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One of the challenges of tuning bimorph mirrors with many electrodes is that the

calculated focusing voltages can be different by more than the safety limit (such

as 500 V for the mirrors used at 17-ID at the Advanced Photon Source) between

adjacent electrodes. A study of this problem at 17-ID revealed that the inverse

problem of the tuning in situ, using X-rays, became ill-conditioned when the

number of electrodes was large and the calculated focusing voltages were

contaminated with measurement errors. Increasing the number of beamlets

during the tuning could reduce the matrix condition number in the problem, but

obtaining voltages with variation below the safety limit was still not always

guaranteed and multiple iterations of tuning were often required. Applying

Tikhonov regularization and using the L-curve criterion for the determination of

the regularization parameter made it straightforward to obtain focusing voltages

with well behaved variations. Some characteristics of the tuning results obtained

using Tikhonov regularization are given in this paper.
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1. Introduction

Multi-segmented bimorph mirrors using multiple 150 mm-

long segments of piezoelectric ceramic (also called PZT)

plates, with typically two or four and even eight electrodes per

plate, have been developed and used for more than a decade

at synchrotron beamlines (Signorato, 1998; Signorato & Ishi-

kawa, 2001), with the capability of correcting the mirror shape

down to the dimensions covered by each electrode, thus

suppressing low-frequency mirror errors (Signorato et al.,

2001, 2004). They also have the potential to adaptively change

their profiles for the so-called wavefront correction (Kimura et

al., 2009). To achieve the best result, each mirror has to be

tuned, either in a metrology laboratory with such tools as a

long trace profiler (LTP) or nanometre optical metrology

(Siewert et al., 2004; Alcock et al., 2010; Sutter et al., 2011), or

at an X-ray beamline, using position measurement of many

X-ray ‘beamlets’ (pencil beams) reflected from the mirror.

Such tuning has also been called optimization or adaptive

correction, and was introduced a decade ago (Signorato, 1998;

Signorato et al., 1998, 2001; Hignette et al., 1997), based on the

assumption of a linear relationship between the driving

voltage on each electrode on a PZT plate and the induced

curvature along the mirror. The calculation of the driving

voltages for focusing becomes a typical discrete inverse

problem mathematically. The number of electrodes in each

bimorph mirror was only around three to five when this

method was initially used for offline optimization in a

metrology laboratory.

Owing to the fast development of technology, bimorph

mirrors with as many as 16 electrodes are commonly used at

synchrotron beamlines nowadays, and some mirrors have even

more electrodes. The increased number of electrodes in the

mirror increases the power of the shape correction. However,

it also brings new challenges to in situ tuning with X-rays, as

will be explained in this paper.

At the Advanced Photon Source (APS), the IMCA-CAT

(Industrial Macromolecular Crystallography Association

Collaboration Team) undulator beamline at sector 17 (17-ID)

was recently upgraded, introducing a set of bimorph Kirkpa-

trick–Baez (KB) mirrors (supplied by Bruker ASC GmbH)

with focal/source distances of 4.74 m/57.16 m [horizontal

focusing mirror (HFM)] and 5.68 m/56.22 m [vertical focusing

mirror (VFM)], and with demagnifications of 12 and 9.9,

respectively. With fixed incident angles of 3 mrad and lengths

of 1.05 m (HFM) and 0.6 m (VFM), these mirrors are long

enough to accept the full undulator beam, which is about

1.7 mm (H) by 0.8 mm (V) FWHM at the mirror locations.

There are four sets of the 150 mm-long PZT plates, each with

four driving electrodes, inside the VFM, and there are seven

sets of PZT plates, each with two driving electrodes with the

exception of the central plate that has four electrodes, inside

the HFM. So, there are 16 electrodes within each mirror. For

the safety and integrity of the mirrors, the maximal allowable

difference of voltages between any two adjacent electrodes is

limited to 500 V. During the mirror tuning with X-rays on the

beamline, however, it was not always straightforward to obtain

a set of focusing voltages meeting this safety requirement, and

generally multiple iterations of tuning were needed. We then‡ Present address: CHESS, Cornell University, Ithaca, NY 14853, USA.
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found out that, even though a lot of attention was paid to the

measurement accuracy, the matrix of the inverse problem of

the correction became very ill-conditioned when the number

of electrodes became large, such as 16. The calculated values

of focusing voltages were then easily contaminated by

measurement errors (or noise), even though such errors could

be very small.

