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X-ray microdiffraction is a powerful technique for conducting high-spatial-

resolution lattice strain measurements. However, there has been limited

validation of the technique to date. An experiment was conducted at the

Advanced Light Source to assess the uncertainty of deviatoric lattice strains

measured using polychromatic X-ray microdiffraction. It is shown that the

measurement uncertainty is different for each component of the deviatoric

lattice strain tensor. Monte Carlo simulations of the experiment are used to

explain the differences in uncertainty. The simulations point to the existence of

spurious deformation modes that arise erroneously in the strain calculation

owing to measurement noise and limited pole figure coverage. Methods for

reducing measurement uncertainty are proposed.
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1. Introduction

X-ray microdiffraction is a high-spatial-resolution tool for

measuring crystallographic orientation and strain in crystalline

materials (Chung & Ice, 1999; Ice & Pang, 2009). High spatial

resolution is achieved using an X-ray beam with cross-

sectional dimension of the order of 1 mm. A two-dimensional

spatial map of the orientation and strain fields can be obtained

by translating the sample through the beam (Tamura et al.,

2003, 2005). An extension of this technique enables three-

dimensional spatial resolution (Larson et al., 2002). When the

grain size is larger than the beam cross section, orientation and

strain are measured with subgrain spatial resolution.

The full strain tensor """ can be additively decomposed into

volumetric and deviatoric components,

""" ¼ "vol I þ """0; ð1Þ

where "vol = trð"""Þ=3 is the volumetric strain, """0 is the deviatoric

strain, and I is the second-order identity tensor (Reddy, 2008).

The volumetric strain is due purely to dilatation. Deviatoric

strain, in contrast, is due to distortional shape change of the

crystal lattice, independent of dilatation.

Microdiffraction experiments can be conducted using either

polychromatic or monochromatic X-rays (Chung & Ice, 1999;

Ice & Pang, 2009). The Laue pattern captured in a single

polychromatic image can be used to calculate the deviatoric

lattice strain tensor. Monochromatic energy scans consist of

multiple monochromatic images taken over a range of ener-

gies. An energy scan can be used to calculate the projection of

the lattice strain tensor in the scattering vector direction.

Energy scans of a minimum of four scattering vectors are

required to determine the full lattice strain tensor. Alternately,

a polychromatic image can be coupled with one or more

energy scans to determine the full lattice strain tensor. The

coupling of polychromatic and monochromatic experiments to

determine the full lattice strain tensor offers a significant

reduction to the data collection time required for the multiple

energy scan method. In this investigation we focus on devia-

toric lattice strain measurement using polychromatic X-rays.

While polychromatic X-ray microdiffraction possesses

much potential, there has been limited validation of its ability

to resolve the entire deviatoric lattice strain tensor. A proof-

of-concept experiment on a bent silicon wafer (Larson et al.,

2002) demonstrated the technique’s capability to measure

normal strain components. However, shear strain components

were not reported. Validation studies have also been

performed on unstrained crystals used for calibration of the

strain measurements (Chung & Ice, 1999). Uncertainty

analysis by Zhang (2009) dealt only with normal strain

components and employed a simplified geometric model.

In this investigation the component-by-component uncer-

tainty of deviatoric lattice strain measured using polychro-

matic X-ray microdiffraction was assessed. Experiments were

performed at the Advanced Light Source on a thin wire

specimen loaded in situ under uniaxial tension. Monte Carlo

simulations of the experiment were used to quantify the

uncertainty in the measured strain components. The simula-

tions point to the existence of spurious deformation modes
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that arise erroneously in the strain calculation owing to

measurement noise and limited pole figure coverage. These

spurious deformation modes affect specific components of the

deviatoric lattice strain tensor. As a result, measurement

uncertainties are different for each strain component.

