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A concept is given for describing multicrystal analyser detectors (MADs), as

they are in use for synchrotron powder diffraction, on the basis of the Rowland

circle construction. The Rowland circle is typically used to describe focusing

geometries and can be adapted for the case of MADs working at a single energy

as well as in a limited energy range. With this construction it is also possible to

quantify and optimize the walk of the beam along non-central crystals which is

inevitable in certain detector designs. The results of this geometrical inspection

are correlated with a real detector design that is implemented at the ALBA

synchrotron facility in Spain. An error budget is given to estimate the influence

and amount of tolerance of the manufacturing process.

Keywords: high-resolution powder diffraction; multicrystal analyser detectors; synchrotron;
error budget; Rowland circle; Johansson monochromator.

1. Introduction

The last few decades of the 20th century transformed the

powder diffraction method from a technique familiar to a few

into one of the most broadly practicable analytical diffraction

experiments. Nowadays powder diffraction is the workhorse

of materials science research.

Besides the beamline optics (or laboratory diffractometer

optics), the photon detection system is the most essential

component of the experimental set-up and a detector using

crystal analysers is considered the best choice for obtaining

high-quality powder diffraction data with high angular reso-

lution and low background intensities (Hastings et al., 1984;

Cox, 1992; Parrish & Hart, 1985, 1987). The limiting factor in

this technique is the amount of time necessary to measure a

full pattern, which led to the situation that this set-up is almost

only applied in synchrotron facilities (Toraya, 2009).

A considerable reduction in measuring time can be

achieved by using compact multicrystal analyser detectors

(MADs). Their design is based on a parallel arrangement of a

number of individual crystal analysers (about ten) coupled

with the corresponding number of point detectors (Toraya et

al., 1996; Hodeau et al., 1998). MADs have proven their effi-

ciency to acquire low-background and high-resolution data in

synchrotron radiation sources during the last 15 years. During

that time a lot of effort has been devoted to developing and

optimizing MAD designs in many synchrotron facilities

around the world, and today almost every facility has at least

one MAD system in operation resulting in a large variety of

different designs.

Another main characteristic of MAD designs is the angular

offset between individual consecutive crystals. The different

layouts range from �1� offset between six channels in the

model developed at SNBL (ESRF, France, http://www.esrf.eu/

UsersAndScience/Experiments/CRG/BM01/) with the smal-

lest offset, passing through the design by Hodeau et al. (1998)

with 2� offset between nine channels, to a 12-crystal MAD

where all crystals can be independently adjusted by motors in

two axes and that is currently in operation at the APS

(Chicago, USA) (Lee et al., 2008). Installing several MAD

systems on a single diffractometer to further increase

throughput has been carried out at Diamond (UK) (Tartoni et

al., 2008; Thompson et al., 2009; Parker et al., 2011).

In this paper we describe a new compact X-ray detector

based on a multicrystal analyser design developed for high-

resolution powder diffraction at the ALBA synchrotron

facility, the MAD26, that will be applicable in the energy

range between 8 and 50 keV.

2. MAD general description

The MAD26 design is inspired by Hodeau’s publication

(Hodeau et al., 1998) and follows the same principles. The

detector comprises a two-circle goniometer (�c–2�c) with

crystals stacked with an angular offset � between each other.

The whole assembly is then mounted on a three-circle

diffractometer. The two main differences between Hodeau’s

design and the MAD26 are (i) the positions of the MAD26

crystals are optimized to minimize the beam walk for a given

energy range, and (ii) the MAD26 contains two sets of crystals

http://crossmark.crossref.org/dialog/?doi=10.1107/S0909049511031529&domain=pdf&date_stamp=2011-09-22


(Si 111 and Si 220) that can easily be exchanged by means of a

linear translation.

2.1. Design principle of the single-energy MAD

At first sight it would not seem obvious to apply the prin-

ciple of the concave Rowland grating (Rowland, 1902) to fast-

acquisition high-resolution powder diffraction, or, what is the

same, to MADs. However, it is possible to construct a MAD

from the discretization of the Johansson monochromator

geometry (Johansson, 1933; Witz, 1969; Caciuffo et al., 1987).

