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Aspherical surfaces required for focusing collimated and divergent synchrotron

beams using a single refractive element (lens) are reviewed. The Cartesian oval,

a lens shape that produces perfect point-to-point focusing for monochromatic

radiation, is studied in the context of X-ray beamlines. Optical surfaces that

approximate ideal shapes are compared. Results are supported by ray-tracing

simulations. Elliptical lenses, rather than parabolic, are preferred for nano-

focusing X-rays because of the higher peak and lower tails in the intensity

distribution. Cartesian ovals will improve the gain when using high-

demagnification lenses of high numerical aperture.
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1. Introduction

X-ray beamlines that produce micrometre and submicrometre

beams demand high-quality optical surfaces with extremely

small manufacturing errors. With grazing-incidence optics

(typically mirrors in meridional focusing), slope errors

produce a smearing, s, of the spot, with s = 2�slope q. Here q is

the distance of the optics (mirror) to the focal plane. Current

slope errors for synchrotron mirrors are of order �slope =

0.5 mrad; therefore, using a typical focusing distance q ’ 0.1–

0.5 m, the broadening due to slope errors only is about 0.1–

0.5 mm, certainly to be taken into consideration when sub-

micrometre focusing is required. Some geometric aberrations

can be eliminated by selecting a theoretical aberration-free

surface. Co-axial optical systems like lenses, where the beam

runs parallel to the optical axis, are much less affected by slope

errors. Figure errors and aberrations are minimized by

designing surface profiles as close as possible to the theoretical

shape, which is aspheric in all cases. Spherical surfaces are

easier to manufacture and may be produced with a high-

quality polishing. They approximate the ideal aspherical shape

and can be used when the degradation in the focal spot is

acceptable, in particular for reflective optics. In addition to

aberrations and effects of surface errors usually computed by

geometrical optics, every optic produces a diffraction broad-

ening of the order of �/NA (� is the wavelength and NA is the

numerical aperture). Lenses with high NA minimize the

diffraction broadening, but are more sensitive to the geome-

trical aberrations, thus there is an interest in studying the

limits of geometrical focusing for nanofocus beamlines. The

demagnification of current synchrotron sources (typical sizes

of 10 mm or larger) into to nano-sized spots requires efficient

optical systems that take into account a non-trivial combina-

tion of surface errors, diffraction effects and source char-

acteristics; conserving the beam emittance with a very high

demagnification optical system is a complex task.

Although the first observation of X-ray refraction was made

in 1916 (Barkla, 1916), X-ray refractive lenses are relatively

recent devices developed thanks to the advent of third-

generation synchrotron sources. They gained popularity over

recent decades for making X-ray micro- and nano-probes

(focusing), collimating synchrotron beams, as well as for

imaging applications. In 1991, Suehiro et al. (1991) first

proposed the potential benefits of X-ray lenses in the context

of third-generation synchrotron sources, suggesting advan-

tages of lenses over X-ray mirrors in terms of reduced optics

size, less sensitivity to surface errors and higher stability. In

1996, Snigirev et al. (1996) fabricated the first compound

lenses by drilling arrays of cylindrical holes in aluminium.

They demonstrated the ability of this device to focus X-rays

down to 8 mm, opening the door to the development and

popularization of a new collection of refracting devices. They

also suggested the use of lithographic methods for fabricating

parabolic-shaped lenses. Soon after, lens arrays of parabolic

profiles were fabricated using drilling and pressing techniques

and used for focusing and imaging applications (Lengeler,

Schroer, Tummler et al., 1999; Lengeler, Schroer, Richwin et

al., 1999; Lengeler et al., 1998). Rapid advancements in micro-

fabrication technology have now allowed fabrication of step-

shape planar lenses made of parabolic arrays (Aristov et al.,

2000). Evans-Lutterodt et al. (2003) built a compound lens

based on elliptical profiles and pointed out that the ellipse is

the ideal profile for focusing a collimated beam to a point. The

smaller spot size in a standard lens is limited by the size of

the Airy disc, which is proportional to �/NA. However, the

accepted NA is limited by total reflection on the lens surface.

