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The general matrix theory of the photoelectron/fluorescence excitation in

anisotropic multilayer films at the total reflection condition of X-rays has been

developed. In a particular case the theory has been applied to explain the

oscillation structure of L2,3 XANES spectra for a SiO2 /Si/SiO2/c-Si sample in

the pre-edge region which has been observed by a sample current technique

at glancing angles of synchrotron radiation. Remarkably the phase of the

oscillations is reversed by a �2� angle variation. The observed spectral features

are found to be a consequence of waveguide mode creation in the middle layer

of strained Si, which changes the radiation field amplitude in the top SiO2 layer.

The fit of the data required the correction of the optical constants for Si and

SiO2 near the Si L2,3-edges.
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1. Introduction

Total electron yield (TEY) or quantum yield (Y) (the latter

is proportional to the compensatory photocurrent in TEY

measurements) are well established methods for measuring

spectra of X-ray absorption near-edge structure (XANES).

Usually TEY spectra give a spectral shape similar to that of

absorption spectra. The advantage of TEY or Y spectrum

measurements is that they do not require the special thin-

sample preparations that are needed for the direct absorption

measurements. The effective sampling depth of the TEY

technique, especially in the case of soft X-rays, is rather small

(�2–5 nm) and is the reason for the excellent surface sensi-

tivity of the method.

However, in recent years experimental evidence has been

presented showing that in some cases an unexpected distor-

tion of the TEY spectrum shape appears at X-ray glancing

incidence angles and even at normal incidence (Ejima et al.,

1999; Terekhov et al., 2010, 2011; Domashevskaya et al., 2011).

These results stimulated further investigations of TEY spectra

at different glancing angles in order to find an explanation for

the observed effects. For some samples extremely impressive

modifications of the spectrum shape were obtained that show

up as a periodic variation with the angle change (Doma-

shevskaya et al., 2011).

It is well known that for small glancing angles TEY is

influenced by reflection from the surface. In the 1960s a simple

formula was published (Rumsh et al., 1961) that represented

the number of created electrons dn in the differential layer dz,

dn ¼ ðI0=E Þ½1� Rð�Þ� exp½�ð�= sin �Þz�ð�= sin �Þ dz; ð1Þ

where I0 = N0 hc/� is the intensity of the incident radiation, E is

the energy expenditure for the creation of one electron, � is

the incident photon wavelength, R is the reflectivity, � is

the glancing angle for the X-ray beam and � is the linear

absorption coefficient. In particular, from (1) it follows that if

R(�) is sufficiently small the TEY or Y from the surface is

proportional to the absorption spectrum �(�). The similarity

between the absorption and TEY spectra was demonstrated

for the first time by Gudat & Kunz (1972).

The angular dependencies of TEY or fluorescence yield

near the total external reflection angle have been well studied

for soft and hard X-rays since the famous paper of Henke

(1972), who presented a more accurate formula for dn,

dnð�; zÞ ¼ S½1� Rð�Þ�
sin �

sin � 0
expð��z= sin � 0Þ��TðzÞ dz;

TðzÞ ¼ expð�"ez= sin Þ
� �

= sin ;
ð2Þ

where S = I0A0(!/4�) is the instrument constant, A0 is the

illuminated area, � 0 is the glancing angle for the refracted

wave, � is the volume density of the atoms, � is the atomic

cross section for the creation of the photoelectron, T(z) is the

function of the electron yield at depth z, "e is the linear

electron-attenuation coefficient, and  is the glancing angle

for the electron emission. In the simplest case, � = ��;

however, in (2) � and � can refer to specific q-type photo-

electrons �q and density of atoms which can emit such

photoelectrons �q. Later a similar theory was developed by

Solomin & Kruglov (1984).

Note that in the case of the reflection from a semi-infinite

mirror the following exact relation takes place,
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½1� Rð�Þ�
sin �

sin � 0
¼ 1þ rð�Þ
�� ��2; ð3Þ

where r(�) is the Fresnel amplitude of reflectivity,

r ¼ ðsin � � �Þ=ðsin � þ �Þ; ð4Þ

� ¼ sin2 � þ 	
� �1=2

: ð5Þ

� is the normal component of the wavevector of the refracted

wave in units of !/c, sin� 0 = Re(�), 	 = (" � 1) is the

susceptibility of the reflecting medium, " is its dielectric

function. So TEY from the surface of a semi-infinite medium

is initiated by the square module of the full electric field

|1 + r(�)|2, which was later called the standing wave at the

surface (Bedzyk et al., 1989).

A more general theory of TEY at the diffraction conditions

from crystals has been developed (Afanas’ev & Kohn, 1978;

Koval’chuk & Kohn, 1986). It was shown that the TEY angular

dependency in the vicinity of the Bragg angle reflects the

detailed structure of the radiation field inside the crystal

(X-ray standing waves). It was demonstrated how it can be

used for depth-selective analysis of imperfections of the

crystal structure. Later (Bedzyk et al., 1989; de Boer, 1991;

Dev et al., 2000), the standing-wave influence created at the

total reflection conditions on the fluorescence or photoelec-

tron yield was analysed as a function of the incidence angle.