Let us assume an ideal ‘breaking’ of a bent and ground

Johansson monochromator crystal into 2n + 1 flat pieces (see

Fig. 1a). These small analyser crystals shall be distributed over

a crystal fan with a constant offset between each other. The

impinging point of the diffracted beam on each of the crystals

will be given by the corresponding points defined by the

Johansson construction as seen in the figure (red dots). For

practical reasons we want to have the

detectors on the upper part of the figure

outside the Rowland circle, which

means that the crystals have to be

rotated clockwise around the impinging

point by 90�. Point D then acts as a

virtual source point (as can be seen in

Fig. 1b). Once the specific type of

analyser crystal is defined and the

energy chosen, i.e. the Bragg angle is

defined, it is always possible to find the

Rowland circle on which the source, the

virtual focus and the impact points on

the crystal surfaces lie. The chord SO in

Fig. 1 is the distance between the sample

and the centre of the crystal analyser stage, and OA lies on the

central crystal surface or on the normal to the central crystal

surface, in Figs. 1(a) and 1(b), respectively. The radius of the

Rowland circle, R, and the distance SO must fulfil the

following condition, SO = 2Rcos� [note that in the case of the

original Johansson monochromator geometry, Fig. 1(a), the

condition is SO = 2Rsin� owing to the 90� rotation (Witz,

1969, and references therein)].

Note that this geometric construction works in a more

general case: there is in principle no restriction to the distances

SO and OA or SO and OD. However, once two of the three

distances are fixed, the third is determined by the geometric

construction [see, for example, Figs. 2(a)–2(c) where SO is not

equal to OD]. In fact, Hodeau’s design (Fig. 3) fits into this

description: it corresponds to the special case where the

distance SO is approximately equal to distance OA and the

angular offset between two consecutive crystals is a small

angle of 2�. Fig. 4 corresponds to the superposition of Fig. 5(a)

in Hodeau’s publication (Hodeau et al., 1998), showing the

configuration of the MAD device at 6 keV superimposed with

the Rowland circle, the crystal fan and the virtual source. The

centre of the analyser goniometer corresponds to O, the SO

distance corresponds to D in Fig. 3, and d ’ D tan�, where �
is the offset angle. Note that, according to the article, d =

14.8 mm ’ D tan� = 425tan(2�) = 14.84 mm.
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Figure 1
(a) Bent and ground Johansson monochromator. The outer arc represents
the bent lattice planes of the monochromator crystal (the curvature
centre is A and the radius is 2R, where R is the radius of the Rowland
circle, shown by the black circumference). The Rowland circle lies on the
surface of the ground crystal. The red dots represent 2n + 1 surface points
distributed on a ‘crystal fan’ with a constant angular offset. (b) The 2n + 1
discrete crystals have been rotated (see text). In both (a) and (b) the
central crystal O, the source S and the focus point D are shown.

Figure 2
Construction of the Rowland circle from the points S, O, A and D. The
lengths of the chords SO and OA do not need to be the same.

Figure 3
Arrangement of crystals in Hodeau’s original paper. Some of the crystals are slightly offset from the
support axis to reduce the beam walk.



2.2. Design principle of the wide-energy-range MAD

The description above only holds for a single energy. Since

it is usually the case that multi-crystal analyser detectors at

synchrotron beamlines have to work over a wide energy range,

the crystal fan must be rotated around O to adjust for the

different incoming energies. The energy range, typically an

interval [Emin, Emax] where Emin is the minimum energy and

Emax is the maximum energy, defines the Bragg angle range of

the analyser crystal, �o � � � �f where 0 < � < �/2, Emin =

12.3984/(2dsin�f) and Emax = 12.3984/(2dsin�o) with Emax, min

given in keV and the lattice spacing of the crystal analyser, d,

in Å. Each energy defines a distinct Rowland circle with

slightly different radius. Owing to the lever arm, for the non-

central crystals the impinging point will move along the

surface of the outer crystals (beam walk on the crystal

surfaces). The rotation of the crystal stage with energy around

its centre at O can alternatively be described as a movement of

the sample S along the Rowland circle thereby changing the

angle of the fan of rays as well as the distance SO. As a

consequence, the virtual source of the rays in D also has to

move. Since in the real set-up the distance between sample

and centre of the stage, SO, is fixed, the trajectory of the

sample movement will lie on a circle with radius SO around O.

For each energy the Rowland circle is then defined as the

circle passing through A, S and O. The radius of the Rowland

circle at a given energy (or �) can be obtained by calculating

the circumradius defined by A, S and O using equation (1)

obtained from the circumradius formula by Weisstein (2003),

R� ¼
1

2

OA cos � � SO

sin �

� �2

þ OA2;

" #1=2

; ð1Þ

where �, the Bragg angle of the analyser crystal, also corre-

sponds to the angle formed by SO and OA.