This limitation can be overcome: Evans-Lutterodt et al. (2007)

demonstrated that kinoform lenses are not limited by the
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critical angle, and Schroer & Lengeler (2005) proposed an

adiabatically focusing lens, an array of lenses with increasing

curvature from the entrance to the exit lens. Two-dimensional

focusing to �50 nm was already achieved in 2005 (Schroer et

al., 2005) using arrays of focusing lenses. Arrays of kinoform

lenses have to be used to achieve ultra-short focal lengths

(Evans-Lutterodt et al., 2007). Parabolic and elliptic lenses

greatly reduce spherical aberrations. Chromatic aberrations

are always present, as they are intrinsic to refractive lenses.

Despite the existence of a vast literature on spherical and

parabolic compound refractive lenses, there is no clear

discussion on why one should prefer one shape over the other,

except for the case of single elliptical lenses (Evans-Lutterodt

et al., 2003). The theoretical lens shape to perform a point-to-

point focus is neither elliptical or parabolic. This old result,

known for centuries, has not been discussed in the context of

micro- and nanofocusing X-rays, with the possible exception

of Evans-Lutterodt et al. (2007) who used optics in which the

‘figure of each lens was deduced from Fermat’s theorem’.

Shaping the lens to perform perfect point-to-point focusing

gives, at least in theory, a chance to further reduce the focal

spot.

The process of designing a lens-based optical instrument is

often assisted by ray-tracing simulations. We thus performed

ray-tracing and computational experiments using the

SHADOW package (Cerrina & Sanchez del Rio, 2010), well

known by the synchrotron radiation community. In this paper

we present a theoretical discussion supported by computer

modelling on the effect of ideal and approximated surfaces to

focus beams. Computer experiments allow studies of lenses

with different shapes under strictly the same conditions, a

situation that is very difficult to reproduce experimentally. It

is important to quantitatively evaluate the effects of different

lens shape in a wider context, also including other focal

broadening effects owing to slope error and diffraction. The

ultimate limit of X-ray focusing has been discussed in relation

to diffraction (Evans-Lutterodt et al., 2007; Schroer &

Lengeler, 2005), and this work addresses the geometrical

limits due to surface shape. The different aspects of focusing

X-rays with lenses calculated using SHADOW aim to (i)

benchmark the code for some simple cases well known from

the optics textbooks, (ii) extend the applicability of the code to

other cases that are not easily analyzed analytically, and (iii)

present the usability of this code for lens simulations to the

synchrotron community.

2. Fermat’s principle and its consequences: Snell’s law,
focusing radius and surface shape

Most of the fundamental equations used in this paper can be

derived from Fermat’s principle. The optical path OP for going

from a point P1 to another P2 is defined as

OP ¼
RP2

P1

n ds; ð1Þ

where n is the refraction index of the media and the integral is

along the trajectory.

Fermat’s principle, or the principle of least time, discovered

by Pierre de Fermat in �1650, states that light travels from P1

to P2 through a trajectory that makes OP an extremum, i.e.

�(OP) = 0. It follows that (Feynman, 1963, p. 26-7) a ray

travelling in a particular path has the property that, if we make

a small change in the ray in any manner whatever, for example

in the location at which it arrives at the mirror, or the shape of

the curve, or anything, then there will be no first-order change

in the OP; there will only be a second-order change in the

time.

The first equation to be derived from Fermat’s principle is

the law governing the refraction at a plane interface (see

Appendix A1). Known as Snell’s laws in honour of Willebrord

Snellius, it was also published by René Descartes. Whether the

works of Snellius and Descartes were independent or whether

Descartes had access to unpublished material (or a book

destroyed by fire) is still under debate. The first antecedent of

Snell’s laws can be found in the work of Claudius Ptolemy of

Alexandria, who made tables with �140 angles of refraction

of light in three media: air, glass and water (see, for example,

Feynman, 1963, pp. 26-2). These tables were published by

Vitelius in his ten volumes of Handbook of Optics. The

Persian physicist Ibn Sahl wrote a textbook in 984 where he

explained how curved mirrors and lenses bend and focus light.

He was probably the discoverer of the law of refraction

(Rashed, 1990; Zghal et al., 2007).

