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Synchrotron radiation (SR) X-ray micro-computed tomography (CT) is an

effective imaging modality for high-resolution investigation of small objects,

with several applications in medicine, biology and industry. However, the limited

size of the detector field of view (FOV) restricts the sample dimensions to only

a few millimeters. When the sample size is larger than the FOV, images

reconstructed using conventional methods suffer from DC-shift and low-

frequency artifacts. This classical problem is known as the local tomography or

the interior problem. In this paper, a statistical iterative reconstruction method

is introduced to eliminate image artifacts resulting from the local tomography.

The proposed method, which can be used in several SR imaging applications,

enables high-resolution SR imaging with superior image quality compared with

conventional methods. Real data obtained from different SR micro-CT

applications are used to evaluate the proposed method. Results indicate a

noteworthy quality improvement in the image reconstructed from the local

tomography measurements.

Keywords: synchrotron radiation micro-computed tomography; local tomography;
statistical iterative reconstruction; high resolution.

1. Introduction

X-ray computed tomography (CT) is an effective cross-

sectional imaging modality with a wide range of applications

in medicine, biology and industry. The synchrotron radiation

(SR) micro-CT system provides high-resolution imaging for

small objects with a spatial resolution of less than 1 mm.

Nevertheless, a major disadvantage of SR micro-CT is the

problem of a limited field of view (FOV) owing to current

hardware limitations for the detector size (Li et al., 2007). This

limits the imaged samples to those of size small enough to be

located completely inside the FOV. When the sample size is

extended outside the small FOV, the reconstructed image

suffers from DC-shift and low-frequency artifacts. This is a

classical problem in tomographic imaging known as the

interior problem or local tomography (Natterer, 1986).

Moreover, owing to the side effects generated from the

ionizing radiation of X-ray CT, it is important to limit the dose

as much as possible in several medical and biological imaging

applications. A possible effective way to minimize the radia-

tion dose is to reduce the region to be imaged to only the

region of interest (ROI), which represents a local tomography

problem when the ROI is located completely inside the

imaged object. In the last few decades several efforts have

been dedicated to obtaining exact and stable reconstruction

for the local tomography of several imaging applications

(Lewitt, 1979; Ogawa et al., 1984; Louis & Rieder, 1989;

Manglos, 1992; Maass, 1992; Olson & DeStafano, 1994;

Ohnesorge et al., 2000; Zhang & Zeng, 2007; Yu & Wang, 2009;

Zeng & Gullberg, 2009; Wang et al., 2009; Yang et al., 2010;

Ritschl et al., 2011; Lang et al., 2012).

The conventional image reconstruction methods, derived

from an analytical inversion formula, such as filtered back-

projection (FBP), are known for their non-local properties. In

other words the reconstruction of the attenuation coefficient

corresponding to a single image pixel is affected by all

projection rays, including rays that do not intersect with the

concerned pixel. This is why it was believed for a long time

that the solution of the local tomography problem was not

unique. However, the theories based on the concept of

differentiated backprojection using the Hilbert transform

(Noo et al., 2004) and backprojection-filtration (Pan et al.,

2005) relax the data requirements for exact and stable ROI

reconstruction to feasible ones. It became clear that the

position of the ROI is an important factor in determining the

possibility of accurate ROI reconstruction (Defrise et al.,

2006). These results were extended later to solve the local

tomography problem in X-ray CT imaging (Ye et al., 2007;

Kudo et al., 2008). In our earlier work we proposed an iterative

reconstruction algorithm for ROI reconstruction when the

projection data are partially truncated (Rashed et al., 2009). In

this paper we extend our previous work to fit with the interior
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problem in SR micro-CT. In the literature it has been

demonstrated that the interior problem can be exactly and

stably solved under the assumption that the object support

and the internal region having known intensity value are

known, as detailed later in x2. When either the object support

or the region of known intensity is unknown, they should be

estimated during the reconstruction. This estimation problem

introduces some additional instability to the reconstruction

problem. This appears in the form that accurate estimation of

the object support and the region of known intensity can be

achieved when the problem parameters are correctly selected.

We have found an effective strategy for parameter selection

which ensures that the object support and regions with air

intensities are detected. Experimental results using real data

obtained from high-resolution SR imaging indicate a signifi-

cant reduction in the image artifacts when the proposed

method is used.