2. Methodology

2.1. Diffraction experiment

An experiment was conducted at beamline 12.3.2 of the

Advanced Light Source (Kunz et al., 2009) to assess the error

in deviatoric lattice strain measurements conducted using

polychromatic X-ray microdiffraction. An AISI 304 stainless

steel wire was loaded in situ under uniaxial tension using a

custom-built load frame (Fig. 1). The wire was wound around

the two load frame capstans. Load was applied by pulsing a

geared stepper motor, which turned the drive capstan, tight-

ening the wire. The reaction capstan was attached to a linear

slider bearing and rested on two load cells, which measured

the axial force on the wire. The wire was loaded incrementally

in a series of six load steps in the elastic regime. At each load

step an area scan was performed in which 100 diffraction

images were taken in a 10 mm � 10 mm grid near the center of

a large grain.

The experimental geometry is presented in Fig. 2. The wire

axis is inclined at a 45� angle to the incoming beam. The

incoming 1 mm � 1 mm polychromatic X-ray beam impinges

on a subgrain region of the wire specimen. It also impinges on

grains of LaB6 powder, applied to the surface of the wire for

calibration purposes. Diffracted X-rays are produced for each

grain and set of crystal lattice planes that satisfy Bragg’s law.

A subset of the diffracted X-rays is sampled by a circular

MARCCD area detector positioned 79.5 mm above the

sample volume. Detector spatial distortion is corrected by the

MAR acquisition software. The detector diameter is 133 mm,

and the padded detector image size is 1024 pixels �

1024 pixels. The right-handed Cartesian laboratory coordinate

system XYZ is defined such that the Y-direction is antiparallel

to the direction of the incoming beam. The right-handed

Cartesian sample coordinate system xyz is defined with the

y-direction parallel to the wire axis. For a perfectly aligned

apparatus, the laboratory X-direction is parallel to the sample

x-direction, and the two coordinate systems are related by a

rotation of 45� about the common X- and x-direction.

Prior to the experiment, the wire was rolled to obtain a

rectangular 186 mm � 107 mm cross section. It was then

annealed in a vacuum-tube furnace. After 30 min at 1353 K

the furnace was turned off and allowed to air cool, while still

maintaining a vacuum inside the tube. The annealing process

alleviated residual elastic strain and produced large grain size.

The largest grains extended almost entirely across the width of

the wire, producing a quasi-bamboo microstructure (Fig. 3).

Local stress states within polycrystals are, in general,

different from the macroscopic stress. However, because of

the quasi-bamboo microstructure, the local stress states near

the centers of large grains can be approximated as homo-

genous and equal to the macroscopic stress. The macroscopic

stress is computed from the axial load and cross-sectional area

of the wire. Hooke’s law is then used to calculate lattice strain

from the stress, crystallographic orientation and anisotropic

crystal stiffness. The orientation of the crystal interrogated in

the experiment, expressed as a Rodrigues vector, is {�0.1810;

�0.2245; 0.2514}. The Rodrigues vector is an angle-axis

parameterization of the rotation that maps the crystal-
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Figure 1
The custom-built load frame used to load the wire specimen in situ. The
wire specimen is wound around the two capstans. The wire is barely
visible in this photograph owing to its small cross section (186 mm �
107 mm). The distance between the capstans is 34 mm.

Figure 2
Schematic of the diffraction experiment showing the laboratory and
sample coordinate systems.

Figure 3
Orientation map depicting the section of the stainless steel wire specimen
that encompasses the strain measurement region. The entire width of the
wire in the x-direction is captured in the image.



lographic axes to the sample axes (Frank, 1988). Single-crystal

elastic constants were obtained from Ledbetter (2001). The

theoretical deviatoric lattice strains, computed by using

Hooke’s law and subtracting the volumetric strain, were

compared with the measured deviatoric lattice strains.

2.2. Deviatoric lattice strain calculation

A representative diffraction image is presented in Fig. 4.

Diffraction peaks are high-intensity regions that correspond to

the locations where diffracted X-rays intersect the detector.