Snell’s law states that the change in the direction of light at

the interface that separates two media of diffraction indices n1

and n2 is given by

n1 sin �1 ¼ n2 sin �2; ð2Þ

where �1 (�2) is the incident (refracted) angle measured with

respect to the surface normal. For ray-tracing purposes, it is

more convenient to write Snell’s law in vector form (Herz-

berger, 1958, pp. 8–10),

n1ðv1 � nÞ ¼ n2ðv2 � nÞ; ð3Þ

where v1 (v2) is a unitary incident (refracted) vector and n is

the normal to the surface. In practice, one calculates v2 as a

function of known v1 and n,

n2v2 ¼ n1v1 þ �n; ð4Þ

where �, known as the astigmatic constant, or deviation

constant, is given by

� ¼ þ n2
2 � n2

1 þ ðv1 � nÞ
2

� �1=2
� n1ðv1 � nÞ: ð5Þ

A phenomenon discovered by Kepler appears when n1 > n2 for

incident angles larger than the critical angle �c. Here, �c =

arcsin(n2 /n1 sin�2) > arcsin(n2 /n1), so there is no solution to

Snell’s law, and the ray is not refracted but totally reflected.

When performing ray tracing, there is no real solution of

equation (2); therefore the ray is removed from the beam. The

refraction index of the media depends on the incident wave

energy. This implies that refractive lenses have chromatic

aberrations, as light rays of different energies are deviated
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differently at the surface. The real part of the refraction index

is larger than unity for visible light (n > 1) and less than unity

for X-rays (n < 1). Absorption is generally included through

the imaginary part of the refraction index and is not consid-

ered here. A single lens has two interfaces, and a compound

lens is an array of simple lenses with a common optical axis.

When the interface separating the two media is curved, the

light may be focused. The simplest interface surface is a

sphere. Using Fermat’s principle one can calculate the radius

of curvature R to focus a beam coming from a point at p from

the lens on the optical axis to another point at q also on the

optical axis (see Appendix A2). It is given by

ðn1=pÞ þ ðn2=qÞ ¼ ðn2 � n1Þ=R: ð6Þ

This equation is valid when the angles between the rays and

the optical axis are small, i.e. for paraxial rays or small

numerical apertures.

Fermat’s principle can be used to obtain the ideal surface

shape that produces point-to-point focus. The surface

obtained in this way is called a Cartesian oval (Fig. 1), and was

introduced by Descartes in La Geometrie (Descartes, 1637), an

appendix of the ‘Discours de la Méthode’. For a commented

facsimile version, see Debart (2011).

The Cartesian oval is a particular case of the bi-circular

quartic equation. Its derivation from Fermat’s principle can be

found in Appendix A3.

3. Lens shape to focus collimated beams

When a source of size h is at infinity (zero divergence), the

Cartesian oval degenerates into a conic surface (Luneburg,

1964, p. 132) (Fig. 1),

ðz� zcÞ
2=a2 � ðx2 þ y2Þ=b2 ¼ 1; ð7Þ

representing an ellipsoid or hyperboloid depending on the

plus or minus sign, respectively, with cylindrical symmetry

around z. The positions of the image (focal position) zc and

the semi-axes a and b are given by

zc ¼ qn2= n1 þ n2ð Þ;

a ¼ zc;

b ¼ q n1 � n2

�� ��� �
= n1 þ n2ð Þ

� �1=2
:

ð8Þ

The eccentricity e of the ellipse or hyperbola is

e ¼ a2 � b2
� �1=2

¼ q n1= n1 þ n2ð Þ
� �1=2

: ð9Þ

The ellipsoid is obtained when n1 < n2 (e.g. when X-rays go

from a media n1 < 1 to vacuum n2 = 1) and the hyperboloid

when n1 > n2 (e.g. visible light going from glass to vacuum).

The former case, regarding the use of elliptic lenses for

focusing collimated X-ray beams, has already been discussed

in the literature (Evans-Lutterodt et al., 2003). The latter case

is the well known result that a hyperbolic concave lens

transforms a plane wave into a spherical wave, and vice versa

(Hecht, 1987).

