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The possibility of using a parabolic refractive lens with initial X-ray free-

electron laser (XFEL) pulses, i.e. without a monochromator, is analysed. It is

assumed that the measurement time is longer than 0.3 fs, which is the time

duration of a coherent pulse (spike). In this case one has to calculate the

propagation of a monochromatic wave and then perform an integration of the

intensity over the radiation spectrum. Here a general algorithm for calculating

the propagation of time-dependent radiation in free space and through various

objects is presented. Analytical formulae are derived describing the properties

of the monochromatic beam focused by a system of one and two lenses.

Computer simulations show that the European XFEL pulses can be focused

with maximal efficiency, i.e. as for a monochromatic wave. This occurs even for

nanofocusing lenses.

Keywords: X-ray focusing; refractive lenses; X-ray free-electron laser; semi-analytical
theory; femtosecond pulses.

1. Introduction

The X-ray free-electron laser (XFEL) is now a reality in the

USA (LCLS, 2011). Two other projects are under construc-

tion, in Japan (SCSS, 2011) and Germany (EXFEL, 2011). In

the case of pulse generation in the self-amplified spontaneous-

emission (SASE) regime, the European XFEL will produce

very intensive pulse trains of duration 100 fs with 1012 photons

per pulse. In addition, the pulses will be almost fully transverse

coherent (TDR, 2007). The pulse train consists of many single

spikes of duration 0.3 fs. Various spikes are incoherent;

therefore the coherent time is of the same time scale. Such a

short duration of pulses corresponds to the energy band �E

with a base photon energy E = h- !, which is equal to 12.4 keV

for the SASE1 beam of the European XFEL. According to the

project the relative energy band will be �E/E ’ 10�3.

The new possibility of generating very intensive femto-

second pulses stimulated several theoretical studies on time-

dependent X-ray diffraction in single crystals [see Bushuev

(2008) and references therein]. As a rule, the response of a

perfect crystal to an instantaneous plane incident wave was

calculated (Shastri et al., 2001) and then the diffraction of an

X-ray wave of arbitrary time structure was taken into account

by means of convolution. We note that the crystal diffraction

process is ruled by a single parameter, namely the deviation

from the Bragg condition, which depends linearly on both the

angular shift and the energy shift. It is easy to understand that

the response of a perfect crystal to an instantaneous plane

incident wave is mathematically completely the same as for

the case of a monochromatic spherical wave from a source

placed on the entrance surface of the crystal. However, the

latter was solved much earlier (Kato, 1961a,b; Afanasev &

Kohn, 1971) in an analytical form. Of course, it is of interest to

study the possibilities of using all optical elements with the

new XFEL source. Periodical multilayers were considered by

Ksenzov et al. (2008).

In this article we analyze the possibility of using a parabolic

refractive lens (Lengeler et al., 1999) with initial XFEL beams,

i.e. without a monochromator. It is known that the refractive

lens is a dispersive optical element because the refractive

index of matter depends on the photon energy. However, this

dependence is not strong. The transformation of the pulse

time structure by optical elements in this case is not an actual

problem because the coherent pulses (spikes) have a time

duration of 0.3 fs whereas the full time of the XFEL pulse is

100 fs. The full pulse consists of many spikes, and different

spikes are incoherent. Such a situation is similar to the case of

a synchrotron radiation pulse from a bending magnet and an

undulator pulse, and there is only a quantitative, not a quali-

tative, difference.

The time duration of a coherent pulse can be estimated

from the radiation energy spectrum according to the time–

energy uncertainty principle �t�E ’ h, where h is Planck’s

constant. Correspondingly, the shortest coherent pulses arise

in synchrotron radiation from a bending magnet. However,

these pulses cannot be measured because it is impossible to

select one coherent pulse from the many others which

propagate simultaneously. A real synchrotron radiation pulse

is determined by the time of flight of a bunch near the window,

but this full pulse is incoherent in time and is rather long. Only
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if the scattering process can make the time structure of the

outgoing coherent pulse longer than the full incoherent pulse

can this be measured. Such a situation takes place with nuclear

resonant (Mössbauer) scattering (Kagan et al., 1979).

Similarly, in the case of XFEL radiation the scattering

process has to make a pulse longer than 100 fs in order to be

measured. This is impossible with refractive optics as well as

with crystals and other optical elements. Therefore, it is

sufficient to calculate the integrated intensity over the time

duration of a coherent pulse. Using the Parseval formula, this

intensity is equal to the intensity of a monochromatic wave

integrated over the spectrum of incident radiation. The stan-

dard theory of focusing deals only with the space dependence

of the monochromatic wave. It is known that focusing is

impossible for a white synchrotron radiation beam and that a

monochromator is necessary. As follows from our computer

simulation, the European XFEL pulses can be focused as well

as for the monochromatic wave. Only a small widening of the

focused beam can occur in an undulator where �E/E is of the

order of 10�2. The excellent focusing occurs even for nano-

focusing lenses. Therefore a monochromator is not necessary.