The spatial intensity field corresponding to each diffraction

peak is fit using a two-dimensional Lorentzian function. Peak

fitting is performed using X-ray Microdiffraction Analysis

Software (XMAS) (Chung & Ice, 1999). The centers of the

fitted diffraction peaks are taken to be the peak positions

on the detector. The directions of the diffracted beams

are calculated from peak positions and the experimental

geometry. Scattering vector directions are calculated using

Bragg’s law, which states that scattering vectors bisect the

incoming and diffracted beams. Scattering vectors are aligned

with the lattice plane normals. Thus, the scattering vector

direction is equivalent to the lattice plane unit normal. The set

of unit normals for each diffraction image is indexed using

XMAS to identify the grain and crystallographic plane

corresponding to each normal. The indexing process also

identifies the crystallographic orientations of the diffracting

grains.

A geometric model is employed in the lattice plane unit

normal calculation. The model describes the position (XYZ),

pitch (X-rotation) and yaw (Z-rotation) of the detector rela-

tive to the sample position and incoming beam direction.

Model parameters are determined from LaB6 calibrant data.

For each calibrant pattern an iteration is performed on the

geometric model parameters and crystal orientation. The

iteration seeks to minimize the angles between theoretical and

measured diffracted beams. The LaB6 powder is assumed to be

unstrained. Geometric model parameters are averaged for

each load step. The parameters are different for each load step

owing to sample movement during loading and repositioning

of the detector between load steps.

Deviatoric lattice strain is calculated from the stainless steel

lattice plane unit normals. The customary approach to strain

calculation involves reconstructing the reciprocal lattice

(Chung & Ice, 1999). We, however, adopt a mechanics-based

approach similar to Edmiston et al. (2011) for polychromatic

experiments. The two methods describe the same physics

and produce similar results. However, the mechanics-based

approach offers additional insight into the deformation kine-

matics.

The mechanics-based method utilizes the deformation

gradient tensor (Reddy, 2008). The deformation gradient F

maps differential material fibers (or vectors) from a reference

configuration B0 to a deformed configuration B. For crystal-

line materials the deformation gradient may be defined locally

at points within a grain to aid in the interpretation of

diffraction data.

Following the notation of Marin & Dawson (1998), the local

deformation can be multiplicatively decomposed into a lattice-

uncoupled plastic deformation F p, followed by a lattice-

coupled deformation F�,

F ¼ F�F p: ð2Þ

This decomposition introduces an intermediate configuration
�BB. The decomposition is illustrated schematically in Fig. 5.

The lattice-uncoupled plastic deformation is produced by

processes such as homogeneous crystallographic slip and

diffusion. The lattice structure and orientation are unaltered

by lattice-uncoupled plastic deformation, and so lattice

vectors are unchanged by the deformation. The lattice

response is therefore uncoupled from changes in material

fibers induced by this part of the total deformation. The

lattice-coupled deformation includes lattice rotation, elastic

stretch and certain types of inelastic processes, such as twin-

ning. In contrast to the lattice-uncoupled behavior, for lattice-

coupled deformation modes the lattice vectors transform in

the same manner as material fibers. Thus, the lattice response

is directly coupled to changes in the material fibers associated

with the deformation. Lattice-uncoupled deformation does

not affect diffraction peak positions because lattice structure
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Figure 5
The local deformation F is decomposed into a lattice-uncoupled plastic
deformation F p, followed by a lattice-coupled deformation F�.

Figure 4
Representative diffraction image. Intensity is plotted on a logarithmic
scale. High-intensity spots are from the stainless steel specimen. Low-
intensity spots are primarily from the LaB6 calibrant.



and orientation are unaltered. Changes in diffraction peak

positions are produced only by the lattice-coupled deforma-

tion.

The lattice-coupled part of the deformation gradient tensor

F� is recovered and used to calculate deviatoric lattice strain

and rotation. The lattice strain and rotation calculation is

essentially a geometric mapping problem that consists of

finding F� which best maps between two sets of lattice plane

unit normals, subject to an imposed volumetric constraint.