A first ray-tracing simulation features a single focusing

interface separating a lens medium (refraction index n1 6¼ 1)

and vacuum (n2 = 1) (Fig. 2). For simplicity only the YZ plane

is displayed. Setting p = �1, q = 1000 cm and n1 = 0.999995

(10 keV X-rays in silicon) in equation (6), we found that a

spherical optical surface with R =�50 mm (i.e. convex) focuses

the beam close to the desired focal position. Fig. 2(a) shows

the ray-tracing results for a lens of diameter h = 50 mm. It

illustrates the focusing of the paraxial rays (almost parallel to

the optical axis illuminating the centre of the lens) and the

marginal rays (arriving at the lens edge) and the formation of a

caustic (the envelope of all refracted rays). Fig. 2(b) shows the

evolution of beam size r.m.s. (root mean square) around the

focal position. It illustrates how the best focus, defined as the

one with the smaller r.m.s., is found in between the paraxial

and marginal foci. The paraxial focus is found at q and the

marginal focus somewhere upstream, at q� LSP, where LSP is

the longitudinal spherical aberration (LPS = 133.95 � 0.02 cm

in our case). Primary aberration theory (Mahajan, 1998, p. 214)

shows that the circle of least confusion (the one with smaller

limits) is found at q� 0.75LSP, and can be obtained by tracing

the rays that hit the lens at heights h0 =�0.866(h/2). The point

with zero wavefront deviation at the edge is found at q �

0.5LSP and corresponds to a trace of rays that hit the lens at

heights h0 = �0.707(h/2). These rays are also represented in

Fig. 2(b). Finally, the theoretical minimum r.m.s. radius is at

q � 0.67LSP. The best focus (that minimizes the spot r.m.s.)

from ray tracing is found at q � (81.43 � 0.11 cm) = (0.61 �

0.01)LSP. Spherical lenses have three important disadvan-
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Figure 1
Illustration of refraction from a single interface separating two media
with refraction indices n1 and n2. (a) A hyperbola focusing a parallel
beam travelling in a medium with n1 > n2. (b) A Cartesian oval focusing
a divergent beam travelling in a medium with n1 > n2. (c) An ellipse
focusing a parallel beam travelling in a medium with n1 < n2. (d) A
Cartesian oval focusing a divergent beam travelling in a medium with
n1 < n2.



tages: (i) large broadening of the focal spot, (ii) defocus or

shift of the ‘best’ focal position, and (iii) reduced acceptance

because the lens cannot be larger than 2R. Because of this,

X-ray spherical lenses are no longer used.

Fig. 3(a) shows rays focused by an elliptical interface with

semi-axes calculated using equation (8): a = 500.00125 cm and

b = 1.58204 cm. When comparing with reflective optics, para-

boloidal mirrors are used to focus collimated beams into a

point, but this conic shape is not the ideal shape when using

refractive optics. However, it is clear that a parabola

approximates much better an ellipse or a hyperbola than the

circle, therefore it is expected that aberrations can be drasti-

cally reduced, although not completely eliminated, using

parabolas. In fact, using a parabola with equation y2
� 2Rz = 0,

where R is obtained from (6), we obtained a graph indis-

tinguishable from the ellipse case of Fig. 3(a). To observe some

(small) differences, the evolution of the beam dimension using

an ellipse and a parabola are compared in Fig. 3(b). The

results, shown on a logarithmic scale, show differences in spot

size only at the subnanometre level. A very small defocus is

produced by the parabolic lens (see Fig. 3b) (the best focus

r.m.s. is found at �10 mm downstream from the paraxial

focus).

In summary (see Fig. 4), it has been checked that a convex

lens is needed for focusing X-rays (n < 1). Spherical shapes

produce strong aberrations, and elliptic interfaces focus

ideally collimated X-ray beams. In parallel, hyperbolic

concave-shaped lenses focus collimated visible beams. On the

other hand, converging X-ray beams are collimated by

hyperbolic lenses whereas visible beams are collimated by

elliptical lenses.

4. Numeric experiments using the Cartesian oval and its
approximations

The reduction of the Cartesian oval (Appendix A3) to its

explicit form z(y) allows the lens profile to be described, but

this analytical solution is rather cumbersome. Numerical
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Figure 3
(a) Ray-tracing illustration of focusing a collimated incident beam using
an elliptical surface. The focal distance is F = 1000 cm and the lens
diameter is 50 mm. All rays, including paraxial (magenta) and marginal
(blue), are focused at the same position. (b) Evolution of the beam
dimension (r.m.s.) for the elliptical interface (black) and an approximated
parabolic interface (green).

