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Successful X-ray photon correlation spectroscopy studies often require that

signals be optimized while minimizing power density in the sample to decrease

radiation damage and, at free-electron laser sources, thermal impact. This

suggests exploration of scattering outside the Fraunhofer far-field diffraction

limit d2/�� R, where d is the incident beam size, � is the photon wavelength and

R is the sample-to-detector distance. Here it is shown that, in an intermediate

regime d2/� > R � d�/�, where � is the structural correlation length in the

material, the ensemble averages of the scattered intensity and of the structure

factor are equal. Similarly, in the regime d2/� > R � d�(�)/�, where �(�) is a

time-dependent dynamics length scale of interest, the ensemble-averaged

correlation functions g1(�) and g2(�) of the scattered electric field are also equal

to their values in the far-field limit. This broadens the parameter space for X-ray

photon correlation spectroscopy experiments, but detectors with smaller pixel

size and variable focusing are required to more fully exploit the potential for

such studies.
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1. Introduction

X-ray photon correlation spectroscopy (XPCS) experiments

offer unique possibilities to examine equilibrium dynamics

and non-equilibrium kinetics in materials on length scales

ranging from 100 to 104 nm (Sutton, 2008). With the continuing

development of accelerator-based X-ray sources with ever-

higher brilliance, including new generations of storage rings

(e.g. PETRA-III, NSLS-II), free-electron lasers (LCLS,

European XFEL) and energy-recovery linacs (e.g. Cornell

ERL), the technique’s importance will continue to grow. In

designing XPCS experiments, several conflicting criteria must

be considered. Because studies are usually statistics limited,

experiments must carefully maximize coherent scattered

intensity while minimizing perturbation to the sample under

study, either through radiation damage or thermal spikes due

to adiabatic heating from individual pulses at free-electron

lasers, particularly LCLS. Source properties and detector pixel

size also factor into issues such as choosing incident beam size

and sample-to-detector distance. In considering compromises

to best achieve these goals, it has been widely assumed that

XPCS studies should operate in the Fraunhofer far-field

scattering limit with R � d2/�, where d is the incident beam

size, � is the photon wavelength and R is the sample-to-

detector distance (Born & Wolf, 1999). Here we show that

there is an ‘intermediate-field’ regime between the traditional

Fraunhofer far-field and Fresnel near-field regimes in which

the scattering is no longer governed by the structure factor,

but in which ensemble-averaged scattering and temporal

correlations of the scattered electric field bear close corre-

spondence to the quantities measured in a far-field experi-

ment.

2. Scattered intensity and structure factor

2.1. The far-field condition

We begin by reviewing the derivation of the far-field

condition. In the scattering geometry of Fig. 1, we have a

photon beam of wavevector kin = ð2�=�Þẑz = kẑz and transverse

Figure 1
Scattering geometry used in the analysis.
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diameter d scattering from a sample of thickness t. We put the

origin of our Cartesian coordinate system at the centre of the

illuminated volume; the vector from the origin of the coordi-

nate system to the detector is R = RR̂R. Throughout our

treatment we ignore effects of finite longitudinal coherence.

For simplicity we assume N point-like scatterers, each with

unity scattering power and individual position ri referenced

to the origin of the coordinate system. The distance from an

individual scatterer to the detector is |R � ri| and the intensity

recorded per unit solid angle is

I ¼
���X

i

1

jR� rij
exp ik jR� rij þ zið Þ

� ����2; ð1Þ

where the term zi accounts for differences in path length of the

incident photons. Keeping terms to order kr 2
i =R the argument

of the exponent is
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where we have introduced kout = ð2�=�ÞR̂R and the change in

wavevector q = kout� kin. Considering the denominator in (1),

we assume kd� 1 so that, to order kr 2
i =R we have |R � ri| ’

