of the SHADOW3 API also opens the door to

combine SHADOW3 with other large simulation packages.

For instance, the combination of SHADOW3 with the Bmad

library (http://www.lepp.cornell.edu/~dcs/bmad) for relati-

vistic charged-particle dynamics simulations in storage rings is

being considered. The SHADOW3 code for accurate simula-

tion of the wiggler source has been used together with the

PENELOPE code (Salvat et al., 2008). This code performs

Monte Carlo transport of electrons and photons in matter,

which is of great interest to medical physics for dosimetry

calculations. Experiment planning of synchrotron microbeam

radiation therapy requires an accurate description of the

X-ray source phase space. SHADOW3 is used for creating an
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Figure 4
Example of a SHADOW loop to accumulate counts into a histogram (see
code in Appendix A). The two graphs are the results for the system
defined in the SHADOW primer (ch. 6.3) with different histogram
resolution, 11 and 51 bins, that needed 10000 and 53000 rays, respectively,
for reducing the standard deviation to less than 2%. The histogram with
51 bins is shifted for clarity.

Figure 3
Window of ShadowVUI running SHADOW3.



exact description of the wiggler source, which has a complex

geometry (see Fig. 5) not easily implemented by geometric

models. The simulated photons (i.e. the rays created by

SHADOW3) are then input to PENELOPE for calculating

the deposited energy dose in a phantom or tissue.

SHADOW can perform wave optics propagation of the

beam from an image plane to a detector plane, using the

ffresnel post-processor. It requires the propagation of every

ray to each point in the detector plane by applying the

Fresnel–Kirchhoff integral. In old versions, this was usually

done for computing one-dimensional intensity profiles. With

the new version, it is possible to create full two-dimensional

interference/diffraction patterns with the new ffresnel2d

routine. An example is shown in Fig. 6.

6. The future of SHADOW

The SHADOW code has always been tied to the bright and

strong personality of its main author, Professor Franco

Cerrina, who passed away on 12 July 2010. The work

presented here is just a first step in an ambitious plan of

continued maintenance and development that has accom-

panied the evolution of the synchrotron radiation facilities

in the last 25 years. SHADOW3 is a first step in cleaning the

kernel and preparing a programming platform that will face

exciting new developments, such as: (i) propagation of

coherent and partially coherent X-ray beams, e.g. for inter-

ference and phase contrast applications; (ii) simulation of

samples for calculating instrumental functions, and to be used

as sources for ray-tracing analysers; (iii) evolving from a

macroscopic model for dealing with the optical elements, to a

microscopic model, where a full Monte Carlo analysis is

performed within the optical elements; (iv) intensive calcula-

tions with a high number of rays using variance reduction

techniques and global optimization methods. There is also

the urgent need for some applications; for instance, the full

implementation of compound refractive lenses, ability to treat

any crystal structure, introduction of roughness in multilayers,

implementation of laterally graded multilayers, beam pene-

tration simulation inside diffractive elements (multilayers and

crystals), computation of the grating efficiency, etc. The

development of SHADOW to match these challenging

developments is uncertain, as now we lack the guidance and

direction of Franco Cerrina. We firmly believe that the

survival of SHADOW and its future development cannot

proceed without the implication and engagement of the

synchrotron laboratories. SHADOW is a unique software

created and targeted to synchrotron optics, and it should be

the responsibility (and the interest) of the synchrotron

laboratories to guarantee a future that will certainly benefit

them. In the future we will discuss and organize plans for its

continuation and development, merging efforts from many

synchrotron laboratories.
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Figure 5
Plot of the horizontal phase space for a wiggler (ID17 at the ESRF) with
11 periods of 0.15 m length, K = 22.3 and electron beam energy of
6.04 GeV.

Figure 6
Fraunhoffer diffraction pattern of a square aperture (a) and circular
aperture (b) as calculated by the ffresnel2d post-processor. A coherent
Monte Carlo source of 1024 rays of 1 nm wavelength was sent to
illuminate the 4 mm-wide slit. The detector is placed 100 m downstream
from the slit. The image on the detector is sampled by 128 � 128 pixels.
The SHADOW results of averaging 64 runs (dotted line), from which
standard deviations are calculated, have been compared with the analytic
theoretical pattern (solid line) with excellent agreement.



APPENDIX A

The code used for Fig. 4 is shown below in Fig. 7.

This project has been partially funded by the European

Union FP7-Infrastructures LABSYNC (grant number

213126). Thanks to Imma Martinez-Rovira for the work

interfacing SHADOW3 to PENELOPE and preparing Fig. 5.

We fully acknowledge the continuous support of many people

who encouraged us to complete this work and supported

SHADOW after Franco’s passing. This work is dedicated to

Franco’s memory. One photograph of him is shown in Fig. 8.
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Figure 7
The code used for Fig. 4.
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Figure 8
Franco Cerrina looking at new algorithms to be implemented in
SHADOW. Photograph taken by M. Sanchez del Rio on 17 March 2009.
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