This paper is organized as follows. In x2 the local tomo-

graphy in SR micro-CT is introduced and the recent findings

in the uniqueness results are discussed. The iterative recon-

struction method is detailed in x3. Experimental studies and

results are presented in x4 and the paper is concluded in x5.

2. Local tomography in SR micro-CT

The SR micro-CT imaging system is operated by radiating the

target object with a specific X-ray power and measuring the

unattenuated counts using a charge-coupled-device (CCD)

camera located on the opposite side of the beam generator.

The beam intensity loss represents the density of the scanned

object. The projection data measurements are acquired along

many angles by rotating the sample object. The acquired

projection data are then used to reconstruct the attenuation

coefficients that represent a cross-sectional image or volume

of the scanned object. In many cases, when the sample size

extends the tiny FOV of the CCD camera, the projection data

are truncated and important information corresponding to

the regions outside the FOV is lost, as shown in Fig. 1. To

demonstrate the effect of the interior problem on the acquired

projection data, two projection views acquired from an

aluminium alloy sample are shown in Fig. 2. The same sample

is measured in two different settings named global and local

scans. A global scan is acquired such that the entire object is

located completely inside the FOV, and a local scan is acquired

by adding an additional surrounding shield of the same

material to extend the sample size outside the FOV to almost

double the size of the original object. Line integrals, computed

from the measured raw data, indicate a significant change in

the measured values, as shown in the profile plots in Fig. 2.

Owing to the loss of complete data measurements corre-

sponding to the regions located outside the FOV, the image

reconstruction in local tomography is a challenging problem.

In the following we discuss the recent advances in the

uniqueness results of the local tomography problem. Most of

the discussions in this section are introduced primarily for

general-purpose X-ray CT imaging and associated problems in

clinical medical investigations. The essential framework is also

applicable for SR micro-CT imaging.

The recent theories derived from the Hilbert transform

(Defrise et al., 2006; Ye et al., 2007; Kudo et al., 2008) and

associated image reconstruction algorithms provide an inter-

esting framework for exact ROI reconstruction from locally

truncated data under a few constraints. Independent of the

reconstruction algorithm, the exact and stable reconstruction

from local data is achieved under the following constraints: (i)
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Figure 1
(a) Simple illustration of the SR micro-CT imaging system with cross-
sectional views corresponding to (b) local tomography and (c) global
tomography.

Figure 2
Single projection view representing line integrals of SR micro-CT data
measured from a microsample of aluminium alloy (Al-5 wt% Cu)
corresponding to local tomography (left) and global tomography (right).
Images are shown with the same gray-level window. The corresponding
central horizontal profile plots are shown below. Details of the data-
acquisition parameters are discussed in x4.



all projection rays passing through the ROI (�) are measured;

(ii) for iterative reconstruction the image matrix should be

large enough to include the entire extended object, not only

the ROI (�); (iii) a compact support (�) of the object, named

the object support (OS), is available; and (iv) a small sub-

region (!) inside the internal ROI (�) is a priori known. A

simple illustration that concludes the recent developments in

exact ROI reconstruction results is shown in Fig. 3.

The first constraint reduces the required data measure-

ments for exact and stable ROI reconstruction. It was believed

that for exact and stable ROI reconstruction all projection

rays passing through the whole object should be measured and

used for the reconstruction. This rule is directly indicated from

the inversion formula of analytical reconstruction, where a

single image pixel is computed not only from projection rays

passing through this pixel but also from all rays passing

through the whole object. However, this strong constraint is

relaxed such that it is sufficient to include the projection rays

passing through the ROI (�) only (Noo et al., 2004; Defrise et

al., 2006). As for the second constraint, owing to the layout of

iterative reconstruction schemes it is important to use an

extended image grid that is large enough to contain the entire

support of the object. This formulation is essential to enable

the enforcement of the OS constraint presented in the third

constraint. The first and second constraints can be easily

satisfied in the practical implementation in the local tomo-

graphy for SR micro-CT imaging.

The most challenging part concerns the third and fourth

constraints. On one hand the third constraint is not always

available, as the definition of the exact object contour requires

additional effort to obtain the object measurements (e.g. using

additional hardware devices). When the OS (�) is known, the

third constraint is simply enforced by setting the image pixels

located outside the OS to the attenuation value of air, which is

almost zero. The accuracy of the OS knowledge has a large

influence on the exactness of the ROI reconstruction. The

closer the OS is to the exact one, the higher the quality of the

reconstructed ROI (Rashed et al., 2009). On the other hand it

is not always possible to satisfy the fourth constraint as it

requires both intensity and spatial information of a small sub-

region (!) inside the ROI (�).