R. Thus the intensity measured by the detector is

I ¼
X

i

1

R
exp ikRþ
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2R
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 !�����
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where the approximate equality holds if

kr 2
i =2R� 1: ð4Þ

Since the maximum ri are of order d/2, then this requires for

the validity of the ‘far-field’ condition (i.e. that the scattered

intensity be proportional to the structure factor)

kd2=8R ¼ �d2=4�R� 1; ð5Þ

or, equivalently,

R� d2=�: ð6Þ

2.2. Effect of ensemble averaging in materials without
long-range order

Consider the consequences of ensemble averaging in a

system without long-range order (i.e. any correlation length �
is much smaller than d). If we do not make the far-field

assumption, the intensity measured by the detector when

averaged over an ensemble of statistically similar systems is

Ih i ¼
X

i

1

R
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 !�����
�����
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2
4
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where rij = ri � rj. Terms for rij > � involve uncorrelated atoms

and will average to zero except in the forward-scattering

direction. The terms for rij < � involve the phase factor,

k jri � R̂Rj2 � jrj � R̂Rj2
� �

2R

�����
����� � kd�

R
¼

2�d�

�R
: ð8Þ

Therefore to find the same ensemble average as obtained in

the far-field limit we only require that

d�=�R� 1; ð9Þ

which can be significantly weaker than the general far-field

constraint of equation (6).

We can make this argument more concrete by assuming

homogeneity and introducing a density function n(r1,r2) =P
ij�(r1 � ri)�(r2 � rj) so that

Ih i ¼
1

R2

ZZ
dV1 dV2 nðr1; r2Þ
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2
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2
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If we assume that the sample is homogeneous with average

number density n0, that the ensemble averaged product

hnðr1; r2Þi depends only on r12, and that correlations decay

rapidly as some function f(r)! exp(�r/�) as r!1, then

hnðr1; r2Þi ¼ n0 f r12ð Þ þ n2
0; ð11Þ

so that

hIi ¼
1
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For the n2
0 term we have
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This is the Fourier transform of the function

expðikjr1 � R̂Rj2=2RÞ; in the far-field limit kr 2
1 =2R � 1 the

integral is simply the Fourier transform of the illuminated

volume. The inclusion of the phase term going beyond the far-

field approximation introduces large Fourier components with

wavenumbers up to kd/8R = �d/4�R. However, for q � �d/

4�R, i.e. well beyond the forward-scattering region, the

transform becomes negligible, as is the case in the far field.

This condition is satisfied for points on the detector outside a

region of size d, i.e. outside a region the size of the incident

beam. Thus traditional small-angle X-ray scattering (SAXS)

geometries would satisfy this criterion.

The ensemble averaged intensity is

hIi ¼ ðn0=R2
Þ
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Since f(r) ! exp(�r/�) as r ! 1, contributions from large

differences between r 2
1 and r 2

2 in the exponential phase factor

are cut off. The phase factor is then as given in equation (8); it

makes no contribution in the limit of equation (9), so that we

obtain

hIi ¼ ðn0=R2
Þ

ZZ
dV1 dV2 f r12ð Þ exp �iq � r12ð Þ

¼ ðN=R2
Þ

Z
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¼
NSðqÞ

R2
: ð15Þ

Thus we conclude that, outside the forward direction, there is

an ‘intermediate-field’ regime

d2=� > R� d�=� ð16Þ

in which the scattered intensity is no longer proportional to

the structure factor but in which the ensemble-averaged

scattered intensity hIi remains equal to NS(q). We can

understand this simply. If we think of scattering from any

particular atom i into the detector as occurring with some

‘local’ wavenumber change qi that depends on both the

position of the atom in the sample and the position of the

detector, then the far-field condition effectively requires that

the spread in these ‘local’ wavenumbers �q ’ kd/R must be

much less than the lowest wavenumber frequency associated

with the scale of the illuminated volume, 2�/d. For systems

with only short-range order, however, the limit of equation (9)

requires only that �q be much less than the lowest wave-

number frequency associated with structural correlations,

2�/�.

3. Temporal correlation functions in systems without
long-range order

3.1. Intensity autocorrelation function from homodyne
experiments

The time-averaged normalized autocorrelation function of

the measured intensity is

IðtÞIðt þ �Þ
� �

t

I2
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¼
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� �

I2
0

ð17Þ

where
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� �

t
¼ IðtÞ
� �

: ð18Þ

The first averages are over time but the second equality

assumes ergodicity so that the time average is replaced by an

ensemble average.