This conclusion differs from the conclusion of TDR (2007).

The article is organized as follows. In x2 we derive general

formulae in terms of the frequency integral for the two

following processes: propagation of short coherent pulses of

XFEL radiation in free space, and transmission of such pulses

through various objects. Then we consider the one-dimen-

sional case and derive the analytical recurrent relations which

allow one to calculate any focusing system consisting of many

lenses. In x3 the structure of the incident wave and general

properties of the Gaussian wave are discussed. Then the

recurrent relations are applied to the cases of one and two

lenses, and analytical formulae are derived for the first time.

The results of computer simulations for polychromatic radia-

tion are presented in the final section.

2. General approach

As is known, the XFEL beam has a small transverse size, and

it propagates over a large distance along a straight line. The

diffraction theory of X-ray focusing and imaging with a

refractive lens describes two different phenomena. The first

one is the propagation of an X-ray wave in a vacuum, and the

second one is the transmission of an X-ray wave through

objects of various structure. We consider these phenomena

separately. The existing theory of focusing describes a

monochromatic wave. It is convenient to describe the propa-

gation of a pulse of short time duration in terms of mono-

chromatic theory through Fourier transformation. This allows

computer simulations developed for a monochromatic wave to

be used.

2.1. Propagation of an XFEL coherent wave in a vacuum

We choose the direction of wave propagation as the optical

axis which coincides with the z axis of our coordinate system.

Let us suppose that the electric field amplitude E(x, y, z0, t) is

known in some plane normal to the optical axis and located at

a distance z0 from the origin. Here x and y are coordinates

inside the plane (see Fig. 1) and t is the time. We do not specify

the polarization of the field because it will be the same in all

processes under consideration. We will find the relation which

describes the transformation of the field during a propagation

along the optical axis through free space. The field (wave-

function) in the new plane located at a distance z1 = z0 + zp is

a solution of the Maxwell wave equation in free space,

��
1

c2

@2

@t2

� �
Eðr; tÞ ¼ 0; � ¼

@2

@x2
þ
@2

@y2
þ
@2

@z2
; ð1Þ

with the boundary condition at the plane z = z0. Here c is the

speed of light, and r = x, y, z. We will find a solution as the

Fourier integral

Eðx; y; z1; tÞ ¼

Z
d! dk1 dk2

ð2�Þ3
Eðk1; k2; z0; !Þ

� expð�i!t þ ik1xþ ik2yþ ik3zpÞ; ð2Þ

where

Eðk1; k2; z0; !Þ ¼

Z
dt dx dy Eðx; y; z0; tÞ

� expði!t � ik1x� ik2yÞ: ð3Þ

Expression (2) has one free parameter, k3, and coincides with

the boundary condition at zp = 0.

Substituting (2) into (1) we find the free parameter

k3 ¼
!2

c2
� k2

1 � k2
2

� �1=2

: ð4Þ

We take into account that for XFEL radiation the function

Eðk1; k2; z0; !Þ, as a function of !, is localized around a very

large frequency !0 which corresponds to a photon energy h- !0

of about 12 keV. On the other hand, possible values of k1 and

k2 are rather small compared with !0 /c. Therefore we can

apply a paraxial approximation with very good accuracy,

k3 ¼
!

c
�

c

2!
ðk2

1 þ k2
2Þ: ð5Þ

Taking this into account we obtain finally
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Figure 1
Two planes across the optical axis which coincides with the z-axis of the
coordinate system.



Eðr; tÞ ¼

Z
d!

2�
expð�i!tÞEðr; !Þ; ð6Þ

where

Eðx; y; z1; !Þ ¼ expði!zp=cÞ
R

dx0 dy0 Eðx0; y0; z0; !Þ

� P!ðx� x0; zpÞP!ð y� y0; zpÞ: ð7Þ

Here we introduce the partial Kirchhoff propagator for the

monochromatic wave,

P!ðx; zÞ ¼ ði�zÞ
�1=2 exp i�x2=�z

� �
; � ¼ 2�c=!: ð8Þ

The formula (7) is well known in monochromatic theory. In

our derivation it was obtained from a property of the Fourier

transformation that the product of two functions in k-space

corresponds to the convolution of these functions in x-space.

The Kirchhoff propagator in k-space has the form

P!ðk; zÞ ¼ exp �i
cz

2!
k2

� �
: ð9Þ

Thus, we arrive at the conclusion that the propagation of a

time-dependent pulse along the optical axis can be success-

fully calculated in terms of monochromatic waves for which

the methods of calculation are well developed. Then the time

dependence of the field can be obtained by means of Fourier

transformation (6).