The centre of the Rowland circle, C�, can be described as

the coordinates of the vector rce,� ; the expression is given in

equation (2) (Weisstein, 2003) assuming that (i) the reference

system is a Cartesian system with x as horizontal axis, y as

vertical axis and the origin at O (see Fig. 5a), and (ii) for

clarity, we assume that the change in energy is described by

rotating the sample S with respect to O (centre of the crystal

stage),

rce;� ¼
OA cos � � SO

2 sin �
;
�OA

2

� �
: ð2Þ

The function of the Rowland radius rce,� versus energy (or �)

is continuous with only one minimum, Rmin = SO/2 for �m =

arccos(SO/OA) if OA > SO or for �m = arccos(OA/SO) if

OA < SO. In the special case where SO = OA, the Rowland

radius increases with �.
The beam walk, bw, is the distance between impinging

points on the crystal surface at different energies; these

impinging points will be noted as In�. The coordinates of the

intersection point between the crystal surface of crystal ‘n’ and
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Figure 5
The beam walk on a non-central crystal is shown for the four possible
cases: (a) OA = OAopt, (b) OA = SO, (c) OA > SO, and (d) OA < SO.
While the chord SO refers to the central crystal, the beam walk on an
outer crystal is given in pink. It is represented by the distance between the
impact points on the crystal surface for the operational angles of the
detector �o � � � �f (thick pink line on crystal surface). The minimum,
maximum and two intermediate � angles are shown with the four
corresponding Rowland circles (blue circles with the points S, O and A
are shown) and the impact points on the non-central crystal (In�, pink
dots). The centre of the Rowland circle is represented by a green dot (for
�o and �f) and the green line depicts its movement over the complete �
range. The non-central crystal is represented by a pink rectangle. The
Rowland circle of �m is represented by a black circle. The central inset
shows the beam walk in millimetres versus � for the four cases. The
minimum and maximum Bragg angles �o and �f as well as �m are labelled.

Figure 4
Correspondence between Hodeau’s detector at 6 keV and the Rowland
construction presented in the text.



the beam at a given energy (or �) are defined by the vector rIn�
where each vector can be calculated using the following

expression,

rIn� ¼ rce;� þ R� cos ’ce;� þ �þ 2n�
� �

; sin ’ce;� þ �þ 2n�
� �� 	

;

ð3Þ

where ’ce,� is the angle formed by the x-axis and rce,� (see

Fig. 6). The beam walk for two given energies (or angles, �
and �1) can then be expressed as the distance between these

vectors,

bw�;�1
¼ rIn� � rIn�1




 


: ð4Þ

The beam walk is one of the key parameters in the MAD

design since it quantifies the displacement of the diffracted

beam along the analyser crystal surface with energy. As a

consequence, the diffracted beam could be clipped by colli-

mators, slits or neighbouring crystals, thereby deteriorating

the diffracted signal. The larger the beam walk, then the larger

the crystals should be, which has an important impact on the

cost and on the level of complexity of the mechanical design of

the MAD. Therefore, it is important to minimize the beam

walk over the � range, and all MAD designs address this point.

One common approach is to choose � as a small angle, since it

has a direct impact on the amount of beam walk. In Hodeau’s

design, analytical calculations and X-ray tracing of the beam

impact along the analyser crystals are the basis for optimizing

the crystal positions. The crystals are not located in the centre

line of the comb, as seen in Fig. 3, but in a slightly offset

position such that the beam will always hit the crystals for a

given energy range. This strategy is ideal in terms of main-

taining the reflected beams centrally on the analyser crystals

and detectors; besides, the analytical calculations provide a

valuable tool to optimize the position of the crystals and to

minimize the beam walk. However, the optimization can be

refined and better adapted to the specific case (or beamline)

and we present in the following a method to optimize the

beam walk for a given � range.

Firstly, we will assume that the offset angle � and 2nmax�
is small, thus the small-angle approximation holds, that is

cos 2n� ffi 1 and sin 2n� ffi 2n� for n = {�nmax, . . . , nmax}. The

beam walk for two given energies (or angles, � and �1) can then

be expressed as

bw�;�1
ffi 2jnj� xce;� � xce;�1




 


; ð5Þ

and for simplicity we will assume that � > �1.