Within the approximation of equation (2), the cross term in

(17) is
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Following the treatment of x2, we can introduce a density

function n(r1, r2, r3, r4, �) =
P

ijlm�[r1 � ri(0)]�[r2 � rj(0)]�[r3 �

rl(�)]�[r4 � rm(�)]. The position of particles in the sum will be

correlated only if the positions differ by less than some time-

dependent length scale �(�). We therefore expect that

hnðr1; r2; r3; r4; �Þi ¼ n3
0 f r12; r13; r14; r23; r24; r34; �ð Þ þ n4

0;

ð20Þ

where, for instance, f(r12, r13, r14, r23, r24, r34, �)! f 0(r12, r13,

r23, r24, r34, �) + cn0 exp[�r14 /�(�)] as r14 ! 1, with c a

constant that depends on the illuminated volume geometry.

Similar relationships exist for the other terms. Equation (19)

can be written
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hI 0ð ÞIð�Þi ¼
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As with equation (13) above, the term with n4
0 is negligible for

q � �d/4�R, i.e. well beyond the forward-scattering region.

Then

hIð0ÞIð�Þi ¼
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The correlation function f limits the phase factor contributions

to those atomic pairs with rij < �(�). As with equation (7),

phase factors such as kðjr1 � R̂Rj
2
� jr4 � R̂Rj

2
Þ=2R will be

negligible if d�(�)/�R � 1. Because of the assumed homo-

geneity of the sample, phase factors such as

kðjr1 � R̂Rj
2
þ jr3 � R̂Rj

2
Þ=2R will again be negligible for q �

�d/4�R.

Thus, within these limits,
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3.2. Intensity autocorrelation function in heterodyne
experiments

In a heterodyne experiment the intensity measured is

I / Eref þ Escat

�� ��2 ffi Eref

�� ��2 þ 2Re E�refEscatð Þ; ð25Þ

where Eref is the electric field from a reference, Escat is the

electric field scattered by the sample, and we assume, as usual,

that Eref � Escat. If we neglect the stationary intensity from

the reference, the time-averaged normalized autocorrelation

of the intensity is then

IðtÞIðt þ �Þ
� �

t
¼ IðtÞIðt þ �Þ
� �

/ 2IrefRe E�scatð0ÞEscatð�Þ
� �

: ð26Þ

Within the approximation of equation (2), the correlation of

interest is
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1

R2

*X
i

exp �
ikjrið0Þ � R̂Rj

2

2R
þ iq � rið0Þ

" #

�
X

j

exp
ikjrjð�Þ � R̂Rj

2

2R
� iq � rjð�Þ

" #+

¼
1

R2

X
i; j

exp

(
ik jrjð�Þ � R̂Rj

2
� jrið0Þ � R̂Rj

2
h i

2R

� iq � rjð�Þ � rið0Þ
� �)

: ð27Þ

By the same arguments used above, in the limits of equation

(9) this reduces to
P

ij expf�iq � ½rjð�Þ � rið0Þ�g = NFðq; �Þ,
where F(q, �) is the intermediate scattering function (Berne &

Pecora, 2000).

3.3. Speckle size

The intensity at a given point on the detector depends on

the differences in path lengths of photons scattered from

different parts of the sample. The maximum difference in path

length will occur for scattering from opposite ends of the

sample. Within the approximation of equation (2), this

maximum difference in phase factors is then

k�lmax ’
k

2R

d

2

� �2

�
�d

2

� �2
" #

� q
d

2

� �
�
�d

2

� �	 


¼ �qd: ð28Þ

The detector intensity will fundamentally change when k�lmax

’ 2�, so that within the approximation of equation (2) the

speckle size is given by �q ’ 2�/d and the speckle size on the

detector is �x ’ R�/d, as is the case within the far-field

approximation.

4. Simulations

In order to verify the validity of the results above, (1 + 1)

dimensional simulations were performed. Fig. 2 shows how the

exact scattering speckle profile of equation (1) changes as a

function of detector distance for 103 randomly placed point

scatterers in a 300 mm beam of 8 keV photons. The two

calculations shown are both for an average wavenumber of

1 nm�1. For large distances (R = 5000 m), the calculated

structure factor speckle pattern from a given configuration

agrees well with the actual calculated intensity. However, for

detector distances shorter than the far-field limit of equation
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(5) (which is approximately 450 m in this case), the structure

factor calculation diverges strongly from the actual speckle

profile. As discussed above, the spatial size of the speckles is

still approximately �R/d. This ranges from 2500 mm for R =

5000 m to 7 mm for R = 14 m. These calculated numbers are in

good agreement with what is observed in the figure.