2.2. Transmission of an XFEL coherent wave through an
object

Let us consider the propagation of the field through an

object which is characterized by the complex susceptibility

�(r, t) as a space- and time-dependent function. Now we need

to consider the next Maxwell equation,

��
1

c2

@2

@t2

� �
Eðr; tÞ ¼

1

c2

@2

@t2

Z
dt0 �ðr; t � t0ÞEðr; t0Þ: ð10Þ

Here the right-hand side of the equation is proportional to

the induced current density which is calculated by a linear

approximation over the external field. In our case the angles of

scattering are very small; therefore we can neglect the size of

scattering centres. This is why the induced current at the point

r is determined by the field at the same point. A detailed

analysis of the interaction of X-rays with matter can be found

by Afanasev & Kagan (1968). We will find the solution in the

form

Eðr; tÞ ¼

Z
d!

2�
expð�i!t þ i!z=cÞAðr; !Þ; ð11Þ

where Aðr; !Þ is a new function. It is slowly varying in space,

and it has a maximum value at very high frequency !0. As a

rule, the object has a relatively small size L along the optical

axis. Taking this into account we neglect second derivatives of

Aðr; !Þ over space coordinates because the main change is

connected with the first derivative over z. As a result we

obtain the approximate equation

@

@z
Aðr; !Þ ¼ ið!=2cÞ�ðr; !ÞAðr; !Þ ð12Þ

which has the solution

Aðx; y; z1; !Þ ¼ TOðx; y; !ÞAðx; y; z0; !Þ ð13Þ

where z1 = z0 + L, and

TOðx; y; !Þ ¼ exp
h

ið!=2cÞ
Rz1

z0

dz0�ðx; y; z0; !Þ
i
: ð14Þ

Finally, we have the next formula for the electric field ampli-

tude,

Eðx; y; z1; !Þ ¼ exp½ið!=cÞL�TOðx; y; !ÞEðx; y; z0; !Þ: ð15Þ

The function TOðx; y; !Þ is called the transmission function.

Formula (15) is widely used in monochromatic theory as an

approximation for thin optical elements.

In this approximation the longitudinal size L of the object is

taken into account only in the phase factor because we neglect

the second derivatives over x,y coordinates. However, if we

consider a zero object, i.e. with � = 0, then we have to use the

formula (7) instead of (15) as it is more accurate. Therefore, in

computer simulations we consider the object as having a zero

longitudinal size and placed at its middle point. On the other

hand, the longitudinal distances in front of and behind the

object are increased by L/2.

2.3. One-dimensional case

The recurrent formulae (7) and (15) allow one to take into

account many various objects located on the optical axis and

all free space intervals between them. To simplify the formulae

and analysis we shall assume that the objects are homo-

geneous over the y coordinate. Therefore the transmission

function depends only on the x coordinate. In this case the

registered intensity has no y-dependence, and we exclude the

y coordinate in further derivations. Then the time dependence

of XFEL radiation field can be calculated by means of a

Fourier integral over a frequency spectrum,

Eðx; z; tÞ ¼

Z
d!

2�
expð�i!tÞEðx; z; !Þ; ð16Þ

and we have to calculate the propagation of the monochro-

matic harmonics of the radiation pulse from the source to the

detector. Below, to shorten the formulae, we shall omit the

index !.

The transmission function of a double concave parabolic

refractive lens can be written in the form

Tðx; fcÞ ¼ exp �i�
x2

�fc

� �
; fc ¼

f

1� i�
; f ¼

R

2�
; ð17Þ

where R is the radius of curvature at the parabola apex (see

Fig. 2). The complex susceptibility of the lens material � is

assumed to be homogeneous, and � = �2� + 2i�. The para-

meter � = �/� is a measure of the focusing. It is modest for

X-rays owing to absorption. We note that � � 1 and some-

times we shall consider a linear over � approximation.

A real refractive lens has a finite aperture A (see Fig. 2) and

equation (17) is valid only for |x| < A/2. We consider two cases

where the aperture of the lens is not essential. If the aperture

is rather large, then the transmission changes the amplitude of
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the incident plane wave owing to absorption. In this case the

full width at half-maximum (FWHM) of the intensity profile

behind the lens is equal to

A� ¼ e1

�f

�

� �1=2

; e1 ¼
2 ln 2

�

� �1=2

¼ 0:6643: ð18Þ

This value can be considered as an effective aperture of the

lens owing to absorption (Snigirev et al., 1996), and the

geometrical aperture does not influence the result of the

calculation. If this is not the case, and A� > A, then we shall

consider the cases where the FWHM of the incoming beam is

less than the aperture of the lens. In this case the geometrical

aperture does not influence the result, similar to the first case.

Below we restrict ourselves by these cases.

We note that in the general case the transmission function

(17) is a Gaussian function, i.e. it is the exponential of x2. It is

also known that the Gaussian wave propagates in free space

without changing its shape. Therefore we can make a general

statement that the incoming Gaussian wavefunction of the

coherent radiation does not change its shape during propa-

gation through the parabolic lens and propagation in free

space over a distance z. Such a process is described by the

equation

Eðx; z1Þ ¼
R

dx0 Pðx� x0; zpÞTðx
0; fcÞEðx

0; z0Þ; ð19Þ

which follows from the combined usage of (7) and (15). Here

z1 = z0 + zp and we omit the factor exp(i!zp /c) which can be

added to the final result.

