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A fluctuation X-ray scattering experiment has been carried out on platinum-

coated gold nanoparticles randomly oriented on a substrate. A complete

algorithm for determining the electron density of an individual particle from

diffraction patterns of many particles randomly oriented about a single axis

is demonstrated. This algorithm operates on angular correlations among the

measured intensity distributions and recovers the angular correlation functions

of a single particle from measured diffraction patterns. Taking advantage of the

cylindrical symmetry of the nanoparticles, a cylindrical slice model is proposed

to reconstruct the structure of the nanoparticles by fitting the experimental ring

angular auto-correlation and small-angle scattering data obtained from many

scattering patterns. The physical meaning of the refined structure is discussed in

terms of their statistical distributions of the shape and electron density profile.
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1. Introduction

The vast majority of macromolecular structures are deter-

mined by X-ray crystallography, typically providing structural

information at the atomic level (Hendrickson, 2000). The

availability of these high-resolution structural models is the

foundation for a deeper understanding of fundamental

processes in biology, the development of new therapeutic

drugs, and novel classes of nano-materials (Matthews, 1976;

Blundell & Patel, 2004; Ikkala & Brinke, 2002). Owing to

difficulties crystallizing large macromolecular complexes, like

membrane proteins or molecular machines, X-ray crystal-

lography is rarely the technique of choice for deriving struc-

tural information of such systems. Current techniques, such

as electron microscopy, used to study large macromolecular

complexes derive structural information of complexes in non-

native environments and do not allow for the investigation of

time-dependent large-scale structural changes. Techniques

like small- and wide-angle X-ray scattering (SAXS/WAXS)

allow time-resolved studies but have the drawback that the

data contain relatively low information content. A possible

route for increasing the information content in solution scat-

tering experiments while following the large-scale structural

changes of macromolecular complexes in native-like envir-

onments is fluctuation X-ray scattering (fXS), a method

proposed by Kam (Kam, 1977; Kam et al., 1981). A fXs

experiment is performed by collecting scattering patterns of a

dilute sample of scatterers at exposure times below the time

required for particles to reorient themselves. It can be shown

that a large number of these scattering patterns can be used to

estimate the average ring angular auto-correlation (RAC) of

the scattering pattern of a single particle (Kam, 1977; Kam

et al., 1981; Saldin et al., 2009, 2011). While a model experi-

ment has been successfully carried out on gold nanorods

(Saldin et al., 2011), ultimately one would like to apply the fXS

technique to study macromolecular structures using X-ray

free-electron lasers. The scattering intensity from these

systems will be inherently weak owing to the low electron

density of organic materials and is worsened by the presence

of solvents in most cases. In order to obtain any meaningful

structural information from such measurements, care must be

taken during data handling such as background subtraction.

On the structural reconstruction side, the current method of

approaching the problem by solving a hyper-phase problem

remains computationally intractable (Saldin et al., 2011). Here,

we propose a novel data reduction method that can be

generally applied to fXS measurements. This method is

particularly useful for handling the non-uniform scattering

background. Furthermore, the real-space structure is deter-

mined in a straightforward manner by using a reverse Monte

Carlo type algorithm operating in real space.

2. Experimental

The fXS measurements were carried out on platinum-coated

gold dumbbells randomly oriented on silicon nitride windows.
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The dumbbells were purchased from Sigma-Aldrich in a

solution of 100 mg mL�1 (http://www.sigmaaldrich.com/, part

number 716936). The solution was diluted with deionized

water and spin-casted onto the 75 nm-thick silicon nitride

substrates. The resulting samples have on average �20

dumbbells in a 15 mm-diameter spot as shown in Fig. 1(a).

Transmission electron microscopy (TEM) measurements with

increased resolution were carried out on the samples in the

study as shown in Fig. 1(b). The X-ray transmission diffraction

patterns were collected at beamline 9.0.1 of the Advanced

Light Source using highly coherent X-rays with a photon

energy of 545 eV. One hundred diffraction patterns were

taken from different spots on a single sample, each containing

approximately 20 dumbbells. The scattering intensity of each

diffraction pattern is normalized by the incident beam inten-

sity recorded before each image was taken.

3. Theoretical considerations

3.1. Experimental data analysis

A typical X-ray transmission diffraction image taken under

the above experimental conditions is shown in Fig. 2. As we

can see, the scattering from such a diluted system is relatively

weak because of the two inherent requirements of a fXS

experiment: (i) the scattering interference between different

particles must be negligible; (ii) the angular fluctuation must

be maintained along rings of equal wavevector transfer in

reciprocal space. Both requirements demand having as few

particles in the beam as possible, and the net result is a weak

scattering intensity. This in turn requires a proper handling of

the background scattering. Given the fact that a fluctuation

scattering experiment aims to obtain the average ring auto-

correlation of the scattering bodies as precisely as possible, it

is of vital importance that one corrects for systematic errors in

the auto-correlation of the background.