Although the actual speckle intensity is quite different than

that predicted by the structure factor when the detector is

closer than the far-field limit, the ensemble average of the

structure factor and the actual calculated intensity are equal,

as suggested by the calculations of x2. Fig. 3 shows the struc-

ture factor and actual calculated intensities for an ensemble of

102 configurations, each with 106 point ‘hard sphere’ particles

maintaining exclusion zones to create short-range order.

These calculations used a beam size of 300 mm, a detector

distance of 5 m and a photon energy of 8 keV. As expected

from the results of x2, the agreement is good.

In order to examine the use of homodyne XPCS in the

intermediate-field regime, a simulation was performed with

103 random walkers taking possible steps of 1 nm in each

Monte Carlo step (MCS). Typically runs of 2048 MCS are

used. In cases presented here, the beam size is again taken to

be 300 mm, the beam energy to be 8 keV and the detector

distance 5 m. The simulations examined wavenumbers of 0.25–

1.5 nm�1. Fig. 4 compares the normalized autocorrelation

functions obtained at different wavenumbers for both the

structure factor S(q) and the actual scattering intensity. The

symbols are simulated values and the lines are simple fits to an

exponential decay. As can be seen, the decay of the auto-

correlation function of the actual scattering intensity is very

similar to that of the structure factor. For both the structure

factor and the actual intensity autocorrelation functions, the

decay rate �(q) is proportional to q2, as seen in Fig. 5, and the

slopes are similar, giving similar diffusion constants.

5. XPCS experiment strategies

5.1. General considerations

As discussed in the Introduction, a fundamental constraint

on XPCS studies is the need to maximize their signal-to-noise

ratio (SNR) while minimizing perturbation of the sample
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Figure 2
Actual calculated intensity (red) and structure factor (blue) of randomly
placed point scatterers in a 300 mm beam for detector distances R =
5000 m (top) and R = 14 m (bottom).

Figure 3
Normalized ensemble-averaged intensity hIi (red) and structure factor
hS(q)i (blue) for ‘hard-sphere’ particles.

Figure 4
Autocorrelation functions of intensity (red) and S(q) (blue) for random
walkers at different wavenumbers.

Figure 5
Inverse correlation times ��1 for autocorrelation of calculated intensity
(red) and structure factor S(q) (blue) as a function of q2.



under study, either through radiation damage or thermal

spikes owing to adiabatic heating from individual pulses at

free-electron lasers, particularly LCLS.

At synchrotron sources, the inherent transverse coherence

length is � = R0/k�, where � is the source size and R0 is the

distance from source to sample. At the planned NSLS-II

coherent hard X-ray (CHX) beamline, the inherent vertical

coherence length at the sample position is approximately

277 mm and the horizontal coherence length is approximately

31 mm (Fluerasu, 2009). However, coherence lengths larger

than about 10 mm produce speckle sizes that are too small to

be used effectively with current CCD X-ray detectors. For

example, in the planned CHX hutch with a maximum sample–

detector distance of 15 m for SAXS studies and approximately

2 m for wide-angle X-ray scattering (WAXS) studies, use of a

beam with d = 277 mm would give speckles of size 8 mm and

1 mm for SAXS and WAXS, respectively. In contrast, most

CCD X-ray detectors have pixel sizes of 20 mm and larger.

Moreover, the sample–detector distance required to reach the

far field for a 277 mm beam is almost 500 m. At X-ray FEL

sources the beam can be even larger. For instance, at the X-ray

correlation spectroscopy (XCS) station being built at LCLS,

the unfocused X-ray beam size is approximately 500 mm. To

decrease the effective coherence lengths, and better match the

vertical and horizontal lengths, synchrotron beamlines often

use focusing to create a secondary source. This, however,

results in increased X-ray energy density in the sample,

potentially exacerbating beam damage problems in soft

materials. Focusing the unprecedented peak beam brilliance of

XFELs even further exacerbates concerns of sample damage

and heating.