However, the problem of the proper determination of the

function of the electron yield T(z) (see, for example, Liljequist

et al., 1978; Kovalchuk et al., 1986) imposes some limitations

on the wide application of the TEY method. The fluorescence

yield measurements have shown more advantages in the X-ray

standing-wave method mostly due to its element sensitivity

and also due to a much simpler form of the yield function T(z)

[see reviews by Vartanyants & Koval’chuk (2001) and von

Bohlen (2009), and also recent papers (Lee et al., 2006; Bera et

al., 2007; Gupta et al., 2007; Novikova et al., 2009; Andreeva et

al., 2009)].

The interpretation of the spectral dependencies of TEY

from multilayers at glancing angles, where the reflectivity

could not be ignored, has attracted minor attention up to the

present. Reflectivity spectra near absorption edges in the soft

X-ray region have been investigated in just a few works

(Barchewitz et al., 1978; Bremer et al., 1980; Kaihola &

Bremer, 1981; Jones & Woodruff, 1982; Andrė et al., 1984;

Lyakhovskaya et al., 1988; van Brug et al., 1989; Waki & Hirai,

1989; Filatova et al., 1995, 1999, 2006). However, experiments

at synchrotrons have presented ample opportunities for such

measurements. Later, the magnetic effects at absorption

edges, revealing themselves in the asymmetry of the reflec-

tivity spectrum for different X-ray polarizations, attracted

more attention (see, for example, Kao et al., 1994; Knabben et

al., 1998; Sacchi, 1999; Goering et al., 2001; Kim & Kortright,

2001; Oppeneer et al., 2003; Andreeva et al., 2006; Bergmann

et al., 2006). To our knowledge just one theoretical paper

devoted to the TEY spectra at the total reflection conditions

from multilayers has been published (Ejima, 2003). Later, this

theory was applied to the interpretation of the experimental

data (Watanabe et al., 2006). Following the theory developed

earlier for the case of thin films (Pepper, 1970), the waves in

direct and opposite directions in each sublayer, as well as the

influence of the interference of these waves on TEY, were

taken into account. The formalism for the standing-wave

description by Ejima (2003) was similar to that used by de

Boer (1991) and Dev et al. (2000) devoted to the fluorescence

emission. Note that the possibility to study the magnetic

effects near the absorption edges requires the more general

development of the standing-wave formalism for the case of

anisotropic (magnetic) interactions of X-rays with multilayers

at total reflection conditions.

A similar problem was considered earlier for Mössbauer

radiation. Effects of the spectrum shape distortions for the

conversion electron yield at grazing angles have been reported

in several papers (Andreeva et al., 1991, 1994, 1996, 1999). In

these works the general theory of reflectivity from anisotropic

multilayers was adjusted for consideration of the conversion

electron Mössbauer spectra. This approximation could be

easily used in the soft X-ray region as well. Use of the

propagation matrices operating with the full field vectors

simplifies the consideration of the standing-wave influence on

the photoelectron/fluorescence excitation in an isotropic case

and in addition allows the theory to be generalized to the case

of anisotropic multilayers. The main difference in the matrix

theory from the earlier theories (Ejima, 2003; de Boer, 1991;

Dev et al., 2000) (applicable only to the case of isotropic

multilayers) is the rejection of consideration of waves in direct

and opposite directions in each sublayer as well as their

interference (a very cumbersome procedure especially in the

anisotropic cases), and the performance of all computations

with total field vectors.

Here we present the general 4 � 4-matrix theory of the

standing-wave formation in anisotropic multilayers and their

action on fluorescent quanta or photoelectron creation. We

show as well how the propagation matrices are simplified in a

particular case of isotropic interaction of X-rays with atoms.

Then we apply our matrix algorithm for the interpretation of

the quantum yield spectra measured from a SiO2 /Si/SiO2

multilayer for the photon energy in the vicinity of the L2,3 Si

absorption edges at different glancing angles and find an

explanation of the peculiarities of these spectra recently

detected (Domashevskaya et al., 2011).

2. Theory

We calculate the total photoelectron yield Y(!) using the

general formula

Yð!; �Þ ¼
R1
0

TðzÞAðz; !; �Þ dz; ð6Þ

where A(z, !, �) is the number of electrons created at depth z

and T(z) is the function of the electron yield from depth z.

This is a common approach where the photoelectron/fluores-

cence yield is considered in three steps: (i) we calculate how

many photoelectrons or fluorescence quanta are created at
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depth z by the electromagnetic radiation absorption; (ii) how

these electrons or quanta will reach the detector or will be

registered (e.g. in the induced-current technique); and (iii)

perform the integration over all depths. Our efforts are mainly

directed at the first step, and we rely upon famous papers by

Henke (1972), Kasrai et al. (1996) and Ejima (2003) for the

description of T(z).