Figure 2
(a) Ray-tracing illustration of focusing a collimated incident beam using a
single spherical surface. The focal distance is F = 1000 cm and the lens
diameter is h = 50 mm. Marginal rays (blue) are focused at A and paraxial
rays (magenta) at B. (b) Evolution of the beam dimension (r.m.s.) for the
full beam (black), marginal rays (blue), paraxial rays (magenta), rays at
height h0 =�0.866(h/2) (green) and rays at height h0 =�0.707(h/2) (red).



solution of the fourth-degree equation (thus the numerical

lens profile) has been calculated using Mathematica (http://

www.wolfram.com/), and this profile has been used for

creating a rotationally symmetric interface for SHADOW by

means of the ‘presurface’ tool. Fig. 5 shows the performance of

a Cartesian oval as compared with a paraboloidal lens. To

stress the differences, the parameters have been chosen for a

strong focusing, p = 4700 cm, q = 10 cm using n1 = 0.99999231

(Si at 8 keV). The figure shows the r.m.s. spot size versus the

lens diameter up to h = 200 mm diameter (lens length L =

6 mm) for an ideal point source. As expected, the Cartesian

oval gives a point spot (within statistical, numerical and

interpolation errors), whereas the paraboloid produces a

broader spot that increases with lens diameter. In this

configuration the paraboloid shows a non-negligible defocus,

shifting the focal point to 8.4 mm downstream from the

paraxial focus. It is found that the focal size can be reduced by

about 70% by moving the detector plane to the best focus

(dashed line), but still shows focusing aberrations compared

with the Cartesian oval. Therefore, it is confirmed that the

Cartesian oval performs optimally at high NA, under condi-

tions where the paraboloid shows aberrations.

For practical purposes, an aberration-free aspheric surface

similar to the ideal surface can be calculated by adding a

correction to an initial spherical or flat surface. Defining (as in

SHADOW) a three-dimensional reference system centred at

the optical element pole, with the y and x axes tangential to

the lens surface at the lens centre, and the z axis along the

optical axis, the foci are at (0, 0, p) and (0, 0, �q); the optical

surface is defined as a mesh of z points on a grid in (x, y),

zij ¼ zðxi; yjÞ: ð10Þ

By defining a functional ‘optical path difference’ OPD

between a ray passing through a generic point of the surface

P(x, y, z) (distant l1 and l2 from source and image point,

respectively) and another ray passing through the lens centre,

as

OPD ¼ l1n1 þ l2n2 � p
�� ��n1 þ q

�� ��n2

� �
¼ n1 x2 þ y2 þ ðz� pÞ

2
� �1=2

þ n2 x2 þ y2 þ ðzþ qÞ
2

� �1=2

� ð pn1 þ qn2Þ; ð11Þ

it becomes obvious that OPD is zero for the (x, y, z) points

belonging to the Cartesian oval.

Expanding OPD in a power series up to the second degree

in z, we obtain

OPD ¼ � n1p� n2qþ n1 p2 þ x2 þ y2
� �1=2

þ n2 q2
þ x2
þ y2

� �1=2

þ �
n1p

p2 þ x2 þ y2ð Þ
1=2
þ

n2q

q2 þ x2 þ y2ð Þ
1=2

� �
z ð12Þ

þ
1

2

"
n1 x2 þ y2ð Þ

p2 þ x2 þ y2ð Þ
3=2
þ

n2 x2 þ y2ð Þ

q2 þ x2 þ y2ð Þ
3=2

#
z2

þOðz3
Þ:

By solving the equation OPD = 0, a second-degree equation

on z for each (xi, yj) point in the grid, one immediately obtains

the profile mesh z(x, y). Numeric profiles created in first and

second approximations have been introduced in SHADOW

for ray tracing. Fig. 5 also includes the focal size results for

these first and second approximation surfaces, as well as for

the ellipsoid. It is noticeable that a first-degree expansion in

OPD is sufficient to reduce the aberrations from the para-

boloid, and a second-order correction gives a very good

approximation to the Cartesian oval. The ellipsoid results are

better than the second approximation. The approximated

surfaces (first and second order) and ellipsoid do not present

appreciable defocus. The differences between the ellipsoid

and the paraboloid are not so important, and even not

noticeable, when the lens demagnification is not so high, as

will be discussed later.