The iterative algorithm for ROI reconstruction, detailed by

Rashed et al. (2009), provides an automatic and efficient way

to detect the exact OS during the iterative reconstruction. This

method was used in ROI reconstruction when the projection

data were partially truncated (i.e. the ROI includes some

region outside the exact OS), as shown in Fig. 3(d). In this

paper, not only the exact OS but also the interior sub-region is

estimated during the iterative reconstruction. A good esti-

mation of the OS and interior sub-region in the early itera-

tions will provide the required constraints for theoretically

exact and stable local tomography.

3. Materials and methods

In this paper we consider the interior problem where both the

OS (�) and the prior information of the internal sub-region

(!) are unavailable. The proposed method can estimate the

OS with high accuracy during the iterative reconstruction. By

considering imaging applications where the image includes a

sub-region of air-attenuated value, the proposed method can

also satisfy the fourth constraint defined above for exact

reconstruction by estimating a sub-region inside the FOV with

air-attenuation value. If the region with the air-attenuation

value inside the FOV is not available, it is sufficient to consider

the attenuation value of some other known materials of the

scanned object (Kudo et al., 2008). The difference is only a

simple modification in the implementation of the reconstruc-

tion algorithm. In this section we review the main concepts of

statistical iterative reconstruction required to introduce the

proposed algorithm.

3.1. Statistical iterative reconstruction

The SR micro-CT imaging system can be defined with the

following transmission CT model,

yi ’ Poisson bi exp �
Pn
j¼ 1

aijxj

 !" #
; i ¼ 1; . . . ;m; ð1Þ

where x = ðx1; . . . ; xnÞ is the image vector representing the

attenuation coefficients of the imaged object, y = ð y1; . . . ; ymÞ

is the measured photon counts with the CCD camera, b =

ðb1; . . . ; bmÞ is the blank scan, which is acquired by data

measurements without the object, and A = faijg is the m�n

system matrix that models the imaging system. In these

statistical models we ignore the effect of scattered photons
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Figure 3
Different ROI imaging configurations. (a) Global scan where the entire
object is located inside the FOV (standard configuration and the image
reconstruction is exact). (b) The FOV contains two regions (shaded)
located outside a roughly estimated OS (�) where exact reconstruction is
assured for the ROI (�) that is defined as a union of parallel vertical
Hilbert lines that connect shaded regions without intersection with the
remaining regions of the object (Noo et al., 2004). (c) The FOV contains a
single region (shaded) outside the OS (�) and solution exactness for ROI
(�) is assured (Defrise et al., 2006). (d) The FOV is located completely
inside the OS (�) where the exact OS is estimated and reconstruction of
ROI (�) is exact (Rashed et al., 2009). (e) Local tomography is exact if a
sub-region (!) inside the ROI (�) is known and a rough OS (�) is
defined (Kudo et al., 2008). ( f ) The local tomography problem to be
investigated in this paper with ROI (�) is located completely inside the
object and both OS (�) and sub-region (!) are estimated for exact ROI
reconstruction.



and other background events for simplicity; however, the

model generalization is direct and easy.

The statistical model in (1) represents an inverse problem

which can be solved using several approaches. The log-like-

lihood function for the observed photon counts (Lange &

Carson, 1984) is defined as

lðxÞ ¼
Pm
i¼ 1

yi logðbiÞ � yihai; xi � logðyi!Þ � bi expð�hai; xiÞ
� �

;

ð2Þ

where hai; xi =
Pn

j¼ 1 aijxj is the inner product of the ith row of

matrix A and image vector x. The solution of the inverse

problem is found through minimizing the negative log-like-

lihood function after ignoring the irrelevant terms and is given

by

x̂x ¼ arg min
x� 0

LðxÞ; ð3Þ

LðxÞ ¼
Pm
i¼ 1

bi expð�hai; xiÞ þ yihai; xi
� �

: ð4Þ

When the projection data suffer from data inconsistency, such

as the case of data limitation, the well known Bayesian

methods, that include a priori information of the scanned

object, can be used. The penalty term is mainly used to limit

the number of feasible solutions to those that satisfy the

penalty term. The solution is found by maximizing a posteriori

(MAP) function

PðxjyÞ ¼ PðyjxÞPðxÞ
�

PðyÞ; ð5Þ

and the maximum a priori solution of the image reconstruction

problem is found by

x̂x ¼ arg min
x� 0

f ðxÞ; f ðxÞ ¼ LðxÞ þ �UðxÞ; ð6Þ

where UðxÞ is known as the penalty term and � is a parameter

that controls the balance between the data fidelity term

enforced by the log-likelihood function and the penalty term.

