
research papers

272 doi:10.1107/S0909049512051266 J. Synchrotron Rad. (2013). 20, 272–285

Journal of

Synchrotron
Radiation

ISSN 0909-0495

Received 26 September 2012

Accepted 19 December 2012

# 2013 International Union of Crystallography

Printed in Singapore – all rights reserved

Optimizing and characterizing grating efficiency
for a soft X-ray emission spectrometer

Mark Boots,* David Muir and Alexander Moewes

University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan, Canada S7N 5E2.

E-mail: mark.boots@usask.ca

The efficiency of soft X-ray diffraction gratings is studied using measurements

and calculations based on the differential method with the S-matrix propagation

algorithm. New open-source software is introduced for efficiency modelling that

accounts for arbitrary groove profiles, such as those based on atomic force

microscopy (AFM) measurements; the software also exploits multi-core

processors and high-performance computing resources for faster calculations.

Insights from these calculations, including a new principle of optimal incidence

angle, are used to design a soft X-ray emission spectrometer with high efficiency

and high resolution for the REIXS beamline at the Canadian Light Source: a

theoretical grating efficiency above 10% and resolving power E/�E > 2500 over

the energy range from 100 eV to 1000 eV are achieved. The design also exploits

an efficiency peak in the third diffraction order to provide a high-resolution

mode offering E/�E > 14000 at 280 eV, and E/�E > 10000 at 710 eV, with

theoretical grating efficiencies from 2% to 5%. The manufactured gratings are

characterized using AFM measurements of the grooves and diffractometer

measurements of the efficiency as a function of wavelength. The measured and

theoretical efficiency spectra are compared, and the discrepancies are explained

by accounting for real-world effects: groove geometry errors, oxidation and

surface roughness. A curve-fitting process is used to invert the calculations to

predict grating parameters that match the calculated and measured efficiency

spectra; the predicted blaze angles are found to agree closely with the AFM

estimates, and a method of characterizing grating parameters that are difficult or

impossible to measure directly is suggested.
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1. Introduction

On soft X-ray beamlines, the push toward higher-resolution

spectroscopy has demanded a new consideration of diffraction

grating efficiency. Several recent emission spectrometers

(Ghiringhelli et al., 2006; Harada et al., 2012) have been

created to offer extremely high resolution resonant inelastic

X-ray scattering (RIXS) measurements. However, for these

and other photon-hungry techniques, very long count times

limit the scientific throughput of their beamlines. The moti-

vation for more efficient monochromators and spectrometers

is obvious: to decrease the time required for experiments, or to

increase the statistical quality of data gathered in the same

time. Higher efficiency also enables previously impossible

measurements of weakly emitting and dilute materials, where

the detector signals would otherwise fall below the noise floor.

Finally, owing to the inevitable trade-off between resolution

and efficiency, improvements in efficiency can unlock higher-

resolution instrument designs while maintaining adequate

signal levels.

Several numerical methods have been developed over the

last 30 years to model diffraction grating efficiency: the modal

method (Andrewartha et al., 1981; Botten et al., 1981), the

differential method (Nevière et al., 1974; Popov & Nevière,

2000, 2001) and the integral method (Maystre, 1972; Pomp,

1991; Goray & Seely, 2002; Goray, 2005). The accuracy and

computational performance of each method depend strongly

on the application: conducting or non-conducting materials,

specific or arbitrary groove shapes, and deep or shallow

profiles. Since 1980, the differential method has been applied

to the design of soft X-ray monochromators (Nevière et al.,

1982; Jark, 1988; Padmore et al., 1994), and comparisons with

measured efficiencies show good agreement with real gratings

as long as the calculated profiles represent the actual gratings

(Jark & Nevière, 1987; Bowler et al., 2001). However, in the

design of most beamlines, the grating efficiency is still often an

afterthought rather than a core driver of the design process.

At the Canadian Light Source we have developed a high-

resolution X-ray emission spectrometer for the XES End-

station on the REIXS beamline, currently in commissioning.

http://crossmark.crossref.org/dialog/?doi=10.1107/S0909049512051266&domain=pdf&date_stamp=2013-02-06


Throughout its design, we combined rigorous electromagnetic

calculations of the grating efficiency with standard ray-tracing

techniques to consider both efficiency and resolution simul-

taneously. Several operating modes were envisioned to let

users choose from different resolution levels, with corre-

sponding trade-offs in efficiency. To calculate the grating

efficiencies, we implemented new open-source software based

on the classical differential method. The software was vali-

dated for physical consistency, and checked against an existing

commercial program (Gradif). Efficiency calculations

produced several insights that guided the design of the

machine, including the discovery of an optimal incidence angle

for each grating and an efficiency peak in the third diffraction

order.