5. Application of an aspherical lens to microfocus and
nanofocus beamlines

Having discussed the ideal surface shapes and their approx-

imations for a single X-ray lens, we present several examples

of systems approaching real synchrotron radiation cases,
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Figure 5
Focal spot size r.m.s. versus lens aperture for point-to-point focusing using
an interface surface matching: parabola (green solid), parabola with
defocus correction (green dashed), optimized first- (black) and second-
order (red) profiles, ellipse (magenta) and Cartesian oval (blue).

Figure 4
Ideal surface shape for different focusing conditions.



including the effect of the finite source size. A source matching

the parameters of a diamond undulator at a photon energy E =

8 keV has been simulated by using Gaussian distributions

(�x = 12.3 mm, �y = 7 mm, �x0 = 25 mrad and �y0 = 8 mrad, X is in

the horizontal plane and Y in vertical). The source–lens

distance is p = 47 m, and three lens–image distances will be

used for increasing the demagnification M = p/q. The non-

absorbing lens is a good approximation for a kinoform lens

(Alianelli et al., 2009), of which an example is shown in Fig. 6.

Cylindrical silicon lenses are considered (refraction index n1 =

0.99999231), focusing only in the Z (vertical) plane.

Fig. 7 shows the simulated focal size versus lens diameter for

the case where q = 100 cm (M = 47) for different lens shapes.

In the parabolic case the aberrations appear at a lens diameter

of h ’ 0.2 mm, where the focal blurring is dominated by

diffraction. When increasing the lens diameter or NA, the

diffraction reduces, and above a diameter of h = 0.55 mm the

parabolic shape produces an almost constant spot of�0.5 mm,

whereas the ellipse produces a smaller focus (0.34–0.42 mm),

and the Cartesian oval gives the theoretical value (0.35 mm).

Fig. 8 shows the intensity distribution of the focal spot for

two different demagnifications M. The first case is repre-

sentative of a microfocus beamline and considers a distance

q = 30 cm, thus using a demagnification M = 157 and a theo-

retical focal size of 105 nm full width at half-maximum

(FWHM). Fig. 8(a) shows the results for the small lens aper-

ture (h = 0.3 mm, lens length L’ 5 mm). All lens shapes give a

spot FWHM close to the theoretical one (101� 4, 102� 6 and

131 � 13 nm for the oval, ellipse and parabola, respectively).

Both the Cartesian oval and the ellipse produce a spot with

Gaussian shape, but the parabola spot distribution is not

Gaussian and includes high tails. The appreciable increase of

the tails produces a reduction of the peak intensity, decreasing

the gain. Fig. 8(b) shows the same case for a lens with a larger

aperture (h = 0.5 mm, L ’ 14 mm). The FWHM are 105 � 4,

113 � 6 and 121 � 13 nm for the oval, ellipse and parabola,

respectively. Here the focal spot owing to the ellipse is slightly

degraded; some tails appear near the main peak, thus

removing some intensity from the peak, but they go quickly to

zero. The focus given by the parabola includes long tails with

lower peak value, but the FWHM is not far from the ideal

value. The Cartesian oval and elliptical lenses do not show

appreciable defocus. The best r.m.s. focus by the parabola is

found �13 mm downstream of the paraxial focus. Interest-

ingly, the focal FWHM is not improved by correcting the focal

position by the r.m.s. defocus. On the contrary, it is highly

enlarged, and the best focus obtained by minimizing the

FWHM is found practically at the paraxial focal position. The

aberrations become more important with increasing lens

aperture both in the parabolic case and elliptic case. By

reducing the source size by a factor of two we found that the

tails are not reduced, even though the FWHM reduces and the

peak increases accordingly. These calculations show that in

some cases elliptical profiles are preferred to the parabolic

ones because the ellipse approximates better the ideal

Cartesian oval lens. The synchrotron beam is seen by the lens

as a mostly collimated beam, as demonstrated by the indis-

tinguishable elliptical lens profile (ideal for focusing a colli-

mated beam) and the Cartesian oval (for point-to-point

focusing) for the small lens aperture. This is valid for micro-

focusing or submicrofocusing lenses.