3.2. Majorization–minimization approach

The minimization of cost function in equation (6) is an

essential task to be considered for the derivation of the image

reconstruction algorithm. As shown in the next section, we are

interested in using a penalty term UðxÞ based on the ‘0 norm

function to enforce the image sparsity. It is difficult to use

ordinary gradient methods to minimize the cost function f ðxÞ

as the penalty term is neither convex nor differentiable. An

alternative useful approach is the use of the majorization–

minimization (MM) strategy (De Pierro, 1995; Daubechies et

al., 2004). The MM approach is an iterative approach that

operates as follows. At each iteration k the non-separable part

of the cost function f ðxÞ is approximated by a separable

quadratic function ~ff ðx; xkÞ around x = xk. This operation is

called majorization. The resulting quadratic function is easier

to be minimized. We may refer the reader to Hunter & Lange

(2004) and Lange (2004, ch. 6) for a more detailed explanation

of the MM approach.

3.3. Reconstruction algorithm

To develop the cost function for the image reconstruction

problem under study we consider the following formulation of

the penalty term,

UðxÞ ¼
Pn
j¼ 1

sðxjÞ; sðtÞ ¼ lim
"!þ0
jtj" �

n
1; t 6¼ 0;
0; t ¼ 0:

ð7Þ

This design of the cost function for image reconstruction

simply indicates that the reconstructed image is selected to be

the sparsest image that fits with the measured projection data.

This formulation is proven to be useful in automatic estima-

tion of the OS during image reconstruction. The practical

implementation yields a thresholding function that trims the

image pixels with intensity values close to zero to the value of

zero (Rashed et al., 2009). Moreover, it is expected that this

approach would satisfy the fourth constraint for exact recon-

struction of local tomography, stated in the previous section,

when the local ROI includes a small region with zero

attenuation coefficient such as air holes.

The main obstacle in minimizing the cost function in (6)

is that the penalty term is based on the ‘0 norm. The MM

approach is used to handle this problem. At each iteration k

the non-separable part of the cost function f ðxÞ is approxi-

mated by a separable function ~ff ðx; xkÞ around x = xk. Then
~ff ðx; xkÞ is analytically minimized to compute the image esti-

mate for the next iterate k + 1. The iterative reconstruction

algorithm can be summarized as follows:

(i) Initialization. Set initial image estimate x0 = ", with " > 0

and initialize iteration number k = 0.

(ii) Majorization. The cost function f ðxÞ is majorized to

obtain the following separable cost function:

~ff ðx; xkÞ ¼
Pn
j¼ 1

� tjðxj � pjÞ
2
þ sðxjÞ

� �
þ CðxkÞ; ð8Þ

tj ¼
1

2�xk
j

Pm
i¼ 1

aijhai; xkibi exp �hai; xki
� �

; ð9Þ

pj ¼ xk
j þ xk

j

Pm
i¼ 1 aijbi expð�hai; xkiÞ � yiPm

i¼ 1 aijhai; xkibi expð�hai; xkiÞ
; ð10Þ

where CðxkÞ is a term independent of x. Equations (8)–(10)

were derived by approximating the likelihood part with a

quadratic function and keeping the penalty function part as it

is. See Rashed & Kudo (2012) for the mathematical derivation.