In order to make the inverse problem less ill-conditioned,

we tried to improve the effective rank of the matrix in the

inverse problem by using fewer independently powered elec-

trodes and/or a larger number of beamlets along the mirror.

This did reduce the variation of the calculated voltages, but

keeping the maximal difference between adjacent electrodes

below 500 V was still not always guaranteed.

A mathematical method, called Tikhonov regularization

(Tikhonov & Arsenin, 1977), initially proposed to solve the so-

called ill-posed inverse problem, has been successfully used in

recent decades to solve many ill-conditioned problems in

various scientific fields (e.g. Svergun, 1991; Ng et al., 1999; Ying

et al., 2004). When this method was applied to the bimorph

mirror tuning at IMCA-CAT, focusing voltages with well

controlled fluctuation between electrodes were reliably

achieved, and there was no need for multiple iterations of

tuning. In other words, the Tikhonov regularization made it

straightforward to converge to a satisfactory result for tuning

of bimorph mirrors with a large number of electrodes.

This paper explains the challenges of directly solving the

inverse problem of in situ mirror tuning with X-rays, describes

our attempt to improve the solution stability of the inverse

problem by increasing the number of beamlets, and finally

gives a description of tuning using Tikhonov regularization

and the characteristics of the results obtained with the regu-

larization.

2. Errors in the inverse problem of bimorph mirror
tuning

2.1. Brief description of bimorph mirror adaptive correction
on a beamline with X-rays

For the reader’s convenience, the widely used procedure of

bimorph mirror tuning (or optimization, adaptive correction)

on a beamline, introduced by Signorato et al. (Signorato, 1998;

Signorato et al., 1998, 2001), is briefly explained here. To

calibrate the linear coefficients connecting the applied voltage

on each electrode to the figure deformation along the mirror,

the center of mass (COM) of each beamlet reflected from a

section of mirror covered by each electrode is measured at the

sample location (or any expected focusing location). For a

mirror of M electrodes, a minimal number of M beamlet

positions (or profile scans) at the sample location are normally

measured. Such a measurement of M beamlets normally starts

with all the electrodes powered with the same voltage, and a

roughly focused X-ray beam. Then the measurement of M

beamlet profiles is repeated after fixed interval voltage

changes on each electrode. With M(M + 1) position

measurements of the beamlets at the sample location, a matrix

A 2 R M�M is obtained and the target voltages on the M

electrodes needed for focusing, represented by a vector x, will

be the solution of the following linear system,

Ax ¼ b; ð1Þ

where b is a vector of position differences of all the beamlets

relative to the focal position. If the number of beamlets is not

exactly the same as the number of electrodes, then A 2 R M�N,

x 2 RN, b 2 RM (where M and N are the number of beamlets

and electrodes, respectively). The singular value decomposi-

tion algorithm has been commonly used to find the solution of

(1). Such adaptive mirror tuning on a beamline also corrects

the perturbations on the incoming beam wavefront introduced

by upstream optics.

2.2. Obtaining correction voltages by directly solving the
inverse problem at 17-ID

At 17-ID the bimorph mirrors were designed to focus with

negative voltages. According to the off-line characterization of

the mirrors using the APS LTP, the HFM is pre-shaped with a

cylindrical bending radius of 4.19 km and the VFM with a

radius of 4.65 km, when the mirrors are not powered. The

HFM RMS slope errors after cylindrical curvature subtraction

are 1.37 mrad, with a peak-to-valley error of 10.14 mrad. The

VFM RMS slope errors are 1.46 mrad, with a peak-to-valley

error of 6.77 mrad. Sixteen beamlets were used; each of them

was reflected by one section of the mirror corresponding to

one electrode. Between each round of 16 profile measure-

ments, the voltage of one electrode was shifted by �50 V. To

minimize the time needed for the calibration, the beamlet

profiles were often recorded using a CoolSnap camera with 5�

objective and a YAG crystal of 1 mm-thick doped cerium. The

resolution of this camera system was about 10 mm FWHM,

tested with a 10 mm-diameter pinhole in front of the YAG

crystal. While the beam size measurement was affected by the

camera resolution (or point spread function), the measure-

ment accuracy of the COM of the beamlets was mainly

affected by the pixel size, which was 1.29 mm with the 5�

objective, i.e. quite small. Some irregularities of the beamlet

profiles (such as long tails on one side) affected the accuracy

of the COM measurements of the main part of the beamlets,

thus introducing some errors in both A and b in (1). More

importantly, any potential beamline overall drift during tuning

could also affect the accuracy of measurement. A 10 mm-

diameter pinhole and a set of �6 mm opening slits were also

used for beamlet COM measurement and cross checking.