Lattice plane normals transform according to

F �T n̂ni
¼ ci n̂ni

0; ð3Þ

where n̂ni is a lattice plane unit normal in the deformed

configuration, n̂ni
0 is the corresponding lattice plane unit normal

in the reference configuration, and ci is a scale factor. Super-

script i = 1; 2; . . . ;m indexes the plane unit normals associated

with the m diffraction peaks. The derivation of (3) can be

found in Appendix A. Since polychromatic diffraction does

not provide information about volumetric deformation, a

volumetric constraint must be specified. This is accomplished

by setting one of the scale factors equal to unity,

cm
¼ 1: ð4Þ

The lattice plane unit normal mapping (3) represents a system

of equations. Lattice plane unit normals in the unstrained

reference configuration are either measured experimentally

prior to deformation or calculated from the undeformed

crystal geometry. Unit normals in the deformed configuration

are measured by the diffraction experiment. Each diffraction

peak contributes a vector equation with three components, for

a total of 3m scalar equations. There

are nine unknown components of

the deformation gradient and m� 1

unknown scale factors, following the

imposition of the volumetric constraint,

resulting in a total of mþ 8 unknowns.

Therefore m must be greater than or

equal to 4 to solve the system of equa-

tions uniquely. Additionally, there must

exist a subset of four plane normals such

that any three normals chosen from the

subset are linearly independent (Chung

& Ice, 1999). A least-squares optimiza-

tion is established to solve for the

components of the deformation gradient

and unknown scale factors. Linearity

enables the optimization to be written as

a matrix inversion, resulting in fast

computation.

Once calculated, F� is multiplicatively

decomposed into stretch and rotation

components using polar decomposition

F� ¼ V�R�; ð5Þ

where V� is the left stretch tensor and

R� is the lattice rotation matrix. The

stretch tensor is further decomposed

into a volumetric scaling J � = det F� and an isochoric stretch
~VV�,

V� ¼ J �1=3 ~VV�: ð6Þ

This decomposition separates the isochoric stretch from the

arbitrary volumetric scaling imposed by the volumetric

constraint (4). Principal values and directions of the isochoric

stretch tensor are computed using eigenvalue analysis. Prin-

cipal deviatoric lattice strains are calculated from the natural

logarithms of the principal values of ~VV�. A change of basis

relates the components of the deviatoric lattice strain tensor in

the principal and sample bases (Reddy, 2008).

The lattice rotation matrix can be decomposed into a series

of three rotations. For analysis, we employ the decomposition

R� ¼ R�zR�yR�x; ð7Þ

where R�x, R�y and R�z represent rotations about the sample

coordinate axes. The angular rotations about the sample x, y

and z axes are represented by �, � and �, respectively.

3. Deviatoric lattice strain measurements

Deviatoric lattice strain measurements are presented in Fig. 6.

Each data point corresponds to 100 measurements taken in a

10 mm� 10 mm area scan. Since the measurements were taken

near the center of a large grain, the strain field is approxi-

mately homogeneous over the sampled region. The average

strain measurement for each area scan is plotted with a

marker. Error bars represent the full range of measured strain.

Theoretical strain, calculated using anisotropic elasticity, is
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Figure 6
Components of the deviatoric lattice strain tensor are plotted as a function of macroscopic axial
load. Error bars represent minimum and maximum values for each area scan. Normal strains agree
well with anisotropic elasticity theory, but shear strains do not. The discrepancy in shear
components is attributed to measurement noise coupled with limited pole figure coverage.



shown as a solid line. The wire is loaded in the y-direction.

Thus, the normal strain in the y-direction is positive. Normal

strains in the x- and z-directions exhibit Poisson-like

contraction. The relationship between lattice strain and

macroscopic load is expected to be linear in the elastic regime.

The experimental shear strain components exhibit greater

deviation from linearity than the experimental normal strain

components, which implies greater error in the shear compo-

nents. Deviation between average measured strain and theo-

retical strain is also indicative of measurement error. Normal

strain components agree well with theoretical values, whereas

shear strain components do not. In addition, the range of

strain measured at a fixed load step is greatest for shear

components "0yz and "0xz. The differences in error magnitude

between the normal and shear components is indicative of

component-wise differences in measurement uncertainty. The

reason for the differences in uncertainty is examined in the

subsequent section.