2.4. Integral over time intensity

It is known that all kinds of X-ray radiation sources create

radiation with a pulse structure. The time duration of various

coherent pulses can be estimated from the energy spectrum

according to the time–energy uncertainty principle �t�E’ h,

where h is Planck’s constant and E is the photon energy. A

wide spectrum corresponds to a short coherent pulse duration.

If the measurement time is longer than the duration of the

coherent pulse we can integrate the time-dependent intensity

with infinite limits. As a result we have

hIðx; zÞi ¼

Z
dt Eðx; z; tÞ
�� ��2¼ Z d!

2�
Eðx; z; !Þ
�� ��2: ð20Þ

Even in this case, contrary to the monochromatic case, we

have to calculate the propagation of all energy harmonics in

the registered wavefield. The frequency region of integration

is defined mainly by the spectrum of incident radiation from

the source, but it can be modified owing to propagation

through the system. However, for hard X-rays and the system

considered in this work, such a modification cannot be strong.

We note that the 0.3 fs duration of a coherent pulse of an

XFEL spike is much smaller than the duration of the total

pulse, 100 fs. In many experiments with an XFEL it is assumed

that a short pulse is of duration 100 fs and consists of many

incoherent spikes which propagate simultaneously (EXFEL,

2011). This situation is similar to the case of a synchrotron

radiation pulse and an undulator pulse and has only a quan-

titative, not a qualitative, difference. The coherent pulse of

XFEL radiation is longer compared with synchrotron radia-

tion and undulator pulses. Thus, a measurement of the time

evolution of the coherent pulse will be impossible in current

experiments, although the energy spectrum of XFEL radiation

is just determined by the 0.3 fs time duration and the time–

energy uncertainty principle.

We note that the same situation takes place in the case of an

X-ray tube (Afanasev & Kohn, 1977). The relative energy

band �E/E for the characteristic Mo K� radiation is of the

order of 3 � 10�4. Therefore the duration of the coherent

pulses of atomic de-excitation is even longer than for XFEL

radiation; but the measurement time is much longer.

3. Focusing monochromatic wave: analytical analysis

3.1. Incident wave and general case of n lenses

The calculation starts from the wavefunction in front of the

first lens. This wavefunction is not known in detail owing to

many factors which are difficult to take into account. For

example, there may be various optical elements on the initial

path of the X-ray beam such as mirrors, monochromators, slits,

etc. Another reason is the very high speed of the radiating

electrons and the subsequent SASE regime. Therefore,

instead of taking into account the accurate unknown shape of

the wavefunction, we need to use a model approximate shape

for obtaining the results of the calculation which describe the

experimental results with reasonable accuracy. It is known that

the electron radiates a spherical wave in its own coordinate

system. At a large distance z0 each monochromatic component

of the wave from the point source, located at x0, is propor-

tional to P(x � x0, z0). As follows from our experience, such a

simple model allows the results of many experiments with

synchrotron radiation to be described where the spatial width

of the beam is not essential. This takes place if the beam is

restricted by the slit or pinhole.

In the more general case we need to take into account the

spatial structure of the beam. First of all, owing to relativistic

effects the spherical wave in its own electron coordinate

system is transformed to a wave with finite angular divergence

in the laboratory coordinate system. However, it is known that

within the beam cone the phase front of the wave remains

spherical (parabolic at a large distance). We would like to use

the model which was proposed for the first time by Kohn et al.

(2009). In this model the wavefunction in front of the first lens

is described by the same function P(x � x0, z0c), but with the
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Figure 2
Refractive-lens parameters.



complex longitudinal coordinate z0c = z0 � i	 under the

condition 	 � z0. If �0 is the angular divergence of the inci-

dent-beam intensity (FWHM), then it is easy to show that

	 ¼ �e2
1=�

2
0; ð21Þ

where e1 is determined by (18). Substituting the parameters of

XFEL, namely � = 0.1 nm, �0 = 1 mrad, we obtain 	 = 44 m. So

the condition z0 > 	 can be fulfilled on an XFEL source where

z0 is greater than 500 m. Under the specified condition the

angular divergence of the beam is independent of distance,

whereas the wavefunction has a form suitable for the calcu-

lations (see below). The transverse size of the beam at a

distance of 500 m is equal to only 0.5 mm.