By solving (1) using the calibrated 16 � 16 matrix A, we

would normally obtained a voltage vector x with variation

between adjacent electrodes larger than the 500 V safety limit.

Since the purpose of the tuning was to focus the beam while

the exact transverse location of the focal point could be flex-

ible (and adjustable by fine tweaking of mirror angles), we

can introduce another variable b0 in (1), making it into an

underdetermined linear system with 17 unknowns,

Axþ b0 ¼ b; ð2Þ
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from which the solution of both x and b0 can be found. When

such an underdetermined system was solved using singular

value decomposition (SVD), a solution with a minimal norm

of (x, b0) was selected, with x generally better than that given

by the fully determined system in (1), in the sense of smaller

fluctuations. Even so, the variation of the voltages was

generally too large to be useful (we normally used the ACM

software tool supplied by Bruker-ASC for the calculations,

which can take the beamlet COM measurement data as the

input and solve the inverse problem using a SVD algorithm),

with a typical result shown by the squares in Fig. 1.

Several workarounds were used to obtain sets of voltages

with variations less than the safety limit. For both the HFM

and VFM, because of their large acceptance compared with

the beam dimensions, the X-ray flux near the ends of the

mirrors was low, therefore the two adjacent electrodes at each

end of the mirrors could be supplied with the same voltages.

We also combined the other electrodes into groups with

mostly two electrodes per group; in this case the mirrors were

used as if they had less than 16 electrodes and the obtained

voltages normally had much lower fluctuations between any

adjacent electrode groups. After such initial tuning with a

small number of groups of electrodes, we repeated the tuning

with more electrodes being powered independently, starting

from previously tuned voltages. At the end of each tuning

cycle the voltages on all the electrodes were also simulta-

neously shifted in small steps (such as �20 V) while the

changes of spot size at the sample location were monitored to

search for the best focusing condition. Eventually the X-ray

beam was focused with good symmetric profiles by a set of

voltages shown by circles in Fig. 1.

2.3. Condition number of the matrix and calibration with
more beamlets

For the inverse problem given by (1), the accuracy of the

solution is related to the accuracy of matrix A and vector b by

(e.g. Cheney & Kincaid, 2008)

k�xk= xk k � condðAÞ=½1� condðAÞ �Ak k= Ak k�

� ð �bk k= bk k þ �Ak k=AÞ or

�xk k= xk k � condðAÞ �bk k= bk k when �jjAjj ¼ 0; and

�xk k= xk k � condðAÞ �Ak k= Ak k when �jjbjj ¼ 0 and

�Ak k= Ak k is small;

where condðAÞ = Ak k 	 Ak k�1 = �maxðAÞ=�minðAÞ is the so-

called ‘condition number’, determined by the ratio of maximal

to minimal singular values, �max(A) and �min(A). A linear

system with a very large condition number is called an ill-

conditioned problem (or discrete ill-posed problem), and the

solution can be highly contaminated by small errors in either

A or b. The last column in Table 1 includes some examples of

condition numbers of our bimorph mirror correction matrix

when the calibrations were carried out with 16 independently

powered electrodes and 16 beamlets, with beamlet COMs in

units of micrometers and voltages in units of volts. These large

condition numbers explain the large variations of the calcu-

lated voltages when the problem was solved directly.

The large condition number of the matrix is normally

related to the so-called rank-deficiency problem (Hansen,

1998), i.e. the number of columns of A that, with respect to

some error level, are linearly independent, is less than the

number of positive singular values calculated mathematically.

This could be caused by some degree of correlation among the

COMs of the beamlets (i.e. the deformations along the mirror)

measured between the voltage change on an electrode.

Two workarounds were initially tested at 17-ID to reduce

the condition number, both based on a reduction of the

number of independently powered electrodes. When we

performed our very first calibration of the bimorph mirrors,

the 16 electrodes of each mirror were grouped into seven

groups and used as if there were only seven independent

electrodes, and only seven beamlets from seven different

sections of the mirror were used. This tuning ended up with

sets of focusing voltages with variations within the 500 V limit.

In this case the condition numbers of the matrices were

around 260 (HFM) and 400 (VFM), apparently smaller than

the average for the case of 16 electrodes.