4. Discussion

4.1. Uncertainty analysis

There are two main sources of lattice strain uncertainty in

the diffraction experiment. The first source is uncertainty in

the diffraction peak positions on the detector plane. Peak

position uncertainty is dependent on detector distortion,

detector spatial resolution, diffraction geometry, peak fit

model and quality of the diffraction peaks. The spatial

distortion is corrected within the MAR acquisition software

and shown to be insignificant after correction, as tested on

a piece of perfect silicon crystal (Kunz et al., 2009). The

contribution of detector distortion to peak position uncer-

tainty is, therefore, not considered in this paper. Without

analytic peak fitting, peak position uncertainty is of the order

of the spatial resolution of the detector (�1 pixel). Analytic

peak fitting reduces the uncertainty in the peak positions by

about an order of magnitude. Therefore, an estimate of the

peak position uncertainty at a 95% confidence interval for

good quality diffraction peaks is �0.1 pixel. Peak quality is

reduced by plastic straining. The high dislocation density

produced by plastic straining causes peak smearing and frag-

mentation (Ice & Pang, 2009) resulting in larger peak position

uncertainty. Plastic straining effects were not an issue in the

present experiment because the wire was annealed prior to

loading and because the stress remained below the yield point.

The second source of uncertainty is uncertainty in the

geometric model used to calculate lattice plane unit normals

from the detector peak positions. Uncertainties in the values

of the geometric model parameters are quantified using the

distributions of measured geometric parameters. The true

values of the parameters are assumed to be equal to the mean.

For a single load step there are 100 diffraction images. Each

image contains about two calibrant patterns on average for a

total of about 200 sets of geometric parameters. The uncer-

tainty u in the mean geometric model parameters at a 95%

confidence level is calculated assuming a normal distribution,

u ¼ �1:96 S=N1=2; ð8Þ

where S is the standard deviation of the measured detector

parameters and N is the number of calibrant patterns (Dunn,

2010). The maximum uncertainty across all six load steps is

taken to represent the uncertainty in the geometric model

parameters. Uncertainties in the X and Y positions of the

detector are�0.04 pixels (�5 mm) and�0.07 pixels (�9 mm),

respectively. Uncertainty in the sample-to-detector distance is

�4 mm, and the uncertainty in the detector pitch (X-rotation)

and yaw (Z-rotation) are both �0.005�. The thickness of the

calibrant layer, estimated at 30 mm, contributes to the uncer-

tainty in the Y-position of the detector. For this reason the

detector Y-position has greater uncertainty than the X-posi-

tion. Additional uncertainty in the geometric model is intro-

duced by sample translation during the area scan. There is

some variation in geometric model parameters owing to

imperfect alignment of the wire and stage translation axes. For

a 10 mm � 10 mm area scan the variation in the geometric

model parameters owing to stage translation is at least an

order of magnitude less than the corresponding uncertainties

determined from the calibrant. Thus uncertainties in the

geometric model parameters owing to stage translation are

negligible for this particular experiment.

Monte Carlo analysis was performed to quantify uncer-

tainty in the deviatoric lattice strain components. A noiseless

diffraction pattern was simulated for an unstrained crystal. For

105 trials, random perturbations were introduced into either

the peak position data, geometric model parameters or both.

Perturbations were chosen randomly from a normal distribu-

tion with zero mean and 95% confidence interval equal to the

uncertainty in the relevant quantity as determined by the

experiment. Geometric model parameters were assumed to be

uncorrelated. Lattice strain and rotation were then calculated

for each trial using the noisy data and parameters. Since, for

this analysis, the true value of the lattice strain is zero, the

strain error is equal to the calculated strain. Similarly, the

rotation error is equal to the calculated rotation. The uncer-

tainty in each strain and rotation component was calculated by

evaluating the 95% confidence interval of the resulting error

distributions.

The calculated uncertainties are presented in Table 1.

Uncertainties in both peak positions and geometric model

parameters contribute to the lattice strain uncertainty. Strain

uncertainty owing to peak position uncertainty is larger than

that owing to geometric model uncertainty. The total uncer-

tainty is different for each strain component. Shear compo-

nents "0yz and "0xz exhibit the greatest uncertainty. The

uncertainty in "0yz is almost four times larger than the uncer-

tainty in "0zz. The large uncertainties in "0yz and "0xz are

consistent with the large experimental errors in these

components observed in the present study.