Let us consider now an arbitrary lens of our lens system (the

first as a particular case) and introduce the most general form

for the Gaussian wave as follows (Kohn, 2003),

E0ðx; x0Þ ¼ Tðx; a0ÞPðx� x0; b0ÞTðx0; c0Þ; ð22Þ

where a0; b0; c0 are the complex parameters, the index 0 means

the position on the optical axis (z0) and

Tðx; aÞ ¼ exp �i�
x2

�a

� �
;

Pðx; bÞ ¼ ði�bÞ�1=2 exp i�
x2

�b

� �
:

ð23Þ

We want to formulate a theorem that the form (22) is

conserved on all paths from the first lens to the detector, and

only the complex parameters change their values. This change

takes the form of relations which can simplify both analytical

and numerical calculations of complex optical systems.

Assuming that the wavefunction in front of the lens has the

form (22), we substitute (22) into (19) and obtain an integral

which looks like a Fourier image of the Gaussian function. A

direct calculation can be performed taking into account the

well known optical integralZ
dk

2�
exp ikx� i

g

4�
k2

� �
¼ ðigÞ

�1=2 exp i�
x2

g

� �
; ð24Þ

which is similar to the Fourier image of the Kirchhoff propa-

gator [see formulae (8) and (9)].

The result of the calculation can be written in the same

form,

E1ðx; x0Þ ¼ Tðx; a1ÞPðx� x0; b1ÞTðx0; c1Þ; ð25Þ

where a1, b1, c1 are the new complex parameters and the index

1 means a position on the optical axis (z1). The new para-

meters a1, b1, c1 of the wavefunction at a distance zp behind

the lens can be calculated from the initial parameters a0, b0, c0

of the wave (22) by means of the formulae

a1 ¼ dðb1=b0Þ; b1 ¼ b0 þ zp � ðzpb0=dÞ;

c1 ¼ c0=ð1þ zpc0=b1dÞ; d ¼ a0=ð1þ a0=fcÞ:
ð26Þ

The derivation is shown in Appendix A. The relations (26)

allow one to calculate an optical system consisting of an

arbitrary number of refractive parabolic lenses placed with

arbitrary distances between them. This is very useful for a fast

estimation of the beam parameters transmitted through such a

system.

Applying formulae (26) n times for n lenses we obtain a

solution at a distance z from the last lens as (25) with the new

values of the parameters a, b and c where we have omitted the

indices. The intensity is a square modulus of (25). It is useful to

consider the relative intensity, i.e. divided by the intensity of

the incident beam in the case without lenses at the position of

the last lens, which is equal to (�ztÞ
�1 in our case, where zt is

the total distance from the source to the last lens. We note that

zt does not depend on z. The result can be written as

Iðx; z; x0Þ ¼
zt

jbj
exp �

½x� xmðzÞ�
2

2	2ðzÞ

	 

exp �

x2
0

2	2
0

� �
; ð27Þ

where

	ðzÞ ¼
4�

�
ðA� BÞ

� ��1=2

; xmðzÞ ¼ �Mx0;

M ¼
B

A� B
; 	0 ¼

4�

�
ðC � AMÞ

� ��1=2

;

A ¼ �Imða�1Þ; B ¼ �Imðb�1Þ; C ¼ �Imðc�1Þ:

ð28Þ

Equation (27) describes the Gaussian function for all z with

FWHM w(z) = e2	(z) where e2 = ð8 ln 2Þ1=2 = 2.355. The

position of the beam centre is determined by xm(z).

Let us consider the general conclusions about the para-

meters taking into account some evident physical properties of

the beam propagation. So, the peak height depends on the z

coordinate through jbj�1. In addition, it depends exponen-

tially on x2
0. The latter dependence appears owing to the fact

that the ray trajectory from the point source, strongly deviated

from the optical axis, cannot pass through the centre of

apertures of all lenses. Absorption inside the lens material is a

reason for decreasing the intensity maximum. In this way the

lens system restricts the effective region of the extended

source. It is evident that this property cannot depend on z. We

obtain from this conclusion that the quantity C � AM does

not depend on z. This property is valid in numerical calcula-

tions but it is very difficult to prove analytically.

The intensity integrated over x, Sðx0Þ = e3wðzÞImðz; x0Þ,

where Imðz; x0Þ = Iðxm; z; x0Þ and e3 = ð4 ln 2=�Þ�1=2 = 1.0645. It

is evident from the energy conservation law that it also does

not depend on z since we neglect the radiation absorption in

air. Considering the source placed on the optical axis we have

Sð0Þ ¼ �=2Gð Þ
1=2; G ¼ jbj2ðA� BÞ: ð29Þ

Thus, we find that the quantity G does not depend on z. On the

other hand, the parameter M = ImðbÞ=G depends linearly on z

since b is a linear function of z, as follows from the recurrent

formulae (26).

We express wðzÞ in terms of G as follows,

wðzÞ ¼ e2 �=4�Gð Þ
1=2
jbj: ð30Þ

Therefore we see that the z-dependence of the transverse size

of the beam is the same as jbj, whereas for the peak height it is

the same as jbj�1. We can write b = B0 þ zB1 where B0 and B1

research papers

88 V. G. Kohn � Focusing by refractive lenses J. Synchrotron Rad. (2012). 19, 84–92



are complex constants which can be determined, for example,

just behind the last lens. We call the distance z, where the

function jbj2 has the minimum value, the focal distance zf. It is

easy to see that zf = �ReðB0B�1Þ=jB1j
2.