The last simulation matches a nanofocusing lens config-

uration with higher demagnification: focal positions p = 47 m,

q = 10 cm. Here, M = 470 and the ideal focus is 35 nm. Fig. 8(c)

shows that for a small aperture h = 0.3 mm (L ’ 12 mm) the

focal spot widths given by the three lens shapes are similar

(30 � 1 nm, 40 � 2 nm and 38 � 3 nm for the oval, ellipse and

parabola, respectively), but the only one that does not present

tails and fits satisfactorily with a Gaussian is the Cartesian

oval. The tails extend to a distance of about 200 nm from the

peak position for the elliptical lens. The largest possible lens

aperture for the ellipse and the oval is h = 0.4 mm (L ’

40 mm), and the results are similar (Fig. 8d), but with longer

tails. The depth of focus (defined as the depth where the waist
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Figure 7
Simulations of focal spot versus lens diameter for parabolic and elliptic
shapes. The source is a typical diamond undulator at E = 8 keV
(approximated with a Gaussian source of �y = 7 mm, �y0 = 8 mrad). The
theoretical broadening owing to diffraction (an Airy disk of 1.22�q/h) is
also shown, as well as the theoretical spot size (2.35�y q/p).

Figure 6
Scanning electron microscope image of a microfocusing single-element
elliptical lens with a kinoform profile.



size increases by 25%) is about 250 mm for the parabolic lens,

about 45 mm for the ellipse and 10 mm for the Cartesian oval.

These calculations show that the elliptical lenses approx-

imate better the ideal Cartesian oval than parabolas and

present less aberrations. However, it is remarkable that

parabolic lenses also give good spot width values (FWHM) in

good agreement with the experimental results for parabolic

lenses reported in the literature.

6. Summary and conclusions

Numeric experiments have been carried out for focusing

X-rays by a refracting interface with different shapes: Carte-

sian oval (the generic lens shape for point-to-point focusing),

ellipse (ideal for focusing collimated beams), parabola, circle

and power expansions of the Cartesian oval. Parabolic lenses

reduce very much the spherical aberrations, a result that is

consistent with the high popularity of these lenses. However,

elliptical lenses should be preferred to parabolic lenses for

nanofocusing, in particular for large lens apertures. The major

differences are not on the FWHM spot size but in the intensity

of the tails and therefore in the peak intensity (related to

gain). The results of the simulations presented suggest that, for

highly demagnifying optics, it could be beneficial to use lenses

with a profile that follows the Cartesian oval, to reduce the

tails and obtain the ideal Gaussian focus.

The results show that the ray-tracing technique is adequate

for helping in the design of X-ray lens systems. Work is in

progress for the full implementation of the compound

refractive lens system in the SHADOW3 (Sanchez del Rio et

al., 2011) code, that will permit the simulation of arrays of

ellipses or parabolas, and the full control of the interface

parameters, like varying curvatures.

APPENDIX A
Some consequences of Fermat’s principle

A1. Snell’s Law

Let us define a three-dimensional reference system centred

at the optical element pole, with the y and x axes tangential to

the lens surface at the lens pole, and the z axis along the

optical axis.

Let us select P1 = (0, 0, z1) in a non-dispersive medium with

refraction index n1, and P2 = (0, y2, z2) a point in a medium

with n2, separated by a plane interface passing through (0, y, 0)

and with normal along Z (Fig. 9a). The optical path from P1 to

P2 is
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Figure 8
Simulation of vertical focusing using a single-element refractive lens at p = 47 m from the source. The diamond source size and divergence have been
used, i.e. �y = 7 mm and �z0 = 8 mrad. The figures show the intensity distribution at the focal plane given under the same illumination conditions, using
Cartesian oval (red), elliptic (blue) and parabolic (green) lenses. The following cases are presented: (a) lens–image distance q = 30 cm, lens diameter h =
0.3 mm, (b) q = 30 cm, h = 0.5 mm, (c) q = 10 cm, h = 0.3 mm, and (d) q = 10 cm, h = 0.4 mm.