(iii) Minimization. The separable cost function ~ff ðx; xkÞ in

(8) is minimized over x � 0 to obtain the image estimate for

the next iterate,

xkþ1
¼ arg min

x� 0

~ff ðx; xk
Þ: ð11Þ

(iv) Enforce prior knowledge. When prior knowledge of the

sub-region (!) is available, assign image pixels located inside

! with the a priori known intensity value (�),

xj ¼ � 8 j 2 !: ð12Þ

(v) Iteration condition. Increase k and go to step (ii) until

reaching a stopping criterion.
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An interesting observation in the practical implementation

of the proposed algorithm is that the minimization in (11) can

be implemented directly through following a simple hard-

thresholding function,

xkþ1
j ¼

(
0; for pj � ð1=tjÞ

1=2

pj; otherwise:
ð13Þ

Therefore, the reconstruction algorithm is performed as a

combination of two main steps in an alternating manner. The

first step is a single iteration of the conventional convex

algorithm (Lange & Fessler, 1995) using (10). The second step

is a pixel-by-pixel thresholding function using (13). To speed

up the reconstruction, we employ the ordered subsets

approach (Beekman & Kamphuis, 2001) in the experimental

studies presented within this paper. We also note that in the

experimental studies we have used a dynamic value of para-

meter �, which is proved to be a good approach to selecting �
in practice. First, we initiate � with a relatively large value to

be sure that the object support and internal regions with air

are completely detected. The value of � is then gradually

decreased to enforce the likelihood function for the recovery

of pixels that incorrectly thresholded in the early iterations

and retrieve missing image details. Details of this approach

can be found by Rashed & Kudo (2012). The proposed algo-

rithm has several advantages. First, the implementation is

simple as it coincides with the conventional convex algorithm

with additional thresholding operation applied after each

iteration. Second, the computation cost is almost the same as

the conventional iterative method since the cost of the

thresholding operation can be ignored relative to the

computation of a single iteration of the convex algorithm.

Third, it is possible to speed up the reconstruction using image

updates with the ordered subsets approach.

4. Experimental studies

In this section the developed algorithm is evaluated using real

data obtained from different SR micro-CT applications. In all

the experimental studies introduced in this paper there exists a

sub-region with air-attenuated values so that the reconstruc-

tion algorithm becomes more simpler and step (iv) is not

required.

4.1. Image quality measurements

For quantitative evaluation of image quality improvement

a set of measurements are calculated. We use the FBP image

obtained from global tomography as the golden truth. The

relative root-mean-square error (RRME) is calculated as

RRMEðxÞ ¼
Pn
j¼ 1

ðxj � x�j Þ
2=
Pn
j¼ 1

ðx�j Þ
2

" #1=2

; ð14Þ

where x� represents the FBP image obtained from global

tomography, when available. The image contrast is also

measured using the following formula,

ContrastðxÞ ¼
j�xxs � �xxbj

�xxs þ �xxb

; ð15Þ

where �xxs and �xxb are the mean pixel values of selected reso-

lution pixels and background pixels, respectively, and

computed using the following equation,

�xxs ¼
1

ns

Pns

j¼ 1

xj; ð16Þ

where ns is the number of pixels within the s-ROI. To evaluate

the image contrast and noise properties, we also compute the

contrast-to-noise ration (CNR) as follows,

CNRðxÞ ¼
2j�xxs � �xxbj

�s�s þ �b�b

; �s ¼
ns

ns þ nb

; �b ¼
nb

ns þ nb

;

ð17Þ

where nb is the number of pixels in b-ROI, and �s and �b are

the standard deviation over s-ROI and b-ROI. The value of �s

is computed as follows,

�s ¼
1

ns � 1

Pns

j¼ 1

ðxj � �xxsÞ
2

" #1=2

: ð18Þ

The CNR value evaluates the ratio of the contrast of a target

structure in the image and the standard deviation of statistical

noise.

4.2. Aluminium alloy sample

The first experiment was carried out at beamline BL20XU

of SPring-8 synchrotron radiation source located in Hyogo,

Japan. In this experiment the object is a microsample of

aluminium alloy (Al-5 wt% Cu). The microsample was imaged

using two different imaging settings corresponding to global

and local tomography for effective and reliable evaluation

of the proposed reconstruction algorithm. First, the global

tomography was obtained by using a microsample of size

1 mm that is located completely inside the FOV. Later, the

local tomography was set by adding an additional surrounding

shield of the same material to extend the sample size to 2 mm.

This set-up provides the ground truth information for the

1 mm-size sample through global scanning for effective

evaluation of the image reconstructed later from local scan-

ning. The sample was scanned with an X-ray energy of 35 keV

and projection data were obtained using a CCD camera of

4000 � 2624 pixels with 2 � 2 binning mode and 0.5 mm �

0.5 mm pixel size. The original parallel-beam projection data

used in this experiment were acquired over 1500 uniformly

spaced view angles over 180	 with an exposure time of 300 ms

per view. Two blank scans were obtained through pre- and

post-data measurements for each data-acquisition process.