Two-dimensional spatial maps of deviatoric lattice strains

measured by Chen et al. (2011) and Chao et al. (2009) also

provide evidence of greater uncertainty in shear components

"0yz and "0xz. These measurements exhibit sharp local gradients

that are present only in certain strain components. These
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sharp local gradients are likely artifacts of measurement noise

and are therefore indicative of greater measurement uncer-

tainty. Deviatoric lattice strain maps of plastically deformed

quartz (Chen et al., 2011) exhibit sharp local gradients in "0yz

and "0xz, suggesting greater uncertainty in these components.

Similarly, deviatoric lattice strain maps of plastically deformed

nickel-base Alloy 600 (Chao et al., 2009) exhibit sharp local

gradients in "0xz. These works support the conclusion that

measurement uncertainty is different for each lattice strain

component, with shear components "0yz and "0xz having the

greatest uncertainties.

4.2. Spurious deformation modes

The large uncertainties in "0yz and "0xz can be explained by

the existence of spurious deformation modes. Spurious

deformation modes are deformations that tend to arise erro-

neously in the deformation gradient calculation owing to

measurement noise and limited pole figure coverage. The

spurious deformation modes can be identified by examining

the correlations between strain and rotation errors computed

from the Monte Carlo simulation. The simulation with

uncertainties in both peak positions and geometric model

parameters is considered. Scatter plots of strain and rotation

errors are presented in Fig. 7. The data form ellipsoids. For

quantities that are not correlated, the principal axes of the

ellipse lie along the coordinate axes. The principal axes are

rotated away from the coordinate axes

as the level of correlation increases.

Correlation coefficients are presented in

Table 2. There is a strong 97% correla-

tion between "0yz and �, which points to

the existence of a coupled yz-shear and

x-rotation mode. There is also a strong

94% negative correlation between "0xz

and � which suggests a coupled xz-shear

and y-rotation mode. A 71% negative

correlation between "0xx and "0yy

uncovers an xy-extension/contraction

mode. The xy-extension/contraction

mode is an isochoric deformation in the

xy-plane. One might therefore expect

xy-shear, which is also an isochoric

deformation in the xy-plane, to be a

spurious deformation mode.

Pole figures depicting the angular

changes in lattice plane normal direc-

tions for the four spurious deformation

modes are plotted in Fig. 8 using an

equal area projection. The angle

changes correspond to an effective

strain of 100 m". The region from which

lattice plane normals are sampled by the

experiment is outlined in white. Lattice

plane normals within the sampling
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Table 1
Uncertainties of strain and rotation components calculated using Monte Carlo simulations.

Strain uncertainties are in m" and rotation uncertainties are in 1/1000�.

"0xx "0yy "0zz "0yz "0xz "0xy � � �

Peak position �70 �64 �45 �221 �147 �70 �11:9 �7:4 �4:4
Geometric model �46 �24 �39 �75 �46 �31 �2:0 �0:7 �5:8
Combined �84 �68 �59 �233 �154 �77 �12:0 �7:4 �7:3

Figure 7
Scatter plots of strain and rotation errors calculated using Monte Carlo simulation of the diffraction
experiment. Strains are expressed in microstrain and rotations are expressed in degrees. There is a
high correlation between yz-shear and rotation about the x-axis (�) and between xz-shear and
rotation about the y-axis (�).

Table 2
Correlation coefficients between strain and rotation errors calculated
using Monte Carlo simulation.

A value of�1 indicates perfect correlation, whereas a value of 0 represents no
correlation.