Before installation, the manufactured gratings were char-

acterized using atomic force microscopy (AFM) and diffrac-

tometry measurements on beamline 6.3.2 at the Advanced

Light Source. Comparisons of the measured and predicted

efficiency curves show significant differences that can be

explained by physical differences between the ideal and

manufactured gratings. (In several cases, this alerted us to

serious ruling errors and allowed us to mitigate their impact.)

By using a fitting technique to match the measurements to the

calculations, we find that it is possible to predict the groove

shape, oxide thickness and roughness of real gratings based on

efficiency measurements, and that these predictions agree

closely with AFM measurements of the actual groove shape.

2. Theory

To calculate grating efficiencies using a full electromagnetic

approach, we need to determine the total electric and

magnetic fields in the vicinity of a periodic medium, under

a known incident field. The differential method applies

Maxwell’s equations in differential form, using a Fourier

expansion over the grating period of the fields and the

material permittivity. It has been developed incrementally

elsewhere (Nevière et al., 1974; Nevière & Montiel, 1996;

Popov & Nevière, 2000); here we review the existing theory in

sufficient detail to explain our software algorithm.

2.1. Setting up the grating problem on the Fourier basis

Fig. 1 shows an infinite sinusoidal plane wave, propagating

inside a uniform non-magnetic medium (Region 2, typically

vacuum), incident on another uniform medium (Region 1)

with a periodic boundary described by yp = g(x). Both media

are described by their complex permittivity ~"" and corre-

sponding refractive index � = cð� ~""Þ1=2. To simplify to two

dimensions, the grating is assumed invariant in the z-direction

(out of the page), and the incident plane wave propagates

along a wavevector k2 contained within the xy plane. The

incident electric field

Eincident ¼ A exp iðk2r� !tÞ
� �

¼ A exp ik2ðx sin �2 � y cos �2Þ
� �

exp �i!tð Þ;

with wavenumber k2 = |k| = �2!/c, has arbitrary polarization

described by complex vector A; however, it can always be

decomposed into two independent components. The trans-

verse electric (TE) component has an electric field parallel to

the z-axis: E = Ezẑz. The transverse magnetic (TM) component

has its magnetic field parallel to the grooves: H = Hzẑz. This

decomposition allows solving the problem separately for each

polarization, and then superposing the outgoing fields based

on the components of the incident wave. Because all fields

have the same harmonic dependence on exp �i!tð Þ, this factor

is omitted but implied in subsequent equations.

The source-free Maxwell equations in differential form

(r � E = �@B=@t, r � B = �"@E=@t) can be solved simulta-

neously for each polarization (Nevière & Popov, 2003), giving

the wave equations

r
2Ez þ k2Ez ¼ 0 ðTEÞ; ð1Þ

r
1

k2
rHz

� �
þHz ¼ 0 ðTMÞ; ð2Þ

where k2 = k2(x, y) is the squared impedance of the material as

a function of position: k = k2 = �2!/c above the grating, and k =

k1 = �1!/c inside the grating material.

Within the modulated region, k = k(x, y) varies whether

inside or outside of a groove. Above and below the modulated

region (y > a and y < 0), k2 is constant and both equations

reduce to the Helmholtz equation

r
2uz þ k2uz ¼ 0; ð3Þ

with uz = Ez for TE and uz = Hz for TM.
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Figure 1
Wavevectors in the in-plane incidence condition for a simple grating.
Subscripts 1, 2 or superscripts (1), (2) are used to designate the region.
Our sign convention for the incidence angle �2 and the reflected and
transmitted diffraction angles �2;n, �1;m uses positive angles in the
directions shown.



For an infinite incident wave, the periodicity of the

boundary conditions over the grating period d introduces a

pseudo-periodic relationship for the field (Nevière et al.,

1974),

uzðxþ d; yÞ ¼ exp ik2d sin �2ð Þuzðx; yÞ

¼ exp i�0dð Þuzðx; yÞ;

where �0 � k2 sin �2. Then, defining �n � �0 þ 2�n=d, the total

field can be represented by the pseudo-Fourier expansion,

uzðx; yÞ ¼
P1

n¼�1

unðyÞ exp i�nxð Þ; ð4Þ

which must ultimately be truncated to n = �N for numerical

calculations.