The xce,� function is continuous and presents only one

maximum,

xce;max ¼ � SO2 �OA2
� �1=2

; ð6Þ

at �m = arccos(OA/SO) if OA < SO. In this case the beam walk

then either presents a maximum at �m = arccos(OA/SO), if �m

is in the angular range of interest (or energy range), or it is just

an increasing function of �. In all other cases, when OA � SO,

xce,� decreases with � which means that the beam walk

increases with � (assuming that � > �1). The minimization of

the beam walk over the � range can be achieved by imposing

that rIn�o and rIn�f coincide at the same point. This implies

that the centre of the Rowland circle at the minimum and

maximum energy, C�o,f, must have the same distance to the

two extreme sample positions S�o, S�f, or, what is the same,

C�o,f is bisecting the triangle S�oOS�f. This completely defines

the set-up (see Fig. 5a) since, for a given � range, OA and SO

are no longer independent parameters but must fulfil the

following condition,

OAopt ¼ SO cos
�f þ �o

2

� ��
cos

�f � �o

2

� �� �
: ð7Þ

Figs. 5(a), 5(b), 5(c) and 5(d) show the different cases where

(a) OA is the optimized value, (b) OA = SO, (c) OA > SO, and

(d) OA < SO. The beam walks are shown in the central insert

of Fig. 5.

2.3. ALBA MAD26 general description

According to the design concept explained above, the final

choice of the parameters used depends on the following

considerations:

(i) Geometrical restrictions at the endstation such as the

height of the beam above ground define the total available

length for the detector system.

(ii) The dimensions of the beam cross section and energy

range define the crystal length.

(iii) The offset angle between the crystals should ideally be

as small as possible; it is mostly defined by the diameter of the

scintillation counters and the space needed to install a crystal.

(iv) The spacing between the crystals in the crystal fan

should be sufficient to allow easy installation and replacement.

(v) The total number of crystals should be maximal but still

assuring a compact and light design; since the mechanical

requirements become more and more stringent for the outer

crystals, their number is also limited by practicable machining

tolerances.

All these parameters have been considered in the actual

layout taking into account the energy range of the beamline of

8–50 keV and the geometrical restrictions of the endstation.

The parameters are given in Table 1.

The optimization of the beam walk in the MAD26 design

gives a beam walk maximum value of 4 mm versus 9 mm for

the non-optimized case where SO = OA. Fig. 7 shows beam
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Figure 6
Rowland circle at a given energy (or �) where A, O, S� as well as the
impact point In and the centre of the Rowland circle C� are shown. The
angle formed by rIn� and the x-axis is also indicated.



and impact points (continuous black lines and black dots) on

the outmost crystal for 11 � values in the working angular

range for the non-optimized case where SO = OA (crystal

surface represented by the dashed black line). The blue dot

corresponds to the intersection of the incident beams at

maximum and minimum angle, which is the impinging point

for the optimized model. The blue line corresponds to the

beam walk on a crystal with the same offset angle as the one

mentioned above but shifted into the beam intersection

according to the optimized model.

The MAD26 has two sets of crystals, one set of 13 Si 111 and

a second one of 13 Si 220 that can be manually interchanged

perpendicular to the beam with the help of a precision manual

stage. Although changing to the Si 220 crystals will reduce the

reflected intensity, it will also, especially at higher energies,

increase the Bragg angle and, as a result, imprecision in

manufacturing has a reduced impact on performance. With

this, the user will be able to adapt for different energy ranges

and compensate de facto inaccuracies in the mechanical set-

up. As a side effect, the intrinsic resolution of the system is

improved and suppression of high harmonics is increased.

3. Design materialization

A central requirement of MAD designs is that they should

perform over a wide energy range (with corresponding wide

angular range). To implement this, careful ray tracing is

required to ensure that the beam footprint remains on the

crystal at all times and that the beam is not clipped at any

point. In addition, cross-talk between channels should be

minimized as far as is practicable. For MAD designs operating

at high energies (with corresponding low angles of incidence)

this becomes particularly important as the margin for error is

much reduced.

To analyse this, an error budget approach has been taken.