As noted by Falus et al. (2006), it is highly desirable for

X-ray detectors to be developed with smaller pixel sizes to

take advantage of the inherently large coherence lengths from

current synchrotron sources, particularly in the vertical

direction. Using unfocused or less-focused beam would

potentially decrease sample damage. When detectors with

smaller pixel sizes do become available for XPCS studies of

materials with short-range structural order, scattering with an

incident beam even as large as several hundred micrometres

would still place XPCS experiments well within the inter-

mediate-field range identified in this work, guaranteeing that

experiments will give the proper ensemble-averaged result.

As discussed by Falus et al. (2006), in a conventional

homodyne experiment the SNR is approximately

	hIi½NM=ð1þ 	Þ�1=2, where hIi is the mean number of photons

counted per pixel in each time bin, N is the number of pixels

which can be averaged over, M is the number of time bins, and

the optical contrast is

	 ¼
h I 2 i

h I i 2 � 1: ð29Þ

The contrast is reduced by imperfect effective source coher-

ence and by the non-zero range of scattering angles over

which the detector integrates. In the far-field case, Lumma et

al. (2000) have shown that the optical contrast is approxi-

mately equal to the product of contrast factors in the x- and y-

directions. They calculate the factor in integral form [equation

(A9) of Lumma et al. (2000)] and give an analytical approx-

imation [equation (A11) of Lumma et al. (2000)]. Their inte-

gral derivation remains accurate in the intermediate-field

regime of equation (16). Parenthetically, however, we note

that their analytical approximation underestimates the optical

contrast as compared with calculations using the integral; in

low-contrast situations it is a factor of 21/2 smaller in each

direction.

5.2. Fixed number of detector pixels at XFEL sources

For simplicity we assume that the beam dimensions are the

same in the x- and y-directions, that the detector pixel sizes are

also the same in the two directions and that the beam intensity

is constant across its width. We initially assume that the

number of pixels N is fixed and that the beam is unfocused and

defined by slits to a square of size d. The mean number of

photons counted in each time bin in each pixel hIi is

proportional to d2a2/R2, where a is the pixel size. Using

equation (A9) of Lumma et al. (2000) for the optical contrast,

we therefore seek to maximize the function

	h I i

ð1þ 	Þ1=2
¼

ð2=d 2Þ
Rd
0

dx ðd� xÞ sin2ðSx=2Þ

ðSx=2Þ2

	 
2

da=Rð Þ
2

1þ ð2=d2Þ
Rd
0

dx ðd� xÞ sin2ðSx=2Þ

ðSx=2Þ2

	 
2
( )1=2

¼
w2

k2

ð2=w2Þ
Rw
0

dv ðw� vÞ sin2ðv=2Þ

v=2ð Þ
2

	 
2

1þ ð2=w2Þ
Rw
0

dv ðw� vÞ sin2ðv=2Þ

v=2ð Þ
2

	 
2
( )1=2

ð30Þ

where S = ka/R and w = kad/R. A normalized plot of the

function is shown in Fig. 6. Also shown is the calculated optical

contrast 	 owing to the integration of the scattered intensity

over each detector pixel. The SNR improves with increasing w.

However, 	 continuously decreases and, from a practical point

of view, Falus et al. (2006) suggest that uncertainty in the

baseline could be problematic for very small contrasts.
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Figure 6
Calculated relative SNR and optical contrast 	 as a function of the
parameter w = kad/R for an XFEL experiment using a fixed number of
detector pixels.



Therefore it is probably reasonable to choose some inter-

mediate value for w. With w = 10, the SNR is approximately

53% of its optimal value and the optical contrast owing to the

lateral coherence factors is 0.22. Using a detector with 20 mm

pixels at the XCS station with R = 5 m, this corresponds to an

incident beam size of approximately 60 mm giving a speckle

size of approximately 13 mm. However, a similar SNR and

optical contrast can be achieved for this same detector oper-

ating at a detector distance of 1 m with a beam size of only

12 mm. While the former example would be in the inter-

mediate-field regime, the latter would be at the transition to

the far-field regime. Thus, the variable w = kad/R governs the

SNR and permits extensive trade-off between beam size and

sample–detector distance.