The data reduction method we developed aims to address

these issues. The proposed procedure and underlying ideas are

not limited to two-dimensional systems and can be used for

three-dimensional fXS data analysis as well. We start with

converting two-dimensional experimental diffraction data into

polar coordinates whose origin coincides with the direct beam

position and express all the measured intensities as functions

of wave vector transfer, q, and the polar angle, ’. The total

scattering intensity, Itðq; ’Þ, can be divided into two parts, one

from the nanoparticles [signal, Isðq; ’Þ] and the other

accounting for scattering from all other sources such as the

substrate and intrinsic background originating from the

diffraction set-up [background, Ibðq; ’Þ],

Itðq; ’Þ ¼ Isðq; ’Þ þ Ibðq; ’Þ: ð1Þ

We continue with dividing both the signal and background

intensities into two terms, the fluctuation and angularly non-

isotropic terms, Isfðq; ’Þ and Ibfðq; ’Þ, and the mean values

along each q, IsaxsðqÞ and IbcðqÞ, so that

Isðq; ’Þ ¼ Isfðq; ’Þ þ IsaxsðqÞ; ð2Þ

Ibðq; ’Þ ¼ Ibfðq; ’Þ þ IbcðqÞ: ð3Þ

Substituting them into equation (1), one obtains

Itðq; ’Þ ¼ Isfðq; ’Þ þ Ibfðq; ’Þ
� �

þ IsaxsðqÞ þ IbcðqÞ
� �

: ð4Þ

Subtracting the diffraction pattern by its mean intensity,

IsaxsðqÞ + IbcðqÞ, along each diffraction ring, only the fluctua-

tion part of the intensity is left, namely Ifðq; ’Þ,

Ifðq; ’Þ ¼ Isfðq; ’Þ þ Ibfðq; ’Þ: ð5Þ

Because the background intensity comes from sources such as

the electronic noise of detectors and unshielded radiation, it is

instrument related and does not change during an experiment.

For this reason one can assume that the angularly non-

isotropic part of the background, Ibfðq; ’Þ, does not change

from image to image. The summation of all the fluctuation

terms over all the diffraction images, N, results in
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Figure 1
(a) TEM image of an enlarged part of the sample under study. (b) High-
resolution TEM images of two typical nanoparticles used in our study
shown in 44 nm by 83 nm rectangular boxes.

Figure 2
Typical X-ray diffraction pattern of the sample under study.



PN
n¼1

In
f ðq; ’Þ ¼

PN
n¼1

In
sfðq; ’Þ þ In

bfðq; ’Þ
� �

¼ NIbfðq; ’Þ þ
PN
n¼1

In
sfðq; ’Þ: ð6Þ

Because the scattering intensity from the particles fluctuates

for different diffraction images, the second term in (6) will

add up to be zero over a large number of diffraction images

(large N),

PN
n¼1

In
sfðq; ’Þ ¼ 0: ð7Þ

From equation (6) we can obtain the fluctuation part of the

background scattering,

Ibfðq; ’Þ ¼
1

N

PN
n¼1

I n
f ðq; ’Þ: ð8Þ

Therefore the fluctuation scattering from the particles can be

calculated precisely using the following expression,

I n
sf ðq; ’Þ ¼ I n

f ðq; ’Þ �
1

N

PN
n¼1

I n
f ðq; ’Þ; ð9Þ

where I n
f ðq; ’Þ can be obtained experimentally as shown in (5).

Once the background has been removed, the RAC can be

obtained via

C n
ðq;�’Þ ¼

1

N’

P
’

I n
sf ðq; ’Þ I

n
sf ðq; ’þ�’Þ; ð10Þ

where N’ is the number of angular divisions along a ring of

equal q.