Error budgets are commonly used in the design of accelerator

systems to assess the machining and alignment requirements

for the magnets (Lestrade, 2004; Wei et al., 1999). This is

necessary as these requirements are often at the very limit of

what is technically possible. Although this is not the case with

the MAD design, the same philosophy of breaking down the

various sources and effects of different errors is very helpful in

determining the manufacturing and assembly requirements of

the system. A simplified version of the error analysis will be

used, in that the various errors will be summed linearly rather

than using a statistical approach. This is acceptable in this case

as the uncertainty associated with the various errors is quite

small and the intent is to gain a qualitative assessment of the

importance of the various errors, rather than a definitive

quantitative value.

The slits between the sample and the crystals should be as

small as possible, to prevent stray scatter reaching the crystals

and detectors, while large enough to allow all desirable rays

through without clipping. The nominal upper beam size for

this design is 1 mm, centred at an angle of n� for n =

{�nmax, . . . , nmax}.

However, owing to the mis-cut of the crystal and the

mechanical misalignment, the beam satisfying the Bragg

condition will be somewhere between n� + "t and n� � "t,

where "t is the total crystal plane error that corresponds to the

sum of those errors, "t = "o + "m, where "m corresponds to the

mechanical misalignment error and "o is the mis-cut of the

crystals’ plane.

For the design described in this paper, the angle error has

been estimated at 	0.023� (see Table 2). This means that, for

the slits positioned at a distance SS from the sample, the

minimum width allowable for the slits is

Slit widthmin ¼ bsþ 2SS sin "t; ð8Þ

where SS corresponds to the sample-to-slit distance and bs is

the beam size.

The upper limit on slit size is set by the requirement that

rays from the sample should not be able to pass the crystal.

However, there needs to be some overlap between the slit

edges and the crystal edges to allow for errors in the posi-

tioning of the crystal surface and still ensure complete

blocking of all undesirable rays. The length of crystal that can

be illuminated (usable crystal uc) is therefore set at
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Table 1
Main design parameters for the ALBA MAD26.

SO 550 mm
OA 541.12 mm
� 1.5�

Virtual source-to-detector distance 750 mm
Energy range 8–50 keV
Total number of Si 111 crystals 13
Total number of Si 220 crystals 13
Photon-counting detectors separation 20 mm
Active area of detector 11 mm diameter (circular)
Bragg angle range of Si 111 crystal 2.27� � � � 14.31�

Figure 7
Propagation of the beam impact (black dots) on the outmost crystal
(dotted line) for different energies. The blue dot indicates the common
impact if the crystal is shifted to a position according to the blue line
(optimized position of the crystal surface). One can see that the beam
walk is shorter in the optimized case. Owing to the fan-like construction
the crystal surfaces (optimized and non-optimized) are not exactly
parallel.
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Table 2
Design parameters, error breakdown with values tolerated by the design, error budgets and required slit dimensions.

The dimensions are given in millimetres and the angles in degrees.

Design parameters

Minimum angle, �o Si 111 2.266� (50 keV) Si 220 3.702� (50 keV) Si 220 2.5� (74 keV)
Beam size, bs 1.0 1.0 1.0
Crystal length, cl 74 74 74
Illuminated fraction, if 0.8 0.8 0.8
Usable crystal length, uc 59.2 59.2 59.2
Detector to virtual source

distance, DD
750 750 750

First slit to sample distance, SS 480 480 480
Crystal stage axis to sample

distance, SO
550 550 550

Crystal planes cut error, "o 0.02 0.02 0.02
Mechanical alignment error, "m 0.003 0.013 0.013
Total crystal plane error, "t 0.023 0.033 0.033
Slit sizemax 2.04 3.34 2.25
Slit sizemin 1.39 1.55 1.55
Nominal size of upstream slits 1.71 2.44 1.90

Error budget breakdown

Error budget for upstream
slits = (Slit edge zone)/2

0.163 0.448 0.175

Error component
Weight Factor

Error budget
portion (	)

Tolerance (	)
on part or
dimension

Error budget
portion (	)

Tolerance (	)
on part or
dimension

Error budget
portion (	)

Tolerance (	)
on part or
dimension

Sample to �-axis distance
(SO)†

0.1 6.31 0.016 0.101 0.045 0.284 0.018 0.114

Position of the slit edges
(includes manufac-
turing)

0.9 1.00 0.147 0.147 0.403 0.403 0.158 0.158

Error budget for crystal
position = 1/2(cl � uc) sin�o

0.293 0.478 0.323

Error component
Weight Factor

Error budget
portion (	)

Tolerance (	)
on part or
dimension

Error budget
portion (	)

Tolerance (	)
on part or
dimension

Error budget
portion (	)