For the determination of the number of photoelectrons or

fluorescent quanta A(z, !, �) created in a differential layer dz

we use the general energy conservation law (Born & Wolf,

1968; Fedorov, 1976),

div Sþ
@W

@t
¼ �Q; ð7Þ

where S = (c/4�)Re[E� � H] is the Pointing vector averaged

over time (the � sign means the vector product), W =

(c/8�)(E� "̂"0 E + jHj2) is the density of the electromagnetic

energy, and

Q ¼ E�
̂
 Eð Þ ð8Þ

is the energy loss in unit volume at unit time (the superscript *

sign denotes a complex conjugate). In (7) for the separation of

gyrotropic and absorption effects the dielectric tensor "̂" is

separated into two parts,

"̂"0 ¼ "̂"þ "̂"�ð Þ=2; 
̂
 ¼ ð!=4�iÞ "̂"� "̂"�=2ð Þ; ð9Þ

where 
̂
 is the conductivity tensor, which determines the

absorption processes (mainly photoabsorption for soft

X-rays). The superscript � sign designates the Hermitian

conjugated matrix. In non-gyrotropic media the tensor 
̂
 is

simply the imaginary part of "̂". In gyrotropic media the

imaginary components of "̂" can be responsible for the polar-

ization effects, so the extraction of the absorptive part from "̂"
is more complicated as in (9).

For the soft X-ray region the energy loss Q mainly deter-

mines the photon absorption and consequently the number of

electrons or fluorescent quanta created at depth z in (6),

A / � E�
̂
 Eð Þ / � E�
	̂	� 	̂	�

�
E

� �
; ð10Þ

where 	̂	 = "̂" � 1 is the tensor of susceptibility. If the medium

contains different kinds of atoms then in (10) we should use

the part of 
̂
 and 	̂	 which is determined by the volume density

�q of the required kind of atoms, i.e. 
̂
q and 	̂	q. In our case we

deal with the limited energy interval of the incident photons

(95–105 eV) and consider � as a constant parameter deter-

mining the number of photoelectrons or fluorescent quanta

for one absorbed photon (but keeping in mind that this

number can be specific for different layers).

Vector E in (10) represents the total electric field of radia-

tion. If we use (10) it is not necessary to consider separately

the waves in the direct and opposite directions and their

interference influence in each layer on photoelectron creation

as done by Ejima (2003). The convolution of the conductivity

tensor 
̂
 with the electric field vectors E and E� takes into

account the possible anisotropy of the absorption process,

because not only is the absolute value of the Pointing vector at

the atom position essential but also the ability of the atom to

respond to a given polarization of the electric field. A similar

problem of anisotropic media with multipole interactions was

analysed by Vartanyants & Zegenhagen (1997).

To our knowledge the simple expression (10) is the most

general expression for the photoelectron or fluorescent

quantum creation which is valid for any anisotropic or gyro-

tropic media. The other approach based on the eigen states of

the electromagnetic waves in anisotropic layered media

should take into account the interaction of atoms with four

eigen waves and their interference fluxes (4 + 6 terms in total)

which makes the calculations very cumbersome. Note that the

problem of the eigen wave calculations in anisotropic media is

also rather complicated (see, for example, Odintsova &

Andreeva, 2010).

If " is a scalar function (or the polarization of the radiation

electric field E is one of the eigen polarization of the reflec-

tivity task) then 	̂	 � 	̂	� = 2Im(	) can be taken out of the

convolution procedure and we easily obtain (! = 2�c/�)

Aðz; !; �Þ / � Im½	qðz; �Þ�=�
	 


Eðz; �; �Þ
�� ��2

/ ��qðz; �Þ Eðz; �; �Þ
�� ��2: ð11Þ

The relation (11) establishes that the number of photoelec-

trons or fluorescent quanta created at depth z is proportional

to the square module of the total radiation field amplitude at

that depth, |E(z, !, �)|2 (to the standing wave). In (11) we have

taken into account that the imaginary part of the susceptibility

	(z) is directly connected to the linear absorption coefficient

�(z) [subscript q in (11) indicates that in some cases we are

interested in the absorption by a definite kind of atom],

� ¼ ð2�=�Þ Imð	Þ: ð12Þ

For the case of a uniform mirror (semi-infinite medium) we

can connect the number of created photoelectrons to the loss

of the radiation intensity in a differential layer, as was done in

the early papers (Henke, 1972; Solomin & Kruglov, 1984). For

the reflection from a semi-infinite medium we have I(z) /

|E(z)|2 Re(�) and E(z) = E0 exp(�i�kz) (k = 2�/� = !/c),

where � is determined by (5). So

dI=dz / �2 Reð�Þ Imð�Þ k exp½�2 Imð�Þ kz�jEð0Þj2; ð13Þ

but for � determined by (5) we have the exact relation

2 Reð�Þ Imð�Þ ¼ Imð	Þ ð14Þ

and we come to (11). If we are far from the total reflection

region,

Imð�Þ ’ Imð	Þ=ð2 sin �Þ; Reð�Þ ’ sin �; ð15Þ

IðzÞ ¼ Eð0Þ
�� ��2sin � expð��z= sin �Þ;

dI=dz ¼ �� Eð0Þ
�� ��2expð��z= sin �Þ;