"xx "yy "zz "yz "xz "xy � �

"yy �0.71
"zz �0.59 �0.14
"yz 0.21 0.06 �0.36
"xz �0.04 0.08 �0.04 0.12
"xy 0.05 �0.01 �0.05 0.04 �0.22
� 0.29 0.04 �0.45 0.97 0.13 0.05
� 0.03 �0.08 0.05 �0.14 �0.94 0.13 �0.15
� �0.03 0.03 0.01 0.00 0.34 �0.64 0.00 �0.17



region are closely aligned with the sample z-axis. Spurious

deformation modes produce relatively small changes to lattice

plane normal directions in the sampling region. Considering

only the sampling region, spurious deformation modes appear

similar to an identical mapping that does not produce any

deformation. In the presence of measurement noise, it can be

difficult to discern between a spurious deformation mode and

an identical mapping. As a result, spurious deformation modes

can arise in the deformation gradient calculation, which in

turn gives rise to strain and rotation errors. Spurious defor-

mation modes contribute to the uncertainty of the strain and

rotation components associated with each mode.

The angle change in the sampling region is a measure of the

signal-to-noise ratio for a given deformation mode. Signal

is lowest for the coupled shear-rotation deformation modes.

Consequently, "0yz and "0xz exhibit the greatest experimental

error. Signal amplitude is slightly higher for xy-extension/

compression and xy-shear deformation modes, which accounts

for the errors in "0xy.

The precision of the lattice strain measurements would be

increased by increasing pole figure coverage. This could be

accomplished by using a larger area detector or multiple

detectors. Lattice strain measurements could also be improved

by using a detector with higher spatial resolution to reduce

measurement noise.

5. Conclusions

Polychromatic X-ray microdiffraction was used to measure

deviatoric lattice strain in a wire specimen loaded in situ under

uniaxial tension. The local strain state at the measurement site

was determined from anisotropic elasticity theory. The

measured normal strain components agree well with theory,

but the shear strain components do not. Uncertainties in the

diffraction peak positions and geometric model parameters

propagate to the lattice strain uncertainty. Uncertainty

analyses conducted using Monte Carlo simulations of the

diffraction experiment show that shear components "0yz and "0xz

have greater uncertainty than the normal strain components.

The large uncertainties in the shear strains are due to

measurement noise and limited pole figure coverage. Lattice

strain measurement could be improved by using a larger

detector or multiple detectors to increase pole figure coverage.

Precision could also be improved by increasing detector

spatial resolution.

APPENDIX A
Lattice plane unit normal mapping

The local deformation F is multiplicatively decomposed into

a lattice-uncoupled deformation F p followed by a lattice-

coupled deformation F� as outlined in equation (2) and illu-

strated schematically in Fig. 5. The subscript 0 denotes values

in the reference configuration, and an overbar denotes values

in the intermediate configuration. Values in the deformed

configuration are unadorned.

Consider the lattice-coupled deformation from the inter-

mediate configuration to the deformed configuration. For

lattice-coupled deformation, lattice vectors transform in the

same manner as material vectors. Two differential lattice

vectors �aa and �bb define a lattice plane in the intermediate

configuration (Fig. 9). The lattice vectors map according to

a ¼ F� �aa; b ¼ F� �bb: ð9Þ

The lattice plane normals are calculated from the cross

product of the lattice vectors,

�nn ¼ �aa� �bb; n ¼ a� b: ð10Þ

The magnitude of a lattice plane normal is the differential area

of the parallelogram defined by the two lattice vectors

�nn ¼ �AA �̂nn�nn; n ¼ An̂n; ð11Þ

where �AA and A are differential areas and ð�̂�Þ denotes a vector

of unit length. Combining (9)–(11) and applying a vector

identity yields Nanson’s formula (Reddy, 2008),

An̂n ¼ J� F��T �AA �̂nn�nn; ð12Þ

where J � = det F�. Rearranging terms yields
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Figure 9
A lattice plane in the intermediate and deformed configurations.

Figure 8
Pole figures depicting the angular change in lattice plane normal direction
for four spurious deformation modes at an effective strain of 100 m".
The sampling region is enclosed by a white outline. The movements of
the sampled lattice plane normals are relatively insensitive to these
deformation modes. As a result, these deformation modes can spuriously
arise in the deformation gradient calculation owing to measurement
noise.