Focusing the beam to a width d (instead of slitting it) can

potentially significantly improve the SNR. If we assume for

simplicity that the entire incident beam is focused without loss

and that the contrast factor for a coherent focused beam is the

same as for a parallel beam (since each point in the illumi-

nated sample volume maintains a well defined phase rela-

tionship to other points), then the function which must be

maximized for the optimal SNR is equation (30) divided by a

factor of d2. This is optimized by minimizing d. If the detector

pixel size a is set, then the smallest possible sample–detector

distance R consistent with the wavevector range desired and

the intermediate regime identified in this work would maxi-

mize w and hence the SNR as shown in Fig. 6. However, again

a moderate value of R may instead be desired to provide

reasonable contrast.

5.3. Fixed detection solid angle at XFEL sources

In SAXS experiments it is often possible to cover the full

range of scattering solid angle � defining a given reciprocal

space region of interest. WAXS experiments may also be

effectively limited to a fixed solid angle by the scattering

geometry and the photon wavelength. In these cases N = �R2/

a2 and, in the unfocused case where slits are used to define d,

we seek to maximize the function

	N1=2hIi

ð1þ 	Þ1=2
¼

ð2=d2Þ
Rd
0

dx ðd� xÞ sin2ðSx=2Þ

ðSx=2Þ2

	 
2

�R2=a2ð Þ
1=2

a2d2=R2ð Þ

1þ ð2=d2Þ
Rd
0

dx ðd� xÞ sin2ðSx=2Þ

ðSx=2Þ2

	 
2
( )1=2

¼
wd �1=2

k

ð2=w2Þ
Rw
0

dv ðw� vÞ sin2ðv=2Þ

v=2ð Þ
2

	 
2

1þ ð2=w2Þ
Rw
0

dv ðw� vÞ sin2ðv=2Þ

v=2ð Þ
2

	 
2
( )1=2

:

ð31Þ

For a given value of d, this function is optimized when w ’ 6,

so that the detector pixel size is approximately equal to the

speckle size. From a practical point of view, limits of detector

pixel size and sample–detector distances limit the ability to

achieve the optimal value w ’ 6 for large d. A plot of the

optimal value of equation (31) as a function of beam diameter

d is shown in Fig. 7; it uses values/limits appropriate for SAXS

at the XCS station and for typical CCD X-ray detectors: E =

8 keV, amin = 20 mm and Rmax = 14 m. Also shown in Fig. 7 is

the calculated optical contrast 	 and the optimal a/R ratio

within the constraints imposed by the above values. For this

combination of detector pixel size and maximum sample–

detector distance, the ideal w = 6 condition can be fulfilled for

beam diameters smaller than approximately 100 mm. The SNR

continues to improve with increasing d beyond this size, but

more slowly and with decreasing optical contrast. It is note-

worthy that a beam diameter of 100 mm would require a

sample–detector distance of over 60 m to reach the far field, so

that experiments would be in the intermediate-field regime

identified in this work.

If the beam is focused so that it has size d at the sample, the

SNR function to be optimized is equation (31) divided as

before by a factor of d2. For a given value of d, the optimal

value for the a/R ratio and resulting optical contrast can still

be read from Fig. 7. For strong focusing of the entire beam to a

few tens of micrometres or less, a SNR gain of an order of

magnitude or larger is potentially possible.

6. Conclusions

We have seen that XPCS experiments can be performed in a

well defined intermediate-field regime in addition to the

traditional far-field regime. This expands the space of possible

experimental parameters. However, for a given experiment,

trade-offs between sample damage/heating, focusing, incident

beam size, detector pixel size, number of detector pixels,

reciprocal space range of interest and sample–detector

distance need to be carefully considered to optimize the SNR.

While the presence of the intermediate-field regime of scat-

tering allows larger beam sizes to be used than are possible
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Figure 7
Calculated relative SNR, optical contrast 	 and a/R ratio (multiplied by a
factor of 105) as a function of beam size d for an optimized XFEL SAXS
experiment measuring scattering into a fixed solid angle. A minimum
detector pixel size of 20 mm and maximum sample–detector distance of
14 m is assumed.



within the usual far-field criterion, detector pixel sizes are

currently a significant limitation.
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