ð16Þ

and we again come to (11). Note that the additional factor

1/sin� in expression (1) for dn appears when the full spot of

radiation intensity on the surface becomes smaller with

increasing angle. Expression (11) refers to the unit surface.
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The most essential difference between a multilayer sample

and a semi-infinite medium is the non-exponential z-depen-

dence of the total radiation field amplitude E(z, !, �). For its

calculation we use the propagation matrices which describe

the evolution of the tangential components of the electrical

and magnetic field of radiation with z. We consider the plane

waves of radiation �exp[i(!/c)j r � i!t] and, if the dielectric

tensor in a multilayer changes just along the normal to the

surface "̂" = "̂"ðzÞ, we can write

j ¼ bþ �q; ð17Þ

where q is the unit vector along z and b is a tangential

component of the wavevector (in units of !/c). In the

following we shall omit the dependence of the "̂" and field

amplitude from ! (or �) and � for brevity. The homogeneity of

the radiation field along the surface specifies the equality of

the tangential components of the wavevectors for all reflected

and transmitted waves in a multilayer, i.e. b = constant, |b| =

cos� for all sublayers in a multilayer. So we shall consider the

radiation field amplitudes in the form

Eðr; tÞ

Hðr; tÞ

� �
¼

EðzÞ

HðzÞ

� �
expfi ð!=cÞbr� !t½ �g: ð18Þ

Then the Maxwell equations for E(z), H(z) can be written in

the following way,

q�
d

dz
þ i

!

c
b�

� �
HðzÞ

EðzÞ

� �
¼ i

!

c

�"̂"ðzÞEðzÞ
HðzÞ

� �
; ð19Þ

where the superscript � symbol means the dual tensor (i.e.

q�a = q� a, � means the vector product). The system of

equations (18) connects six components of the vectors E(z),

H(z), but just four components are independent, because from

(19) we can obtain two algebraic relations between their

amplitudes,

ðaHÞ ¼ ðq "̂"EÞ; ðaEÞ ¼ �ðqHÞ; ð20Þ

where a = b�q = b � q. The tangential components of the

vectors E(z), H(z),

ÎI H

q� E

� �
¼

Hx

Hy

�Ey

Ex

0
BB@

1
CCA; ð21Þ

should be continuous at the boundary crossing, and they are

usually chosen for the task. In (21) we have used the projective

operator on the surface plane ÎI = �ðq�Þ2. The coordinate

system used is presented in Fig. 1.

The full vectors E, H can be expressed from the tangential

components (Borzdov et al., 1976),

H

E

� �
¼

ÎI �q � a

ð1="qÞ q � a ÎI � ð1="qÞ q � q "̂"ÎI

� �
Ht

Et

� �
; ð22Þ

where the sign � between vectors means the outer product

(the diad), "q = q "̂" q. Finally we have

d

dz

ÎI HðzÞ

q� EðzÞ

� �
¼ i

!

c
M̂MðzÞ

ÎI HðzÞ

q� EðzÞ

� �
; ð23Þ

where M̂M is a differential propagation matrix, the explicit

expression for which is given by, for example, Borzdov et al.

(1976),

M̂M ¼

1
"q

q�"̂" q � a 1
"q

ÎI ~̂""~""ÎI � b � b

ÎI � 1
"q

a � a � 1
"q

a 	 q "̂" q�

0
B@

1
CA; ð24Þ

or, in the coordinate system used (Azzam & Bashara, 1977),

M̂M ¼

�
"yz

"zz
cos � 0 1

"zz
ð"yy"zz � "zy"yzÞ

1
"zz
ð"yz"zx � "yx"zzÞ

"xz

"zz
cos � 0 1

"zz
ð"zy"xz � "xy"zzÞ

1
"zz
ð"xx"zz � "zx"xzÞ � cos2�

1� cos2�
"zz

0 �
"zy

"zz
cos � "zx

"zz
cos �

0 1 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð240Þ

Calculation of the total radiation field amplitude E(z) with the

help of the propagation matrices is performed in two steps.

Firstly the integration of (23) over the whole multilayer

establishes the relation between four tangential field compo-

nents on the top surface and at the substrate. This relation

allows us to determine the reflected wave for a given incident

wave and to obtain four tangential components of the total

field (for incident plus reflected waves) on the top surface. In

the second step we follow the evaluation of the tangential

components of these vectors with depth by sequentially

applying the propagation matrices specific for each sublayer.

At each depth z we can restore the total field amplitude E(z)

with help of (22) and use it for calculation of A(z, !, �) by

(10). The whole algorithm is realized in the program package

XFRAM (Odintsova & Andreeva, 2012) and examples of

fluorescence calculations from an antiferromagnetic multi-

layer [Fe/Cr]n at the L2,3-edge of Fe have been published by

Andreeva & Odintsova (2012).