Tolerance (	)
on part or
dimension

Crystal length 0.05 1/sin�o 0.015 0.370 0.024 0.370 0.016 0.370
Position of central crystal

to � axis
0.45 1 0.132 0.132 0.215 0.215 0.145 0.145

Crystal mounting 0.25 1 0.073 0.073 0.119 0.119 0.081 0.081
Crystal mount to crystal

center mount position
0.25 1 0.073 0.073 0.119 0.119 0.081 0.081

Error budget for detector slits
I: total displacement of the

beam at detectors owing to
crystal plane error = 2DD sin"t

0.60 0.86 0.86

II: total displacement of the
beam at detectors owing to
crystal surface offset =
2(error budget for crystal
position)(sin 2"t/sin"t)

1.17 1.91 1.29

III: position of 2� relative
to � axis‡

0.25 0.25 0.25

IV: position of the slit edges
(includes manufacturing)‡

0.25 0.25 0.25

Nominal size of detector
slits = I + II + III + IV + bs

3.3 4.3 3.7

† The factor for this component only applies to the outermost crystals, where factor = 1/tan(nmax�). ‡ These values are assumed rather than calculated. See main text for
explanation.



uc ¼ cl
 if; ð9Þ

where cl is the crystal length and if is the illuminated fraction.

The slits should be designed for the worst case (smallest Bragg

angle, �o), so projecting the illuminated area of the crystal

back to the upstream slit surface gives

Slit widthmax ¼ uc sin �o ðSS=SOÞ; ð10Þ

where SO is the distance from the sample to the �-stage axis.

Diagrammatically, the various boundaries are shown in Fig. 8.

For the design to operate successfully, the slit edges must fall

within the shaded zone between width maximum and width

minimum. The size of this zone for each slit edge is

Slit edge zone ¼ Slit widthmax � Slit widthminð Þ=2; ð11Þ

and the nominal size of each slit is

Slit size ¼ Slit widthmax þ Slit widthminð Þ=2: ð12Þ

It is conventional for engineering dimensions to be shown as a

nominal figure plus or minus a certain amount. Ideally each

slit edge should be in the centre of the slit edge zone, therefore

the allowable error on the position of each slit edge is

Slit edge error ¼ Slit edge zone=2: ð13Þ

This error ‘budget’ can then be apportioned to the various

contributors with a view to finding the best compromise

between performance and manufacturing cost.

For this design, the slits cannot be adjusted individually but

consist of a common comb-like plate that is positioned as a

single unit. Contributors to the position of the slit edges are

therefore the variation in size of the slits, the variation in

spacing between the slits, the variation in position of the slit

plate as a whole, and the variation of the distance between the

sample and the � stage. The latter has an impact as it effec-

tively changes the required pitch of the slits by changing the

nominal angle between the crystals.

The proportion of the error budget allocated to each

contributor is given by the weight column. The sum of all the

weights for a given error budget must equal 1. The error

budget is calculated and subdivided in the YZ plane (refer to

Fig. 8, with Y in beam direction) but the dimensional tolerance

relating to this error component may occur in a direction other

than Z. The ‘Factor’ column in the table is thus the propor-

tional difference between the error component in the direc-

tion in which it takes effect and the component projected into

the YZ plane.

The size and pitch of the slits in the slit plate can be closely

controlled in manufacturing; tolerances of less than 0.025 mm

would not be unreasonable. Therefore the bulk of the toler-

ance goes towards the positioning of the slit plate and the

sample–�-axis variation. The proportion of the available error

allocated to each contributor can be adjusted until reasonable

values are found for all sub-errors. From Table 2 it can be seen

that a 10/90 split between axis distance error and slit edge

error gives good results.

The position of the crystals is now determined by the

requirement that their extreme edges cannot intrude into the

illuminated zone mentioned earlier. This can happen if the

crystals are shorter than nominal or if they are not positioned

correctly on their holders. If they do, there is a chance for rays

to pass the edge of the crystal and cause background noise at

the detectors. For consistency of analysis, the allowable error is

projected into a plane parallel to the upstream slits and then

sub-divided amongst the contributors as before. Adjusting the

various weight split of the errors allows reasonable results for

all error components.