We note that a compound refractive lens can consist of

many elements of various structure. Each element can be

considered as a separate lens. Such an approach allows one to

perform calculations for a thick lens for which the total lens

length is comparable with or even greater than the focal length

counted from the last lens.

3.2. Focusing by one lens

Let us consider the simplest case of one thin lens using the

recurrent relations described above. A sketch of the geometry

is shown in Fig. 3. If the point source is located on the optical

axis (x0 = 0) then the coefficient c is out of interest. In front of

the lens we have a =1, b = z0c. Just behind the lens we have

a = fc, b = z0c. Then we obtain in the linear approximation over

small parameter � that A = �/f, B = �	=z2
0. The width

(FWHM) of the beam is equal to

wð0Þ ¼
A�

ð1� B=AÞ
1=2
¼ A� 1þ

A2
�

A2
�

� ��1=2

: ð31Þ

Here we have taken into account (18) and (21) and introduce

the width (FWHM) of the beam in front of the lens as A� =

z0�0. If the effective aperture of the lens is less than this width,

then the width of the beam will be decreased. In the opposite

case it stays the same.

Considering the dependence along the optical axis we

obtain

B0 ¼ z0 � i	; B1 ¼ 1�
z0

f
þ

i

f
ð	 þ �z0Þ: ð32Þ

Neglecting here small imaginary parts we obtain the focus

distance as

zf ¼ �
ReðB0Þ

ReðB1Þ
¼

f

1� f=z0

: ð33Þ

The width of the beam at the focus distance

wðzfÞ ¼ wð0Þ
bðzfÞ

bð0Þ

����
���� ¼ wð f Þ

j1� f=z0j
1þ

A2
�

A2
�

� �1=2

; ð34Þ

where

wð f Þ ¼ �A� ¼ e1ð�f�Þ1=2
¼ e2

1�f=A� ð35Þ

is the beam width at the focus in the case of a plane incident

wave (z0 =1). We note that, for an XFEL, f � z0.

If the effective aperture of the lens is less than the initial

beam size, then the beam size just behind the lens will be

decreased by the factor � which can be considered as a

measure of focusing by the refractive lens. In the opposite case

the focusing phenomenon is less effective, and for

A� > A��
�1=2 it is absent. The parameter A� can be decreased

by decreasing the curvature radius R of the lens shape. It may

be useful to apply an adiabatic lens (Schroer & Lengeler,

2005) which begins with elements of large effective aperture

and continues with elements of decreasing effective aperture

together with decreasing the beam size.

3.3. Focusing by two lenses

A system of two lenses is of interest owing to the focusing of

a convergent wave by a second lens. To simplify the analysis

we assume a plane incident wave for the first lens. In this case

the relative wavefunction is described by ðb0=bÞ
�1=2

Tðx; aÞ

only, but we can use the recurrent relation (26) under the

condition b0 =1. In addition, we shall assume that two lenses

are made from the same material, therefore �1 = �2 = �.

Starting with a =1 we obtain a = fc1 � z1, b=b0 = a=fc1 behind

the first lens with complex focal length fc1 and just in front of

the second lens which is placed at distance z1 from the first

lens (Fig. 4). At a distance z behind the second lens with

complex focal length fc2 we calculate

a ¼ Fc � z ;
b

b0

¼ 1�
z

Fc

� �
1�

z1

fc1

� �
; ð36Þ

where

Fc ¼
ð fc1 � z1Þ fc2

fc1 þ fc2 � z1

: ð37Þ

Neglecting absorption of X-rays in the lenses, we obtain

immediately that the focus distance zf = ReðFcÞ of the two-lens

system, counted from the second lens, satisfies the relation

1

zf

¼
1

f1 � z1

þ
1

f2

: ð38Þ

If z1 < f1 then zf < f2.

The width of the beam at the focus can be obtained from the

imaginary part of Fc calculated in the linear over � approx-

imation. We can write the FWHM of the beam wðzfÞ at the

focus in the form

research papers

J. Synchrotron Rad. (2012). 19, 84–92 V. G. Kohn � Focusing by refractive lenses 89

Figure 3
One-lens focusing system.

Figure 4
Two-lens focusing system.



wðzfÞ ¼ w2ð f2Þ
ð pþ h2Þ

1=2

j pþ h j
; ð39Þ

where

w2ð f2Þ ¼ e1ð� f2�Þ
1=2; p ¼

f2

f1

; h ¼ 1�
z1

f1

: ð40Þ

Here w2ð f2Þ is the beam width at the focus in the case of

focusing a plane wave by only the second lens. The calculation

is direct and is shown in Appendix B.