Let us consider the calculation of E(z) for a simpler

isotropic case applicable for our experimental data. When "̂" =

"̂"ðzÞ is a scalar function (or if this tensor is represented by a

diagonal matrix in the used x,y,z basis), the 
- and �-polarized

waves are independent. For 
-polarization of radiation (the

electric field vector E for all waves is perpendicular to the

reflection plane) we obtain the differential 2 � 2-propagation
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Figure 1
The coordinate system used.



matrix which describes the evolution with z of the Ex = E and

Hy components,

d

dz

ExðzÞ

HyðzÞ

� �
¼ i

!

c

0 1

sin2 � þ 	xxðzÞ 0

� �
ExðzÞ

HyðzÞ

� �
: ð25Þ

In (25) we insert the designation of 	xx(z) = "xx(z) � 1. Note

that, instead of the simple exponential attenuation of the

amplitude of the radiation field, at the reflection conditions

we need two variables in each layer and a 2 � 2 propagation

matrix in order to take into account the existence of two waves

in each sublayer. Here they are not the amplitudes of the

waves in the direct and opposite directions but the total

amplitude of the electric field (which is actually the coherent

sum of the these waves) E = Ex and Hy. Often in the hard

X-ray region the full electric field and its z-derivation is used,

which is proportional to Hy at grazing angles.

For �-polarized radiation (the electric field vector E for

waves in the direct and backward directions lies in the

reflection plane) we obtain the differential 2 � 2-propagation

matrix which describes the evolution of the Hx = H and �Ey

components,

M̂M ¼
0 "yy

sin2�þ	zz

"zz
0

 !
: ð26Þ

In the thin nth sublayer we can put "jj(z) = constant and the

differential equation (25) will have the analytical solution

Exðzþ dnÞ

Hyðzþ dnÞ

� �
¼ exp½ið!=cÞM̂Mn dn�

ExðzÞ

HyðzÞ

� �
; ð27Þ

where the matrix exponential exp½ið!=cÞM̂Md� for 
-polariza-

tion is given by the expression

exp½ið!=cÞM̂Md� ¼
cos Q i

� sin Q

i � sin Q cos Q

� �
; ð28Þ

and Q = (!/c)dn�, � = (sin2� + 	xx,n)1/2.

For �-polarized radiation we have

exp½ið!=cÞM̂Md� ¼

cos Q
i "yy;n

� sin Q

i � sin Q
"yy;n

cos Q

0
B@

1
CA; ð29Þ

where � = ("yy,n /"zz,n)1/2(sin2� + 	zz,n)1/2.

A multilayer characterized by a varying susceptibility 	 =

	(z) is usually divided into thin sublayers; in each of them

we can put "jj,n(z) = 1 + 	jj,n = constant. The total integral

propagation matrix L̂LðDÞ is calculated as a product of the

matrix exponentials,

L̂LðDÞ ¼ exp i
!

c
dNM̂MN


 �
exp i

!

c
dN�1M̂MN�1


 �
. . . exp i

!

c
d1M̂M1


 �
;

D ¼ d1 þ d2 þ . . .þ dN:

ð30Þ

(Layers are numerated from a surface to a substrate having

the number N + 1.) This matrix

L̂LðDÞ ¼
L11 L12

L21 L22

� �

allows us to find easily the reflected wave,

ER ¼
�dð�0L12 þ L11Þ � ð�0L22 þ L21Þ

�dð�0L12 � L11Þ � ð�0L22 � L21Þ
E0; ð31Þ

where �0 = sin � (in the external medium we put " = 1), �d =

ðsin2� þ 	dÞ
1=2, 	d is the susceptibility of a substrate.

For the case of the 
-polarized radiation the total radiation

field at the surface is

Eð0Þ ¼ Exð0Þ ¼ E0 þ ER;

Hyð0Þ ¼ sin � E0 � ERð Þ;
ð32Þ

and we can obtain the total radiation field amplitude E(z) at

any depth z (being at each depth a coherent sum of the waves

in the direct and opposite directions) by successive application

of the propagation matrix (28) specific at each depth to the

vector column

EðzÞ

HyðzÞ

� �

[or (29) to

HðzÞ

�EyðzÞ

� �

in the case of the �-polarized radiation].

For calculation of the function of the electron yield T(z) we

use the simplest exponential attenuation function along its

way, expð�"elÞ, "e = 1/�el, but suppose that the electron escape

depth �el in each layer can be different and the path length l

depends on the angle of emission. Using the approach of

Kasrai et al. (1996) for the integrated electron yield over

different angles of emission we describe T(z) from the nth

layer in the following way,

TnðzÞ ¼ C1C2 . . . Cn�1

R2�
0

d’
R�=2

0

exp �Z=cos ð Þ sin d ;

ð33Þ

where

Z ¼
d1

�el
1

þ
d2

�el
2

þ . . .þ
dn�1

�el
n�1

þ
�n

�el
n

� �
;

z = d1 þ d2 þ . . .þ dn�1 þ �n, �n is the z coordinate for the

considered nth layer calculated from its top; �el
n is the electron

escape depth in the nth layer;  and ’ are the polar and

azimuth angles of the electron yield. The integral over  in

(32) depends on the special function S(Z) called the ‘expo-

nential integral’,

TnðzÞ ¼ 2� exp �Zð Þ � Z SðZÞ½ �;

SðZÞ ¼

Z1
1

expð�ZtÞ

t
dt:

ð34Þ

In our program we calculate S(Z) numerically.
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According to Ejima (2003) we include in (33) the additional

factors Ci describing the transmission probability through the

interface between the (i � 1)th and ith layers originating

from the difference in the electric potential in these layers.

In the computing procedure we combine constant factors

C1C2 . . . Cn�1 and the probability of the electron creation �n

into one single factor for each nth layer.