Another way of reducing the number of independently

powered electrodes was, after the measurement was made

with 16 beamlets and 16 independent electrodes, only part of

the measurement data were used in such a way as if the mirror

had less than 16 electrodes but was measured with 16 beam-

lets, i.e. A 2 R M�N, x 2 R N, b 2 R M, where M = 16, but N < 16

(such as N = 7 or 14 in Table 1). Keeping M > N helped to
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Figure 1
The squares show the voltages obtained using the software tool provided
by the KB supplier Bruker-ASC using the HFM tuning data with 16
beamlets and 16 independently powered electrodes, where the safety
limit of 500 V maximal difference between adjacent electrodes could not
be satisfied. The circles show the voltages eventually achieved by
workarounds, as explained in text.

Table 1
The decrease of condition numbers if tuning was performed with 16
beamlets but fewer electrodes.

Number of electrodes

7 14 16

Data set 1 13 264 1377
Data set 2 17 158 367
Data set 3 54 731 907



reduce the matrix condition number, as shown in Table 1, and

often a set of useful focusing voltages could be achieved when

N was small enough. When N < M, equation (1) becomes an

overdetermined system with redundant data, which perhaps

was helpful for increasing the effective rank, also called the

numerical rank (Hansen, 1998) or pseudorank (Hanson,

1971), of the matrix. With this workaround, plus some

tweaking of the voltages on all the electrodes after tuning and

multiple iterations of tuning, the best focusing on record in the

last two years, 61 mm (H) � 24 mm (V), was achieved (Fig. 2),

measured using a CoolSnap camera (after spatial resolution

deconvolution) and verified with �6 mm opening slit scans.

The equivalent RMS slope errors of the mirrors were about

1.26 mrad (H) and 0.89 mrad (V) for this focal spot size.

However, these workarounds of achieving applicable voltages

by reducing the number of electrodes limited the full potential

of using all the electrodes independently.

For the HFM, we tried further to use each electrode inde-

pendently but to reduce the beamlet size from reflecting from

one full electrode section to reflecting from half this size;

therefore the number of beamlets could be increased to 32.

However, it would take a lot of time to make the 17 � 32

measurements of the beamlet profiles (COMs). To shorten the

calibration time (and also to reduce the chance of the beam-

line optics drifting during the calibration) we blocked the

incident beam tails in front of the mirror and used only 13

electrodes for independent adjustment, and 21 beamlets

(because in the middle of the HFM there are four electrodes

having half the length of the remaining electrodes, therefore

each beamlet for these four locations still covered a whole

electrode area). The condition number of the matrix was

reduced to 31 and the variations of the calculated voltages

were smaller than the solutions using 16 electrodes and 16

beamlets. Unfortunately there were still occurrences of

differences of slightly larger than 500 V between adjacent

electrodes (such as around electrode #2, as shown by the

squares in Fig. 3).

In short, in situ bimorph mirror tuning could become an ill-

conditioned inverse problem of a fully determined system

when the number of electrodes becomes large. Oversampling

with reduced beamlet size to make it into an overdetermined

linear system was effective in terms of reducing the condition

number and finding voltages with less variation, but there was

no guarantee that the results could always be good enough

and within the safety limit. Multiple iterations of tuning were

needed. Meanwhile, too much oversampling on a beamline

takes a longer time and therefore could be more sensitive to

the overall beamline stability.

3. Bimorph mirror tuning with Tikhonov regularization

3.1. Implementation of Tikhonov regularization to the mirror
tuning

Tikhonov regularization is probably the most popular

method used to solve ill-posed problems and ill-conditioned

problems (Groetsch, 1984; Hansen, 1998). The basic idea of

this method is to introduce a physically reasonable confine-

ment to equation (1), and replace the inverse problem by

finding the vector x that minimizes the functional

Ax� bk k
2
þ �2 Lxk k2; ð3Þ

where L is a discrete operator, ||Lx|| is the regularization

incorporated to stabilize the solution, and the regularization

parameter � is used to balance the residual norm ||Ax� b|| and

the regularization norm ||Lx||. For bimorph mirror tuning, a

reasonable assumption (and also a practical requirement) for

focusing voltages would be that there should be no large

variations of the voltages between adjacent electrodes;

therefore a discrete derivative operator was used for L.