The peak height of the relative intensity profile DðzfÞ at the

focus is equal to (27) with x = x0 = 0, zt = b0 and z = zf . We note

that b0 =1 and b =1 but their ratio has a sense of the ratio

of the focused intensity and plane wave intensity. We obtain

DðzfÞ ¼
b0

jbðzfÞj
¼
j pþ hj

�ð pþ h2Þ
: ð41Þ

The case of p� 1 is of interest. Here the first lens has a large

aperture, and the second lens gives a small beam size at the

focus. For the values of distance z1 where h2 > p we find that

zf ’ f2, wðzfÞ ’ w2ð f2Þ, but DðzfÞ ’ 1=ð�hÞ. Since a normal gain

is 1=� and h< 1 we obtain an increasing gain with decreasing

h. In another region, where h2 < p, but h> p, the beam size

becomes larger by a factor of p1=2=h. On the other hand, the

gain is equal to DðzfÞ ’ h=ð�pÞ. Finally, if h< p, the beam size

and the gain at the focus correspond to the first lens, and the

existence of the second lens does not influence the focusing.

For negative values of h the picture described above is in the

reverse direction. The maximum gain is reached at h =

ð pþ p2Þ
1=2
� p ’ p1=2 for p� 1. At this distance the beam

size in front of the second lens is equal to its effective aperture.

The maximum factor of increasing the gain is equal to

1=ð2p1=2Þ, which is two times smaller than the ratio of the

effective apertures of the lenses. The main result of our

analysis is that the two-lens system cannot make the beam size

smaller than the beam size created by the second lens alone,

but it can increase the intensity gain. Focusing a convergent

beam brings about a larger beam size compared with the

parallel-beam case. This analysis is in agreement with

computer simulations (Kohn, 2009).

4. Focusing polychromatic beam: computer simulations

The total XFEL pulse of duration 100 fs consists of many short

coherent pulses (spikes) of duration 0.3 fs. The width of the

energy spectrum of the radiation is determined by the short

coherent 0.3 fs pulses, but the measurement time is equal to

the full pulse of 100 fs, i.e. it is much longer. Under these

conditions the results of a theoretical study of the time

structure of a coherent pulse of duration 0.3 fs modified by

various optics as performed in several works [see Bushuev

(2008) and references therein] cannot be measured even with

a very fast detector. On the other hand, all conditions of the

sample illumination can be described in frequency space for

both very fast and very long processes. In the case of focusing

optics the main question is what happens with the beam width

at the focus in the case of short (non-monochromatic) pulses

in the integral over time measurement. It is evident that the

best focusing takes place for a monochromated beam. The

refractive properties of the lens depend on the frequency.

Therefore the focus distance of the lens is different for

different frequencies. As a result the beam size at the focus

can only be larger for the polychromatic beam compared with

the monochromatic beam. In this work we have studied the

space properties of the beam modified by the finite energy

spectrum of the XFEL radiation.

For the sake of simplicity we will assume that the energy

spectrum has a Gaussian shape and is centred at the energy E =

12.4 keV. As for the space part of the incident radiation, it is

the same for all energies. We shall consider various relative

FWHM �E/E. For the European XFEL, �E/E ’ 10�3.

Considering the polychromatic intensity we use the formula

(27) for the relative monochromatic intensity with x0 = 0 and

multiply it by the incident intensity with a normalized energy

dependence of Gaussian shape. As a result we have

hIðx; z;EÞi ¼

Z
dE1

zt

jbðz;EcÞj
exp �

x2

2	2ðz;EcÞ

� �
GðE1;�EÞ;

ð42Þ

where the parameters b, 	 and zt are described by (27), (28),

Ec = Eþ E1 = h- !, and

GðE1;�EÞ ¼
1

ð2�Þ1=2	E

exp �
E2

1

2	2
E

� �
; 	E ¼ �E=e2: ð43Þ

We note that � = hc=Ec where h is Planck’s constant, hc =

1.23984 keV nm.

In the general case it is difficult to calculate the integral (42)

analytically because of the complex energy dependence of the

parameter �. Therefore we present the results of a computer

simulation for some particular cases in which the parts � and �
of the refractive index are calculated from the table in the

f1f2 Windt:dat file which is part of the program XOP-2.0

(XOP, 2011). This table gives the contribution from the

photoabsorption process to the atomic scattering factors. In

addition, the contribution to � from the inelastic Compton

scattering is calculated based on the approximation given in

the book by Van Greken & Markowicz (1993). Let us consider

the case of one parabolic lens made of Si with radius of

curvature R = 1 mm. The other parameters have the following

values: z0 = 500 m, �0 = 1 mrad, E = 12.4 keV, z = 15.9 cm (z =

f = R=2� for E = 12.4 keV). We note that the maximum relative

intensity just behind the lens is equal to unity whereas at the

focus it is approximately equal to ��1 ’ 100. Fig. 5 shows the

intensity profiles at the focus distance for �E=E = 0, 10�3 and

10�2. The first two curves coincide completely and only the

third curve has a smaller maximum. Thus, the XFEL pulses

will be focused by such a lens as a monochromatic wave. Even

for the radiation from an undulator the width of the focused

beam will be only slightly wider compared with the mono-

chromatic beam. The FWHM of the focused beam is wð f Þ =

0.26 mm. The effective aperture is 100 times larger, and it is

equal to A� = 26 mm. The geometrical aperture must be two

times larger than A� , i.e. A = 52 mm. In this case the total
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length of the lens L = A2=4R = 0.68 mm. It is much smaller

than the focal distance.