The detector array was resampled into 500 � 328 pixels to

reduce the computation cost for the image reconstruction.

We have used the proposed method to reconstruct images

from both global and local projection data. The number of

iterations was ten with five subsets and � = 0.1. The recon-

structed images corresponding to the central two-dimensional

slice using conventional FBP and the proposed method from

research papers

120 Rashed and Kudo � Towards high-resolution SR imaging J. Synchrotron Rad. (2013). 20, 116–124



global and local projection data are shown in Figs. 4 and 5,

respectively. We note that the reconstruction using the

proposed method from local data is assigned to an image grid

of 1000 � 1000 pixels which is trimmed to the ROI size of

500 � 500 pixels for illustration in Fig. 5(b). Image quality

measurements including RRME, contrast and CNR are shown

in Fig. 6. In global data measurements

it is clear that the reconstructed images

are of equivalent quality in both

methods. However, the FBP image

reconstructed from local data suffer

from sever DC-shift and low-frequency

artifacts. These artifacts are significantly

suppressed when using the proposed

algorithm.

4.3. Calcite in talc powder sample

In this experiment the sample is a

calcite fluid inclusion embedded in

talc powder. The data measurements

were performed at beamline BL20B2 at

SPring-8. The X-ray beam used was of

power 20 keV. Two sets of data were

acquired which we refer to as global

and local data. The global data were

measured using a CCD camera with

1560 � 680 pixels and a pixel size

of 6.66 mm. The sample was rotated

to acquire 2250 projections over 180	.

The FOV of 10.4 mm was sufficient to

enclose the entire sample. The global

data were used as a true reference to

evaluate the accuracy of the image

reconstruction using local data. The

local data measurements were obtained

using a CCD camera with higher reso-

lution and a size of 2000 � 1312 pixels

with a pixel size of 3.33 mm that

provides a FOV of 6.66 mm. The local

data were obtained through 3000

projections over 180	. The local

measurements provide a higher resolu-

tion of the sample. However, the

measured data are fully truncated and

present a local tomography. Blank scans

were measured in sequence with sample

measurements. A periodic blank scan

was acquired after every 20 projections

in both global and local measurements.

Every periodic blank scan was used

in association with the proceeding

detector measurements.

First, a direct reconstruction using the

FBP algorithm was employed using

both local and global projection data

and the results are shown in Figs. 7(a)

and 7(c), respectively. Reconstruction from local projection

data provides a higher resolution image with clearer image

details than the global data acquisition. However, local image

reconstructed using the FBP algorithm suffers from typical

local tomography artifacts, especially in the peripheral regions.

The proposed algorithm was used to improve the image
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Figure 4
Images reconstructed from global projection data using (a) FBP and (b) proposed algorithm shown
within the same gray-scale window, and the corresponding central horizontal (left) and vertical
(right) profile plots. The yellow square region is magnified in the top right-hand corner of (a)
showing the s-ROI in red and b-ROI in blue.

Figure 5
Images reconstructed from local projection data using (a) FBP and (b) proposed algorithm shown
within the same gray-scale window, and the corresponding central horizontal (left) and vertical
(right) profile plots. The profiles of the image shown in Fig. 4(a) are also included for comparison.



quality with image reconstruction in an extended image grid of

3120 � 3120 pixels. Iterative reconstruction was implemented

through ten iterations with ten subsets and � = 0.05. The

reconstructed image was trimmed to the accurate FOV size

and is shown in Fig. 7(b). For better visual evaluation of image

quality, the reconstructed images from local projection data

using FBP and proposed method were down-sampled using

2 � 2 pixels binning and embedded into the reference true

image reconstructed using the FBP algorithm from global

data. Results are shown in Figs. 7(d) and 7(e). It is clear that

the image reconstructed using the conventional FBP method

contains DC-shift artifacts which are clearly shown in the

mismatch between the inner and outer regions of the image

shown in Fig. 7(d), while this change is not observed in the

image reconstructed using the proposed method in Fig. 7(e).