Finding the right regularization parameter � is a major part

of using Tikhonov regularization. A too large regularization

parameter will make the solution over-regularized with a too

large residual error; on the other hand, a too small regular-

ization parameter will make the solution highly contaminated

by measurement errors. The so-called L-curve criterion

(Lawson & Hanson, 1974; Hansen, 1992) has been successfully
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Figure 2
Minimal focal spot achieved on 17-ID so far, which corresponds to RMS
slope errors of 1.26 mrad for the HFM and 0.89 mrad for the VFM.

Figure 3
Calculated HFM focusing voltages using oversampled data measured
with 13 independently powered electrodes (after blocking the beam tails
on the mirror ends) and 21 beamlets, obtained by solving the inverse
problem directly (squares, least-squares algorithm); using Tikhonov
regularization with the L-curve criterion (diamonds) and with the
regularization parameter shown by a circle in Fig. 8 (solid circles, with
residual norm closer to the least-squares results).



used to find the appropriate value of � for many discrete ill-

conditioned problems (Hansen & O’Leary, 1993) even though

it has limitations for infinite-dimensional problems (Hanke,

1996). An advantage of using the L-curve criterion is that no

prior information about measurement errors is needed, and

the balance between the residual norm and the regularization

norm can be visualized in the L-shaped curve. For a plot of the

L-shaped curve of log(||Ax � b||) versus log(||Lx||), obtained

using

x ¼ arg min
x2R N

Ax� bk k
2
þ �2 Lxk k2

� �
ð4Þ

for all valid values of �, the best selection of the regularization

parameter corresponds to the corner of this L-curve (where

the L-curve has the maximum curvature), as shown in Fig. 4.

The vector x at the corner of this L-curve is selected as the

solution to the linear system of equation (1) under regular-

ization of ||Lx|| (for mathematical details, please refer to, for

example, Tikhonov & Arsenin, 1977; Hansen & O’Leary, 1993;

Hansen, 1992; Van Loan, 1976). In Fig. 4, when ||Ax � b||

approaches zero, ||Lx|| represents the degree of voltage

variation when (1) is fully satisfied; when ||Lx|| approaches

zero, ||Ax� b|| represents the minimal focusing error when the

same voltage is applied to all electrodes. The � value at the

corner of this L-curve represents the best balance of the two

norms in (3), from where a slight decrease of any norm will

cause an unfavorably large increase of another norm.

The diamonds in Fig. 5 represent the voltages calculated

with Tikhonov regularization using the tuning data of the

HFM measured with 16 independent electrodes and 16

beamlets, and this set of voltages gave favorable focusing with

a FWHM of 66 mm. There was almost no voltage fluctuation

along the mirror, with the absolute value gradually increasing

from electrode #1 (at the upstream end of the mirror) to

electrode #16 (at the downstream end of the mirror). Recall-

ing that the IMCA-CAT HFM is rather long (1.05 m) and is

located only 4.74 m from the sample (measured from the

mirror center), the gradual change of the voltage in Fig. 5

represents the elliptical bending of this mirror as the mirror

shape with all electrodes at the same voltage is basically

cylindrical, as given by the mechanical polishing.

3.2. Multiple iterations of tuning with Tikhonov regulariza-
tion, and a solution with smaller residual norm than that
suggested by the L-curve criterion

When the correction voltage was calculated directly using

(1) (and we normally used the software tool provided by

Bruker-ASC for such calculation), it was often necessary to

have more than one iteration of the tuning, i.e. more

measurements on top of a set of focusing voltages obtained

from previous tuning, for better focusing. To find out whether

such a multiple-iteration technique was needed with Tikhonov

regularization, and whether or not the regularization para-

meter � given at the L-curve corner was actually the best

choice, we carried out another round of measurements of all

beamlet COMs after applying to the mirror the voltages

previously obtained with Tikhonov regularization, and there

were indeed differences among the COMs of these beamlets

which meant there were still focusing errors between different

sections of the mirror. Such focusing errors were used as the

vector b in (3) [and (4)], and another round of calculations

with Tikhonov regularization was performed, with the L-curve

and its ‘corner’ shown in Fig. 6. The fact that the corner of the

L-curve was very close to its right-hand end meant that the

new solution would not significantly reduce the residual norm,

verified by its spot-size measurement of 67.2 mm (see the � =

1.151 column in Table 2), which was close to the 66 mm

obtained from the first round of tuning. Several different

values of the regularization parameter � with smaller residual

norms along the L-curve were also selected (Fig. 6), with the

corresponding sets of voltages given in Fig. 7, which would

give better focusing if the influence of measurement errors was

negligible, but they ended up with poorer focusing results as

shown in Table 2. So, in this example, the Tikhonov regular-

ization (together with the L-curve criterion) not only gave us a

set of voltages with very small variation of voltages from

electrode to electrode, but it also filtered out the noise caused

by measurement errors.
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Figure 4
The L-curve applied to the mirror tuning on 17-ID. The selection of � for
the solution was determined by the location of the maximum curvature
on the curve, as shown by the diamond, and the corresponding solution is
given in Fig. 5 by diamonds.