A similar analysis is carried out for the slits in front of the

detectors. This is simpler as it only requires the calculation of

the minimum slit size required so that all desirable rays strike

the detector face. The contributors to this are the movement

and offset of the beam owing to the position variation of the

crystal face and the tolerance on the size and position of the

slits. Because there is no upper limit on the slit size, the �–2�
error and the slit edge error are not bounded. Therefore they

are estimated, based on manufacturing knowledge, and the

size of the slits inferred as a result. The effect of the translation

of the detectors required at different energies is not included

in this analysis as the error on this motion is extremely small

compared with the other errors. Indeed, given the small beam

walk associated with the optimized crystal layout, it may be

possible to design a MAD that does away with the linear

translation of the detectors, provided their response is suitably

uniform across their working aperture.

Table 2 shows the various errors and how they are derived.

The last section of the table, ‘Error budget for detector slits’,

gives the calculated slit size at the detector and the main

contributing aspects. The calculations shown in the table work

under the following assumptions:
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Figure 8
Diagram representing the error budget for upstream slits positioning. The
crystal is represented as a rectangle, the sample as a black circle, and the
slit size is defined by the slit edges. The various distances, cl, uc, SO and
SS are shown as well as the Y and Z axes. The shadowed zone is defined in
the text, and the limiting beams are shown as a reference.



(i) The crystal cut error, "o, is 	0.02� (guaranteed by the

manufacturer).

(ii) The design of the detector is such that a pair of Si 111

and Si 220 crystals is glued to a common crystal holder. The

optical surfaces of the two crystals can be adjusted manually

to the desired pitch angle with a tolerance of 	0.003�, "m.

De facto the alignment is made with respect to the Si 111

crystal which has tighter requirements at low angles. This leads

to a total angular error, ", on the support of 	0.023�.

(iii) The second crystal on the common holder, Si 220,

suffers a larger pitch error than Si 111 because the crystal

holder adjustment is made with respect to Si 111, and the error

introduced by gluing the crystal cannot be compensated in the

alignment. From experience the gluing error for the second

crystal is estimated to 	0.01�.

(iv) The maximum total error of the Si 220 crystal is given

by the relative mounting accuracy of both crystals on the

holder (	0.01�) plus the mis-cut error (	0.02�) plus the

tolerance in the alignment of the holder (	0.003�). The

maximum pitch deviation of the second crystal then amounts

to approximately 	0.033� (as shown in Table 2).

(v) The manufacturing tolerances given in Table 2 are

consistent with readily available high-quality manufacturing

processes.

(vi) The ‘out of plane error’ (roll of the crystal) is not

relevant owing to the small angles.

Assumptions (i) and (v) are guaranteed by the manu-

facturing process. Assumptions (ii)–(iv) have been validated

with measurements performed on a prototype crystal holder

that will be described in a forthcoming publication (Peral et al.,

2011).

The final combination of slit sizes and energy ranges

depends on the errors that can ultimately be achieved with the

whole assembly. Obviously the more care that is taken to

minimize all errors the better.

The slit sizes chosen cover the energy range 8–50 keV with

Si 111, assuming the required manufacturing and assembly

tolerances are achieved. The second set of crystals has two

purposes: it allows higher energies to be reached for the same

manufacturing requirements, and/or achieves the same ener-

gies as Si 111 with much relaxed manufacturing requirements.

This becomes clear by comparing all three columns in Table 2:

Si 111 (50 keV), Si 220 (50 keV) and Si 220 (74 keV). The final

mechanical design is based on the tolerances given in the first

column (Si 111, 50 keV), and a three-dimensional model of

the detector can be seen in Fig. 9.

4. Conclusions

The geometrical design of MADs has been reviewed and

explained using the Rowland circle focusing geometry. This

description has proven to be a valuable tool for understanding

the basic principle as well as to construct and adapt MAD

designs for mainly two reasons: (i) existing designs can be

described, and (ii) in the case of wide-energy MADs a method

can be deduced to minimize the beam walk on the analyser

crystals in the energy range of interest. The MAD design

of the powder diffraction beamline at ALBA has been

constructed following this concept; the design criteria and

relevant parameters are discussed. Since optical and

mechanical errors have a large impact on the efficiency of the

system, an error budget approach has been worked out to

demonstrate the influence of the individual errors on the

actual beam path. The resulting values in this error budget are

consistent with achievable tolerances as well as with require-

ments on the detector system to operate over the whole

energy range. Dimensions for slits, crystals and collimators, as

well as mechanical tolerances, were directly introduced into

the manufacturing process. The error propagation has been

calculated to assure that the design will perform well under

working conditions.
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