3.2. Structure modeling

In order to recover the real-space structure of the nano-

particles, we applied a reverse Monte Carlo (Metropolis et al.,

1953) type method by iteratively comparing the computed and

experimental two-dimensional ring auto-correlation data. This

method starts with constructing a real-space model and then

uses the model to simulate the experimentally measurable

data. Here we propose a cylindrically symmetric model for the

measured nanoparticles for two reasons: first the particles are

cylindrically shaped by growth and second they randomly lie

on their sides with the orientation of the particles being

uniform along the cylindrical axis. Accordingly, our model

simulates the shape of the nanoparticles by many thin discs

along its symmetry axis with variable diameters. In this model

the scattering amplitude from a cylinder can be calculated

analytically using the Born approximation (Als-Nielsen &

McMorrow, 2001). Assuming the incident X-ray beam is

perpendicular to the cylindrical axis (y-axis), the X-ray scat-

tering amplitude from a cylinder is

Aðqr; qyÞ ¼ 2��r0R2H
J1ðqrRÞ

qrR
sinc qy H=2ð Þ

� �
; ð11Þ

where sinc(x) = sin(x)/x, � is the electron density, r0 is the

Thomson scattering length, R and H are the radius and length

of the nanorod, respectively, qr and qy are the components of

wave vector transfer perpendicular and parallel to the

cylindrical axis, and J1 is the Bessel function of the first kind

(McAlister & Grady, 1998). To demonstrate how to calculate

the X-ray scattering intensities and RAC of a cylindrically

symmetric particle by applying equation (11), we take a

dumbbell-shaped gold nanoparticle as an example. The total

length of this nanoparticle is 80 nm, the radius of the central

cylinder is 12.5 nm, and the radius of the balls on both ends is

15 nm. Using the cylindrical slice model, the X-ray scattering

pattern of such a nanoparticle can be computed by dividing it

into many small slices along its symmetrical axis as shown in

Fig. 3(a) and each slice can be approximated as a thin disc with

its X-ray scattering amplitude calculated by (11). The total

scattering intensity from such a particle shown in Fig. 3(b) is
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Figure 3
(a) Three-dimensional view of a dumbbell with slices along the symmetry axis representing the cylinders used in the model. The total length of the
dumbbell is 80 nm, the radius of the central cylinder is 12.5 nm and the radius for the balls on the two ends is 15 nm. (b) X-ray scattering pattern of the
dumbbell-shaped gold nanoparticle and (c) RAC calculated from its diffraction pattern. (Note, both the X-ray scattering pattern and the RAC are
plotted in their natural logarithm values.)



the modulus square of the sum of the scattering amplitude

from all the cylindrical slices taking into account the positional

phase shift for each slice. Finally, the RAC can be computed

from the X-ray scattering pattern which is displayed in

Fig. 3(c).

4. Results and discussions

The two-dimensional data obtained in the experiment were

processed by the outlined data reduction method. Owing to

the nature of the experimental set-up, a significant non-

uniform scattering background, Ibfðq; ’Þ, was present in the

data as can be seen in Fig. 4(a). This scattering background is

effectively subtracted from the recorded diffraction pattern

following the procedures described in the previous section,

and the fluctuation scattering signal, I n
sf ðq; ’Þ, from the nano-

particles can be obtained for each diffraction pattern. In our

sample the nanoparticles are randomly oriented about the

incident X-ray beam which is perpendicular to the substrate,

and they are so well spread and randomly positioned that the

interparticle interference is negligible (Saldin et al., 2010). The

resulting X-ray diffraction pattern is a superposition of those

of individual nanoparticles, and its RAC, C nðq;�’Þ, consists

of two terms, the single-particle auto-correlation and the

interparticle cross-correlation. According to Kam (1977), the

average of a large number of C nðq;�’Þ will lead to the

cancellation of the second term due to the random orienta-

tions of the nanoparticles and converge to the RAC of a single

nanoparticle, C sðq;�’Þ,

C sðq;�’Þ ¼
1

NdpNap

X

n

C nðq;�’Þ; ð12Þ

where Ndp is the total number of diffraction patterns collected

and Nap is the average number of particles in each diffraction

pattern. The RAC shown in Fig. 4(b) is a result of averaging

100 RACs calculated using equation (10) (the pattern begins

to converge after averaging about 40 RACs).

The structure of the nanoparticles is reconstructed by

dividing it into 80 1 nm-high cylindrical slices along its

symmetry axis. Owing to the low contrast between Pt and Au,

the presence of a coating is not detectable in our experiment

and a uniform electron density distribution is considered

in our model. Assuming the central symmetry of the nano-

particle, there are only 40 independent radial parameters that

we used to optimize the function,

P
q;’

C expðq; ’Þ � C calcðq; ’Þ
�� ��2; ð13Þ

where C expðq; ’Þ and C calcðq; ’Þ are the experimental and

calculated RACs. A global optimization algorithm called

Covariance Matrix Adaptation Evolution Strategy (CMAES)

(Hansen & Ostermeier, 2001) is used to determine optimal

model parameters. We start the fitting process with a cylinder

of equal radii and the CMAES algorithm iteratively varies

their values to minimize the objective function (13). Addi-

tional smoothness restraints on the radii of neighbouring

cylinders were added to the target function to obtain

numerically stable fitting results. Typically, the whole fitting

and optimization process completes within a few hours on a

desktop computer. The simulated RAC and the three-

dimensional view of the structure of the nanoparticles are

shown in Fig. 5.