Figure 5
Comparison of the focusing voltages obtained by using Tikhonov
regularization (diamonds) and the workaround approach (circles, the
same results as shown in Fig. 1 with a different scale for the vertical axis).



3.3. Tikhonov regularization for much oversampled data
(overdetermined system)

Tikhonov regularization was also applied to the HFM

tuning with beamlet number M = 21 and electrode number N =

13, with its L-curve shown in Fig. 8, plotted on a linear scale.

The diamond represents the corner of the L-curve (the point

of maximum curvature when plotted on a log–log scale), and

the circle was another point arbitrarily selected on the L-curve

that gave a very small residual norm and also a set of voltages

within the safety limit of variations, as shown by solid circles in

Fig. 3. The focusing spots generated by both sets of voltages

were measured with very similar results, as shown in Fig. 9,

suggesting that the set of voltages supposed for much smaller

residual norm gave only slightly smaller focal size. So, in this

example, the regularization together with the L-curve

criterion still mostly filtered out the measurement noise

(therefore significantly reducing voltage variations) and gave

us a very satisfactory solution; meanwhile the regularization

also filtered out some variations of voltages needed for slightly

better focusing. Such information of ‘necessary’ variations

mixed with measurement errors was difficult to distinguish

without specific information about the measurement errors.

It is worthwhile mentioning that the smallest HFM focal

spot achieved using regularization at 17-ID was 63 mm, slightly

larger than the 61 mm record achieved by workaround (which

was not reproducible by the time that the mirror was tuned by

regularization).
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Figure 9
From top to bottom in the legend, the spot profiles focused with the
voltages given by the regularization parameter at the ‘corner’ of the L-
curve in Fig. 8; the circle at the L-curve in Fig. 8; voltages at the L-curve
corner �15 V; voltages at L-curve corner +15 V.

Figure 6
The L-curve of the second iteration of tuning after the mirror was applied
with voltages given by Tikhonov regularization, on a linear scale. The
diamond shows the point of maximum curvature (when plotted on a log–
log scale as in Fig. 4), which is very close to the right-hand end of the
curve. Five different regularization parameters (with decreased residual
norms) along the L-curve were chosen with the corresponding voltages
given in Fig. 7.

Table 2
Measured HFM focal sizes using different sets of voltages (Fig. 7)
obtained by choosing different � along the L-curve (Fig. 6), for tuning
without oversampling.

�

1.151 0.154 0.061 0.035 0.021 0.012

||Ax � b|| (mm) 39.34 34.10 28.85 23.60 18.36 13.11
FWHM (mm) 67.2 70.8 73.0 73.6 74.5 76.1

Figure 7
The gradual increase of voltage variations between electrodes as the
regularization parameter and residual norms (shown in Fig. 6) decrease.
The focal sizes using these sets of voltages are given in Table 2.

Figure 8
The L-curve using the oversampled data measured with reduced beamlet
size for HFM tuning, with the diamond representing the ‘corner’ of the L-
curve on a log–log scale and the circle representing a point of reduced
regularization parameter with the residual norm close to the minimal
achievable by the least-squares algorithm. The calculated voltages of
these two points are shown in Fig. 3 by diamonds and solid circles,
respectively.



3.4. Accuracy of mirror tuning with Tikhonov regularization

After applying to the mirror the voltages given by directly

solving equation (1), it was common practice to tweak the

voltages on all the electrodes simultaneously towards either

the plus or minus direction to search for better potential

focusing voltages. To tune the mirror by Tikhonov regular-

ization, it was found that such a practice of tweaking was not

necessary (given a beamline with stable optics). An example is

shown in Fig. 9 where, after the mirror was powered with the

voltages given by the Tikhonov regularization (the diamonds

in Fig. 3), the voltages on all the electrodes were tweaked by

15 V towards both positive and negative directions, causing

poorer focusing in both cases, though not by much.