OP ¼ n1 y2
þ z2

1

� �1=2
þ n2 y2 � yð Þ

2
þ z2

2

� �1=2
: ð13Þ

The principle of Fermat requires that the trajectory of the light

from P1 to P2 makes the OP stationary, thus

@OP

@y
¼ 0 ¼ n1

y

y2 þ z2
1

� �1=2
� n2

ðy2 � yÞ

ðy2 � yÞ
2
þ z2

2

� �1=2
; ð14Þ

which implies

n1 sin �1 ¼ n2 sin �2: ð15Þ

A2. Radius of focusing sphere

Le us define a spherical surface of radius R passing through

O = (0,0,0) with centre at C = (0, 0,�R), separating two media

of refraction index n1 and n2 (Fig. 9b). The optical path is

OP ¼ n1l1 þ n2l2

¼ n1 R2
þ ð pþ RÞ

2
� 2Rð pþ RÞ cos ’

� �1=2

þ n2 R2 þ ðq� RÞ2 þ 2Rðq� RÞ cos ’
� �1=2

; ð16Þ

where the cosine theorem has been applied in the triangles

Q1CP and PCQ2.

Applying Fermat’s principle with respect to ’ we obtain

@OP

@’
¼ 0 ¼ n1

Rð pþ RÞ sin ’

R2 þ ð pþ RÞ
2
� 2Rð pþ RÞ cos’

� �1=2

þ n2

Rðq� RÞ sin ’

R2 þ ðq� RÞ2 þ 2Rðq� RÞ cos ’
� �1=2

: ð17Þ

This equation does not have a general solution for any value of

’. Expanding on a first-order power series around ’ = 0, we

obtain

@OP

@’
¼ 0 ¼ n1

Rð pþ RÞ

p
þ n2

Rðq� RÞ

q

� �
’þOð’2Þ; ð18Þ

which gives the equation of the radius of curvature R for

focusing under first-order paraxial or Gaussian optics (i.e. the

angle formed by the incident and refracted beams is very small

with respect to the optical axis, which passes closer to the

centre of the surface),

n1

p
þ

n2

q
¼

n2 � n1

R
: ð19Þ

A3. Cartesian oval

Let us define a generic point P on the lens surface, and the

source (image) point Q1 (Q2) as defined in Fig. 9(b). Fermat’s

principle requires that the optical path of the light through the

point P and another point on the surface, e.g. O = (0, 0, 0), are

the same,

pn1 þ qn2 ¼ l1n1 þ l2n2: ð20Þ

Substituting l1 = ½x2 þ y2 þ ðz� pÞ
2
	
1=2 and l2 = ½x2 þ y2 þ

ðzþ qÞ
2
	
1=2 and expanding the expression, one arrives at a

particular case of the bi-circular quartic equation. In the two-

dimensional case (x = 0),

P4

i¼0

P4

j¼0

aij y iz j ¼ 0: ð21Þ

The coefficient’s matrix is

aij

� �
¼

0 a01 a02 a03 a04

0 0 0 0 0

a20 a21 a22 0 0

0 0 0 0 0

a40 0 0 0 0

0
BBBB@

1
CCCCA; ð22Þ

where

a01 ¼
8n1n2pqðn1pþ n2qÞ

ðn1 � n2Þðn1 þ n2Þ
2
;

a02 ¼
4n1

2p2ðn1 þ n2Þ � 4n2
2q2ðn1 þ n2Þ þ 4n1n2pqðn2 � n1Þ

ðn1 � n2Þðn1 þ n2Þ
2 ;

a03 ¼ �
4 n1

2pþ n2
2qð Þ

n1
2 � n2

2
;

a04 ¼ 1; ð23Þ

a20 ¼ �
4n1n2ðn1qþ n2pÞðn1pþ n2qÞ

n1
2 � n2

2ð Þ
2 ;

a21 ¼ �
4 n1

2pþ n2
2qð Þ

n1
2 � n2

2
;

a22 ¼ 2;

a40 ¼ 1:

For the three-dimensional case, where the lens has cylindrical

symmetry around Z, the expression corresponding to (21) is

obtained by replacing y with ½x2 þ y2	
1=2.
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