The proposed method can significantly suppress image

artifacts known for local tomography. Moreover, as the

proposed reconstruction algorithm is based on an accurate

statistical model, results have better noise properties. This can

be easily recognized from the image in Fig. 7(e) where the

internal region reconstructed using the

proposed algorithm is of less noise

content compared with the external

region reconstructed using the FBP

algorithm. To demonstrate how exact is

the estimation of the OS (�) and the

pixels with air attenuation value (!) by

using the proposed method, we track

pixels with zero intensity value through

the iterative reconstruction. These

pixels are marked in red in the images

shown in Fig. 8. We observe that, by

iterating, the estimation of the OS as

well as the internal pixels representing

air are approaching the golden truth of

the FBP global image. However, we

should note that this observation is

true after the optimization of the para-

meter �.

The RRME, image contrast and CNR

values for the images in Figs. 7(a)–7(c)

are shown in Fig. 9. The resolution of

the images reconstructed from local and

global data does not match; therefore

the images obtained from local data are

down-sampled using (2 � 2) binning

to be able to compute the RRME.

The image contrast is computed using

selected ROIs that represent resolution

and background pixels as shown in

Fig. 10. Central horizontal and vertical

profiles of the images in Figs. 7(a)–7(c)

are also shown in Fig. 10. It is clear from

these measurements that the proposed

method provides a higher image quality

in terms of RRME as well as image

contrast.

4.4. Mouse lung

This experiment is implemented using projection data

acquired from mouse lung. The target of the imaging appli-

cation is to investigate lung alveoli. The sample was imaged

at beamline BL20B2 at SPring-8 and projection data were

acquired using a detector of 2000� 300 pixels with a pixel size

of 3.33 mm. Projection data were measured through 1500

projections over 180	. A single blank scan and silent data

measurements were acquired during data acquisition. Unfor-

tunately the ground truth information (i.e. global projection

data) regarding this experiment is unavailable for quantitative

evaluation. A single slice was reconstructed using standard

FBP and the proposed method. The proposed method was

used through ten iterations and five subsets with � = 0.05. The

reconstructed images and the corresponding central hori-

zontal and vertical profile plots are shown in Fig. 11 while the

image quality measurements are plotted in Fig. 12.
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Figure 6
Image quality measurements for aluminium alloy data reconstructed using different configurations.

Figure 7
Images reconstructed from local projection data using (a) FBP and (b) proposed algorithm, and (c)
image reconstructed from global projection data using the FBP algorithm. Images (a) and (b) are
down-sampled (2 � 2) and then embedded in (c), and are shown in (d) and (e), respectively.



In the FBP reconstruction the image

suffers from DC-shift and low-

frequency artifacts, which are effectively

suppressed when using the proposed

method. The profile plots indicate a

large variation in the FBP image and

possibly incorrect estimation, especially

in peripheral regions. However, the

image reconstructed using the proposed

method provides consistent intensity

values for pixels of the same anatomy

structures, even for pixels located in the

peripheral regions.

5. Conclusion

In this work we propose a new statistical

iterative reconstruction algorithm for

local tomography. The proposed algo-

rithm is based on a simple approach

that effectively estimates the required

a priori known information for theore-

tically accurate and stable reconstruc-

tion from fully truncated projection

data. The proposed method is tested

using SR micro-CT real data, and an

effective improvement in image quality

is achieved compared with the conven-

tional method. However, the computa-

tion cost of the proposed method is

still the major challenge. Future work

includes reducing the computation cost

to a reasonable level for practical

implementation in high-resolution

micro-CT imaging.
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Figure 9
Image quality measurements of the ROI reconstructions shown in Figs. 7(a)–7(c).

Figure 10
ROIs used to compute the image contrast are shown on the left. The red rectangle represents the resolution pixel region (s-ROI) while the blue rectangle
is assigned to the background pixel regions (b-ROI). Central horizontal (top) and vertical (bottom) profile plots corresponding to the images shown in
Figs. 7(a)–7(c) are shown on the right.

Figure 8
Estimation of OS and internal pixels with zero attenuation. Image pixels marked red have zero
attenuation value. Images (a)–(e) are local reconstructions from one, two, four, six and ten iterations
of the proposed method, respectively. ( f ) Global FBP image with pixel values � 0 marked.
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Figure 11
Reconstructed images using (a) FBP and (b) proposed algorithm corresponding to the central slice
of the mouse lung data. In the top right-hand corner of (a) is a magnification showing the s-ROI
in red and the b-ROI in blue. Central horizontal (middle) and vertical (bottom) profiles are also
shown.

Figure 12
Image quality measurements for mouse lung data.
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