Note that the exponential attenuation in (33) for the

description of the electron propagation is not exactly correct,

because the electrons change the direction of their propaga-

tion owing to the collisions with other electrons beside

creating secondary electrons. The Monte Carlo method gives

the most adequate picture of the electron propagation in the

medium (see, for example, Liljequist et al., 1978; Kovalchuk et

al., 1986; Bakaleinikov et al., 2001; Jablonski & Powell, 2002).

However, in our case of very soft radiation the sampling depth

of the electrons is so small that the exact function for the

electron yield T(z) does not have much influence on the final

result.

3. Experimental data

The experimental data have been obtained for a SiO2 /Si/SiO2 /

c-Si sample at different glancing angles for 
-polarized soft

X-rays which demonstrated the strong influence of the

reflectivity on TEY spectra. The samples have a specific

structure called ‘silicon-on-insulator’ (Fig. 2). A �150 nm

silicon oxide SiO2 layer and then a strained silicon nanolayer,

�100 nm thick, were deposited on a single-crystalline Si (100)

substrate, about 300 mm thick. It is clear that the surface of the

sample has been oxidized in the air and typically the thickness

of the top native oxide layer is �2 nm. So in total we have the

structure SiO2 /Si/SiO2 /c-Si. However, the reflectivity of the

soft X-rays was actually determined by the three top layers

SiO2(2 nm)/Si(10–100 nm)/SiO2 , having SiO2 as substrate. In

this paper we consider the results for one sample with a

strained Si layer of thickness�80 nm and characterized by the

yellow colour of its surface.

XANES spectra near the L2,3 absorption edges of Si for

this sample have been measured for different glancing angles

at the SRC (Synchrotron Radiation Center, University of

Wisconsin-Madison, Stoughton, USA) and BESSY II

(Helmholtz Zentrum, Berlin, Germany) synchrotron radiation

facilities. The sample current technique was used. Details of

the experiment have been presented by Domashevskaya et al.

(2011).

The experimental results are shown in Fig. 3 (left side). The

normal-incidence spectrum is shown at the top of the figure. It

is typical of the oxidized Si sample (Domashevskaya et al.,

2011). The XANES spectrum of the standard sample (s-Si)

consists of two basic absorption edges, the Si L2,3-edges of

elementary Si (100 eV) and the Si L2,3-edges of natural oxide

(105.5 eV). The fine doublet structure of the basic edges is

caused by the spin-orbital splitting of the 2p1/2,3/2 Si core level

(0.6 eV) from which electrons transfer to the Si and SiO2

conduction band under synchrotron beam excitation. The fine

structure of the Si L2,3 basic edges (�100 eV and �103 eV) is

characteristic of single-crystalline silicon independent of its

conduction type and orientation [(100) or (111)] and dis-

appears into amorphous silicon a-Si for which only one step

(�100.5 eV) remains. However, investigation of the XANES

fine structure of pure Si for sample characterization is almost

impossible owing to the existence of the SiO2 top layer and the

small sampling depth of the TEY method. It is not revealed

in our normal-incidence spectrum. This is why we have

attempted to obtain further information by changing the angle

of incidence. The underlying layer of crystalline Si is revealed

in XANES spectra measured at small glancing angles of

incident radiation in a quite unexpected manner.

At small glancing angles (5, 7, 9, 11, 13, 15, 17, 19, 21, 25�)

the measured TEY spectra dramatically differ from the

normal-incidence spectrum. They exhibit oscillations at the

per-edge energy range 90–100 eV. Surprisingly the phase of
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Figure 2
Schematic view of the sample.

Figure 3
TEY spectra for the normal incidence of radiation (top panels) and at
glancing angles of 5, 7, 9, 11, 13, 15, 17, 19, 21, 25� (below, vertically
shifted). Experimental spectra are on the left-hand side and the results of
our fit are on the right-hand side. Dashed lines (blue) on the right-hand
side present the electron yield from the top oxidized layer only, �2.2 nm
thick. The shaded area denotes the energy range for the fit of the glancing
incidence spectra. Dotted vertical lines mark the energies for which the
angular dependencies are calculated (see also Fig. 7).



the oscillations switches sign if the glancing angle is changed

by �2�. Besides, an abrupt jump (a rostrulum up or a

rostrulum down) of the intensity is observed near 100 eV (Si

L3-edge). In the hard X-ray region, decreasing the glancing

angle is commonly used in order to decrease the investigated

depth of the sample. In our experiment the sampling depth is

extremely small even at the normal incidence of radiation

(�1–2 nm). In the normal-incidence XANES spectrum mostly

SiO2 L2,3 peaks dominate, whereas pure Si L2,3 peaks have

very low intensity. The specific features of the experimental

TEY spectra at glancing angles do not occur in the normal-

incidence spectra, so they are not the properties of the top

layer of material itself but appear owing to the interaction of

the incident radiation with the whole multilayer structure.

4. Interpretation of the data

The fit of the data was not simple because the reflectivity had

not been measured either on the energy scale or on the

angular scale. Information about the optical constants for Si

and SiO2 in the vicinity of the L2,3-edges is quite unreliable in

standard tables and in the literature.