From the TEM measurements shown in Fig. 1(b), we note

that the nanoparticles in our samples are not exactly the same

at the nanometer scale but they all have very similar dimen-

sions in length and diameter. In this case the structure we

obtained from fitting to the experimental RAC represents the

statistical average of all the nanoparticles in the sample rather

than any single one of them. As shown in Fig. 5(b), there are

seven radial maxima along the symmetry axis, and these are

the one at the center and the three at both sides appearing at
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Figure 4
(a) Experimental non-uniform scattering background. (b) Experimental RAC of a single nanoparticle obtained by averaging RACs of 100 diffraction
patterns. (Both figures are plotted in their natural logarithm values.)



18 nm, 24 nm and 33 nm away from the center with radii of

15 nm, 14.7 nm, 17 nm and 12.7 nm, respectively. The two

apparent minima at 9 nm from the center on both sides have a

radius of 7.2 nm. All these features in the structure possibly

reflect the general growth preference of the nanoparticles.

While the central bulge is not an artifact from structure

modeling, it can be caused by multiple effects. Apart from the

bulges carried by some particles from growth (more than one-

third of 50 particles we measured with TEM have a middle

bulge), it could also be caused by standing and incomplete

particles as have been observed in the gold nanorod experi-

ment (Saldin et al., 2011). The projection of a standing particle

along the X-ray beam has a circular shape and the incomplete

parts are mainly the heads of the particles which have circular

shapes as well. Both of them will contribute to the middle

bulge in the resulting structure along

with that coming from growth.

Finally, we note from equation (4)

that the small-angle X-ray scattering

(SAXS) intensity, Isaxs, comes concur-

rently with a fXS experiment. Physical

models and computational routines

have been developed over the years to

extract structural information from

experimental SAXS data (Svergun,

1999; Liu et al., 2012). Owing to the

nature of our experiment, we do not

take into account out-of-plane rotations

and the orientational averaging is

confined in two dimensions for structure

modeling. To be consistent and make

the results comparable, we apply the

same cylindrical slice model as pro-

posed in the previous section to fit the

SAXS data from our experiment. The

fitting to the experimental data is very

satisfactory as shown in Fig. 6(a) with

the resulting structural model displayed

in Fig. 6(b). As we can see from the

structures in Fig. 5(b) and Fig. 6(b), they

agree very well in overall profile, with

the structure from RAC fitting giving

more detail as expected (Kam, 1977).

The fact that the nanoparticles in our

sample are not monodisperse and

microscopically vary in shape and

density has different effects on the

SAXS and RAC data and hence the

structures from their fittings. The full

interpretation of the effect involves

detailed knowledge of electron density

profiles of the nanoparticles obtained

from other techniques such as TEM and

is currently under way. In a simplified

picture, however, the difference comes

because the SAXS intensity is always

positive while the RAC signal fluctuates

around zero and the effect of electron density variation

accumulates for the SAXS signal while it can be cancelled for

the RAC signal.

5. Conclusions

In conclusion, we have demonstrated the ability of nanoscale

structure reconstruction from a random assembly of particles

on a substrate using the fluctuation X-ray scattering technique.

The structures are determined by reverse Monte Carlo

method with a direct fitting to the single-particle RAC and

SAXS signals obtained from X-ray diffraction patterns. Even

though we have taken advantage of the cylindrical symmetry

of the nanoparticles to simplify the fitting process, such a
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Figure 6
(a) Experimental and model simulated small-angle X-ray scattering (SAXS) intensity (in their
natural logarithm values) plotted as a function of wave vector transfer. (b) Three-dimensional view
of the nanoparticle structure resulting from fitting to the experimental SAXS data (all axes are in
units of nm).

Figure 5
(a) Simulated RAC (in natural logarithm values) from a nanoparticle. (b) Three-dimensional view
of the nanoparticle structure resulting from fitting to the experimental RAC data (all axes are in
units of nm).



method can be generalized and used in structure determina-

tion via fluctuation X-ray scattering with minimal prior

knowledge of the structure itself. The results from these simple

experiments indicate that a real-space-based approach to

determining the structure of a particle in solution is feasible in

principle with a further development of real-space modeling

techniques and of the associated optimization process. With

the help of powerful modern light sources, such as the X-ray

free-electron laser, this method is well suited to solving

protein structures where the substances are difficult to crys-

tallize. It is not only able to resolve structures in detail

comparable with those obtained from protein crystallography,

but also provides a way to study them under their native

environment in a time-resolved manner.
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