3.5. Using Tikhonov regularization for 17-ID VFM tuning

Compared with the HFM at 17-ID, the VFM at 17-ID is

further upstream from the sample with a larger focal distance

of 5.68 m, and the mirror is also shorter, with a length of

600 mm. When Tikhonov regularization was implemented, the

tuning results did not show a pattern of obvious elliptical

bending. The benefit of using Tikhonov regularization (with

regularization parameter � determined by the L-curve

criterion) was that it guaranteed a set of voltages with smaller

variations between electrodes (Fig. 10), satisfactory focusing

(with FWHM of 26 mm), and no need for multiple iterations of

tuning. The measured spot size was also slightly larger than the

smallest size measured over the last couple years at 17-ID,

which was about 24 mm, but it was not clear to us whether such

a small difference was caused by some change of beamline

optics condition or by some ‘overfiltering’ by the regulariza-

tion, as shown in the case of HFM tuning with oversampled

data.

4. Conclusions

As the number of electrodes in a bimorph mirror increases to

as many as 16 or more nowadays, the inverse problem of the

fully determined system of equation (1) becomes ill-condi-

tioned and the results become highly sensitive to measure-

ment errors and beamline overall drifts when the mirror is

tuned in situ with X-rays. At 17-ID, oversampling with reduced

beamlet size was very useful in the sense of reducing the

condition number of the matrix, therefore obtaining the

voltage set with less variation, but the achievement of a set of

voltages within the limit of safety for elastic deformation of

the mirror was never guaranteed. Multiple iterations of tuning

were often used as a workaround to achieve good focusing.

By introducing extra confinement on the inverse problem

using Tikhonov regularization, we were able to reliably

achieve a set of focusing voltages with well contained varia-

tions. The L-curve criterion of choosing the regularization

parameter was used because it does not require prior infor-

mation about measurement errors and the results can be

visually examined. The mirror tuning using Tikhonov regu-

larization was straightforward in the sense that there was no

need for multiple iterations of tuning and there was also no

need for further tweaking of the voltages on the electrodes on

top of the calculated voltages.

Under certain conditions, such as in our example of over-

sampling with smaller beamlet size where the condition

number of the matrix also became small, the regularization

imposed also filtered out some voltage variations needed for

better focusing. So using Tikhonov regularization together

with the L-curve criterion is a useful way to tune the mirror

with satisfactory results, but it is not an automatic way to find

the ultimate limit of a mirror’s focusing potential.

In short, the regularization is not only useful for the case

where people take short cuts by not taking many redundant

measurements (which is often needed when calibration is

performed at a beamline with X-rays), but it is also useful in a

more general scope as well in the way that it guarantees a

solution at any level of voltage variation you wish, for any

number of data points. Redundant measurements give a small

matrix condition number but do not always guarantee a set of

focusing voltages with small variations.

As a brief discussion, if the measurement errors are quan-

titatively known, they could be used to better define the

regularization parameter �, for better results than using the L-

curve criterion. In the end, the Tikhonov regularization can be

considered as another kind of workaround when the inverse

problem is ill-conditioned or the variation is just too large

even if it is given accurately with a very small matrix condition

number. It is always a good idea, if possible, to tune the mirror

on a beamline in a way that makes the problem less ill-

conditioned, such as using more beamlets with smaller

beamlet size. Fast beamlet profile measurements by ‘on-the-

fly’ continuous scan or any set-up on the beamline providing

fast and accurate beam profile measurements will be very

helpful. Finally, improvement of the quality of the mirror is

also another important factor in reducing the relative varia-

tion of voltages between electrodes.

Special thanks to Dr Mati Meron for his careful proof-

reading of this manuscript and helpful discussions. Many

thanks to Dr Riccardo Signorato (Bruker-ASC) for his very

helpful advice about Bruker instruments and bimorph mirrors,

especially about his suggestion of increasing the number of
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Figure 10
The VFM focusing voltages given by directly solving the inverse problem
(with Bruker-ASC software, squares), after workaround (circles) and
with Tikhonov regularization (diamonds).



beamlets for tuning. Many thanks to Jun Qian and Lahsen
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CA-CAT) and Dr Jiyong Zhao (APS) for sharing their valu-

able experience on bimorph mirror tuning. The CoolSnap
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the 6 mm slit was provided by GM/CA-CAT. Much of the

experiment of this work was carried out during the optics
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