Some data from different sources for the real and imaginary

parts of the susceptibilities of Si and SiO2 for the energy range

under investigation are presented in Fig. 4. We see that the

data are rather different. Therefore, during the fit procedure

the optical constants for the Si, SiO2-‘substrate’ and oxidized

‘cap’ SiO2-layer were varied. We tried to keep the overall

shape of the susceptibility energy dependencies (and control

the agreement of our calculations for � = 90� with the normal-

incidence spectrum), but used the additional variable factors

(12 fit parameters) for the shift and multiplication for each

curve. We partially used a manual fit of the parameters, but

an automatic fit was also applied (like the AMOEBA code,

sequent one-parameter descent and multi-dimensional NET

calculations). We also changed the inclination of the low-

energy ‘tail’ of the susceptibility dependencies in the energy

region 90–98 eV for pure Si in the middle layer and in the

90�103 eV region for SiO2 in the top and third layers (addi-

tional six fit parameters) where the most interesting features

appear on the experimental Y spectra. The resulting

susceptibility dependencies for three layers are shown in Fig. 4

by the thick lines.

The susceptibility of the bottom SiO2 layer does not influ-

ence the resulting TEY spectra heavily, so we have kept the

dependencies presented by Filatova et al. (1999) but were

forced to slightly shift the absolute value of the real part. For

the middle Si layer we started from the data of Henke (1993),

but a small energy shift is needed for a better correspondence

of the experimental and theoretical normal-incidence Y

spectrum. We have found as well that the absolute value of the

imaginary part of 	 in pure Si should be magnified [this is

partly correlated with the data from NIST (Chantler et al.,

2009)]. The shape of the real part of 	 in the Si layer in the pre-

edge region (marked by the circle in Fig. 4) has been changed

in order to obtain the appearance of the ‘rostrulum up’ or

‘rostrulum down’ features in the TEY dependencies at glan-

cing angles.

The energy dependencies of susceptibilities in the top

oxidized layer were essentially modified during the fit proce-

dure. The essential change of the optical constants in the top

layer was expected owing to the imperfections in the ultrathin

layer structure (induced distortion of the elementary cell,

defects, dislocations, impurities, etc.). Typically for hard X-rays

the electronic density becomes lower (by�10–20%) in the top

layer, but in our case we have found the opposite result: the

absolute value of the real part of the susceptibility was found

to be larger than the tabled values for SiO2 . The relation

between the electronic density and the optical constants is

more complicated in the soft X-ray region, e.g. oxidation leads

to an increase in the absolute values of the real and imaginary

parts of 	. The result obtained for the top layer can be

explained by the reason that the top 2.2 nm-thick oxidized

layer can contain some impurities, e.g. absorbed atoms C, N,

etc. To be sure that these impurities can influence the optical

constants in this way we have taken the tabled data from XOP

(http://www.esrf.eu/UsersAndScience/Experiments

/TBS/SciSoft/xop2.3/Main) for Re(	) and Im(	) for different

compounds of silicon (Fig. 5). It can be clearly seen that
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Figure 4
Real and imaginary parts of the Si and SiO2 susceptibility in the vicinity of
the L2,3 absorption edges of Si for three layers in our structure. Dashed
lines (blue) for Si and SiO2 present data from the tables of Henke et al.
(1993); thin solid lines (magenta) for SiO2 are the results from Filatova et
al. (1999); dash-dotted lines (green) are the absorption data from Kasrai
et al. (1996), normalized to the absolute values of Henke et al. (1993) ‘at
the tails’; dotted lines (dark blue) for Si are data from NIST (Chantler
et al., 2009); bold lines (black) are data obtained by the fit of the
experimental data for three layers in our structure. The shaded area
denotes the energy range for the fit of the glancing incidence spectra.



compounds like SiC or Si3N4 are characterized by an increase

in the absolute values of Re(	) and a decrease in Im(	) in the

pre-edge region compared with the optical parameters of

SiO2. By our fit we have obtained exactly such a tendency for

the top SiO2 layer.

More accurate determination of the optical constants for

the layers can be obtained by measurements of the angular

dependencies of the reflectivity and TEY for different ener-

gies, as was carried out by, for example, Gupta et al. (2007)

and Smekhova et al. (2010). Unfortunately we had no such

experimental data; for soft X-rays such data can only be

obtained at specialized synchrotron radiation beamlines.

The thickness d1;2 of the top SiO2 layer and strained Si layer

were varied as well as the electron escape depth �el
n (additional

four fit parameters). For �el
n we obtain the values 1.47 nm for

SiO2 (n = 1) and 0.81 nm for Si (n = 2), close to those used by

Kasrai et al. (1996). The fit also gives the thickness of the top

oxide layer dSiO2 = 2.2 nm and the thickness of the strained Si

layer dSi = 85.8 nm. Finally, a reasonable agreement between

the theoretical and experimental energy dependencies for all

angles of incidence including 90� (Fig. 3, compare left- and

right-hand parts) has been achieved. We have reproduced the

oscillations in the pre-edge region of the Si L-edge, changing

the phase with the angle variation, and have obtained

rostrulum-up and rostrulum-down features at the Si absorp-

tion edge.