F�T n̂n ¼ c �̂nn�nn; ð13Þ

c ¼ J � �AA=A; ð14Þ

where c is a scale factor. Since the lattice-uncoupled defor-

mation does not change lattice structure or orientation, lattice

plane unit normals are the same in both the reference and

intermediate configurations n̂n0 = �̂nn�nn. The mapping of lattice

plane unit normals from the initial configuration to the

deformed configuration is therefore described by

F�T n̂n ¼ cn̂n0: ð15Þ

Support for this work was provided by the Office of Naval

Research under grant number N00014-09-1-0447. The

Advanced Light Source is supported by the Director, Office of

Science, Office of Basic Energy Sciences, Materials Sciences

Division, of the US Department of Energy under Contract

No. DE-AC02-05CH11231 at Lawrence Berkeley National

Laboratory and University of California, Berkeley, California.

The move of the microdiffraction program from ALS beam-

line 7.3.3 onto the ALS superbend source 12.3.2 was enabled

through the NSF grant number 0416243. The authors would

like to acknowledge Nobumichi Tamura, Martin Kunz and Kai

Chen for their assistance with the diffraction experiments.

They would also like to acknowledge Donald Boyce for

linearizing the deformation gradient calculation. They wish to

thank Matthew Miller and Jay Schuren for their input and

guidance on the project.

References

Chao, J., Mark, A., Fuller, M. L. S., McIntyre, N. S., Holt, R. A.,
Klassen, R. J. & Liu, W. (2009). Mater. Sci. Eng. A, 524, 20–27.

Chen, K., Kunz, M., Tamura, N. & Wenk, H.-R., Chen, K., Kunz, M.,
Tamura, N. & Wenk, H.-R. (2011). Eur. J. Mineral. 23, 169–178.

Chung, J. & Ice, G. (1999). J. Appl. Phys. 86, 5249–5255.
Dunn, P. F. (2010). Measurement and Data Analysis for Engineers.

Boca Raton: CRC Press.
Edmiston, J. K., Barton, N. R., Bernier, J. V., Johnson, G. C. &

Steigmann, D. J. (2011). J. Appl. Cryst. 44, 299–312.
Frank, F. C. (1988). Eighth Internation Conference on Textures of

Materials, edited by J. S. Kallend and G. Gottstein, pp. 3–13.
Warrendale: The Metallurgical Society.

Ice, G. E. & Pang, J. W. L. (2009). Mater. Charact. 60, 1191–1201.
Kunz, M., Tamura, N., Chen, K., MacDowell, A. A., Celestre, R. S.,

Church, M. M., Fakra, S., Domning, E. E., Glossinger, J. M.,
Kirschman, J. L., Morrison, G. Y., Plate, D. W., Smith, B. V.,
Warwick, T., Yashchuk, V. V., Padmore, H. A. & Ustundag, E.
(2009). Rev. Sci. Instrum. 80, 035108.

Larson, B., Yang, W., Ice, G., Budai, J. & Tischler, J. (2002). Nature
(London), 415, 887–890.

Ledbetter, H. (2001). Handbook of Elastic Properties of Solids,
Liquids and Gases, Vol. 3, edited by M. Levy, ch. 17, pp. 291–297.
New York: Academic Press.

Marin, E. & Dawson, P. (1998). Comput. Methods Appl. Mech. Eng.
165, 1–21.

Reddy, J. N. (2008). An Introduction to Continuum Mechanics.
Cambridge University Press.

Tamura, N., MacDowell, A. A., Spolenak, R., Valek, B. C., Bravman,
J. C., Brown, W. L., Celestre, R. S., Padmore, H. A., Batterman,
B. W. & Patel, J. R. (2003). J. Synchrotron Rad. 10, 137–143.

Tamura, N., Padmore, H. & Patel, J. (2005). Mater. Sci. Eng. A, 399,
92–98.

Zhang, H. (2009). PhD thesis, Lehigh University, USA.

research papers

244 Andrew Poshadel et al. � Deviatoric lattice strain uncertainty J. Synchrotron Rad. (2012). 19, 237–244

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ie5058&bbid=BB15