Let us consider a nanofocusing lens with L ’ f/2 and A ’

2A� . Such a lens must have a radius of curvature of R =

0.01 mm, then f = 1.59 mm, A� = 2.6 mm, wð f Þ= 26 nm. We note

that for decreasing the focus width by ten times it is necessary

to decrease the curvature radius and the focus distance by 100

times. The calculation shows the same intensity profiles as

shown in Fig. 5 but with the scale of the x axis ten times

smaller; therefore the FWHM is 26 nm instead of 0.26 mm, but

the height of the maximum is the same. This fact can be

explained as follows. We variate the energy inside the interval

with small relative energy values. Such values correspond to

small relative values of the parameters b and 	 in (42).

Therefore the parameters which influence the shape of the

curves can be used in the linear approximation in the expan-

sion over �E/E. As a result, their absolute change is

proportional to the values for the middle energy. For example,

�E brings about �f, but �f /f is proportional to �E/E. So

decreasing f leads to a decreasing �f and the same for the

focus width. It is clear that under such conditions the shape of

the curves at the focus is invariant in the proper scale of the x

axis.

5. Conclusion

The coherent pulse duration of the European XFEL (0.3 fs) is

much smaller than the measuring time which is larger than the

full pulse duration (100 fs). Therefore we need to calculate the

integral of the coherent pulse intensity over time. This inten-

sity can be alternatively calculated as the integral over the

spectrum intensity for the monochromatic wave. We show that

for a parabolic lens system a semi-analytical method of

calculation can be useful, in which the Gaussian shape of the

wavefield is conserved and only three parameters are needed

for the calculation. Our calculations show that an energy

spectrum with relative width �E/E = 10�3 does not influence

the monochromatic focus property. Finally we can conclude

that the refractive optics can focus XFEL pulses completely,

i.e. as for a monochromatic wave. An additional mono-

chromator is not necessary. This is different from the conclu-

sion made in TDR (2007).

APPENDIX A
Derivation of formula (26)

We substitute (22) into (19), replace x0 by k, and obtain the

integral as follows,

E1ðx; z1Þ ¼
2� expði�Þ

i�ðzpb0Þ
1=2

Z
dk

2�
exp iks� i

g

4�
k2

� �
; ð44Þ

where

� ¼
�

�

x2

zp

þ x2
0

1

b0

�
1

c0

� �" #
;

s ¼ �
2�

�

x

zp

þ
x0

b0

 !
; g ¼ �

4�2

�

b1

zpb0

:

ð45Þ

Here b1 is determined by (26). Then we apply formula (24) for

the integral and replace the integral by the right-hand side of

(24). We obtain the result as a product of pre-exponential and

exponential factors. In calculating the first term we choose the

root ð�1Þ�1=2 = i for convenience. We note that the constant

phase factor in the wavefield amplitude does not influence the

intensity. Then it is easy to calculate the pre-exponential factor

as ði�b1Þ
�1=2.

The exponential factor

exp i�þ i�
s2

g

� �
¼ exp i�

ðx� x0Þ
2

�b1

�
x2

�a1

�
x2

0

�c1

� �	 

; ð46Þ

where a1 and c1 are determined by (26). The latter formula can

be verified by direct calculation.

APPENDIX B
Derivation of formula (39)

We note that in our case wðzfÞ = e2	ðzfÞ = e1½� ImðFcÞ�
1=2.

It follows from (28) because e1 = e2ð4�Þ
�1=2, B = 0 when

b = 1, A = ½ImðFcÞ�
�1 because ReðFc � zfÞ = 0. We need to

calculate ImðFcÞ from (37) in the linear over � approximation.

Applying notation (40) we have

Fc ¼ f2

ðhþ i�Þð1þ i�Þ

ðhþ pþ i�ð1þ pÞ
: ð47Þ

In the linear over � approximation we find finally

ImðFcÞ ¼ f2�
pþ h2

ð pþ hÞ2
: ð48Þ
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Figure 5
Relative intensity profiles at the focus for a parabolic refractive lens made
from Si, with the curvature radius R = 1 mm, for E = 12.4 keV, and �E=E
= 0 (curve 1), 10�3 (curve 2) and 10�2 (curve 3). Curves 1 and 2
completely coincide with each other and have a maximum of 100. See text
for more details.
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