As long as our calculations are based on the exact solutions

of the electromagnetic theory for a radiation field inside a

multilayer, it is possible to explain the reasons for the intri-

guing energy dependencies of the TEY spectra at small

glancing angles of radiation.

Initially we suppose that the peculiarities of the Y spectra at

different angles are explained by the enhancement of the field

in the middle Si layer because the main anomalous features

were observed near the L2,3-edges of pure Si but not at the top

SiO2 . However, the very small escape depth for our low-

energy electrons (�el / 1 nm) contradicts this assumption. In

Fig. 3, on the right-hand side, we also present the contribution

from the top SiO2 layer (dashed blue lines) in addition to the

quantum yield Y and we see that the main features of the Y

spectra in the pre-edge region are completely determined by

this contribution. So the role of the underlying Si layer is

different. The strong variation of the Si optical constants near

the L2,3-edges dramatically changes the total radiation field

|E(z, !, �)|2 in the top SiO2 layer from which we actually

measure the quantum yield Y. This explanation is illustrated in

Fig. 6. The presented depth dependencies of |E(z)|2 (standing

waves) for the selected photon energies at two grazing angles

of the incident radiation clearly show that the wisp or lapse on

the TEY spectrum is caused by the specific waveguide modes

in the middle Si layer. If on the top boundary of the Si layer we

have the node of the standing wave, the measured TEY

intensity decreases; if we have the anti-node then the TEY

intensity from the top layer increases. This observed effect in

the energy scale is similar to the calculated angular depen-

dency of TEY from a thin layer in an earlier paper (Pepper,

1970).

The abrupt change of the TEY intensity near 100 eV is

explained by the substantial suppression of the waveguide

mode in the Si layer by a huge increase in the absorption in

this layer exactly at the Si absorption edge. The wave reflected

from the bottom boundary of the Si layer becomes negligible,

the enhancement of the intensity by the interference of the

waves in direct and opposite directions disappears, and the

next oscillation on the TEY spectrum drops off.

The suppression of the reflectivity from the bottom

boundary of the Si layer and its influence on the TEY electron

yield is also illustrated by the angular dependencies presented

in Fig. 7. We see that the small change of the photon energy

from 100 eV to 100.3 eV leads to the suppression of the

oscillatory dependences of the reflectivity and TEY.

In Fig. 7 we compare the (1 � R) and |E(0)|2 angular

dependencies. They are not identical because in the case of

a multilayer the reflectivity is not described by the simple

Fresnel formula and relation (3) does not take place. The TEY

dependency is rather close to the |E(0)|2 angular dependency

(because the main contribution to our Y spectra is from

the very surface), but not to (1 � R). This is an illustration

of the non-applicability of formula (1) for the case of multi-

layers.

However, the energy dependencies of Y, (1 � R)[Im(	1)]/�
and |E(0)|2 [Im(	1)]/� are quite different (Fig. 8), so we should

conclude that the contribution from the second pure Si layer

noticeably influences the TEY energy dependences mainly

due to the factor �Si(�) / Im[	Si(�)]/�.
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Figure 5
Table dependencies from ESRF software XOP of the optical constants
for different compounds of Si. In the inserts these dependencies are
drawn in the energy range considered in our fit.



5. Conclusions

We have shown that the remarkable features of the quantum

yield spectra measured in the vicinity of the Si L2,3 absorption

edges at different glancing angles are not caused by some

specific changes of the XANES spectra but originate from

optical phenomena. TEY spectra are influenced by the

reflectivity formed by the whole multilayer structure. The

special structure of the investigated SiO2 /Si/SiO2 multilayer

has allowed us to enhance and reveal such influence in the

most impressive way owing to the formation of the waveguide

modes in the middle Si layer. In principle, such a change of the

TEY spectra by the angle variation can be used as an addi-

tional source of information for determination of the absolute

value of the optical constants because the precise matching

of the optical parameters in the structure is required for

the appearance of the waveguide effect. However, the task

of determining the optical constants could be better solved

if complimentary measurements of the reflectivity are

performed.
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Figure 8
The energy dependencies of the quantum yield Y, calculated by the exact
theory (6), (11) for the structure model, obtained by our fit (thick solid
line), (1 � R) Im(	1)/� (thin red solid line) and |E(0)|2 Im(	1)/� (dotted
black line) for a 5� glancing angle. All curves are normalized.

Figure 7
Angular dependencies of the reflectivity R (dashed blue lines), the square
module of the field on the surface |E(0)|2 (dotted black lines), (1 � R)
dependencies (thin red lines) and calculated TEY angular dependencies
(thick black lines) for different energies in the vicinity of the Si L2,3

absorption edges indicated in Fig. 3 by dashed vertical lines.

Figure 6
Experimental (symbols) and theoretical (solid lines) energy dependen-
cies of TEY spectra for the glancing angles 5� and 7�. In the inserts we
show the depth dependencies of |E(z)|2 (standing waves) for the photon
energies, indicated by the vertical dashed lines. Function T(z) (green)
presented in the inserts is almost unseen because it is concentrated in the
top SiO2 layer.
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