In the homogeneous regions, inserting this expansion into

the Helmholtz equation (3) allows an analytic solution. For

each n, the Fourier coefficients have the solution

unðyÞ ¼ An exp �i�nyð Þ þ Bn exp i�nyð Þ;

where

�n ¼ k2
� �2

n

� �1=2
;

and An and Bn are unknown constants to be determined by

additional boundary conditions.

The nature of the total field depends on the region. In

Region 2 above the grooves, there is only a single downgoing

(incident) plane wave A0. The upgoing field (Bn terms)

consists of a finite sum of propagating plane waves for all n

where �ð2Þn is real, and an infinite sum of decaying plane waves

[when �ð2Þn is complex],

uzðx; yÞ ¼ A
ð2Þ
0 exp i�0x� i�ð2Þ0 y

h i1=2

þ
P1

n¼�1

Bð2Þn exp
h

i�nxþ i�ð2Þn y
i1=2

: ð5Þ

The diffraction grating’s reflected orders appear in this

expansion as the finite set of n values and Bð2Þn terms that

create propagating plane waves travelling away from the

grating. Now n can be identified with the diffraction order, and

this expression is known as the Rayleigh expansion for the

diffracted field (Nevière & Popov, 2003).

In Region 1 below the grooves, the grating material is

absorbing, so the refractive index and k = k1 are complex.

Eliminating upgoing waves incident from below the grating

provides the Rayleigh expansion for the transmitted field (y �

0), corresponding to the transmitted orders,

uzðx; yÞ ¼
P1

n¼�1

Að1Þn exp i�nx� i�ð1Þn y
� �

: ð6Þ

2.2. The grating equation and efficiencies

Each propagating term in the Rayleigh expansions is an

outgoing plane wave. Equating the x-component of the

reflected wavevector k2;n with the x-component of the

expansion gives the well known grating equation for the

diffraction angle �2;n of the reflected order n,

n�=d ¼ sin �2;n � sin �2:

However, the relative intensity of each order is given by the

still-unknown expansion coefficients: Bð2Þn for the reflected

orders, and Að1Þn for the transmitted orders. The grating effi-

ciency of each order, defined as the ratio of the power of the

outgoing wave through a constant area above the grating

relative to the incident wave, is related through the time-

averaged Poynting vector. The result (Nevière et al., 1974)

shows that the efficiency of the reflected orders eðrÞn is directly

related to the Bð2Þn coefficients,

eðrÞn ¼ Bð2Þn Bð2Þ�n �ð2Þn =�
ð2Þ
0 : ð7Þ

2.3. Solving the field within the grooves

Finding these coefficients requires numerical techniques to

solve the field within the modulated region between y = 0 and

y = a. Equation (4) still applies, but unlike the Rayleigh

expansions the expansion is now a function of y. At a fixed y,

the impedance k2ðx; yÞ is a step function that depends on the

shape of the profile, going from k2
2 outside the groove to k2

1

inside the groove. This function is also periodic on

ðx! xþ d), so it can be expressed by another Fourier

expansion,

k2ðx; yÞ ¼
P1

n¼�1

k2
nðx; yÞ expð2�inx=dÞ; ð8Þ

which can be computed based on the groove geometry, either

analytically (Nevière et al., 1974) or using the fast Fourier

transform algorithm.

The goal is to find a numerical solution for the general wave

equation (1) in the Fourier basis that satisfies the boundary

condition of matching the Rayleigh expansions at y = 0 and y =

a. Because the boundary conditions are different for TE and

TM polarization, we show only the TE case here; the more

complicated TM solution is described by Popov & Nevière

(2000).

Putting the expansions for the field [equation (4)] and the

impedance [equation (8)] into equation (1) gives a set of

second-order differential equations, one for each n, captured

in the matrix notation,

d2 uðyÞ½ 	

dy2
¼ MðyÞ uðyÞ½ 	; ð9Þ

where we define the column vector uðyÞ½ 	 with the 2N þ 1

components unðyÞ. The ð2N þ 1Þ � ð2N þ 1Þ square matrix

MðyÞ must be calculated at each y value,

MnmðyÞ ¼ �k2
ðn�mÞðyÞ þ �

2
n	nm;

	nm ¼

(
1 if n ¼ m;

0 if n 6¼ m:

ð10Þ
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This represents a set of ð2N þ 1Þ boundary value problems

(BVPs). In TE polarization, the boundary conditions are

derived from the continuity of the tangential component of

the electric field and the normal component of the magnetic

field at y = 0 and y = a; they provide a relationship to the

Rayleigh coefficients,

unðaÞ ¼ A
ð2Þ
0 exp

h
� i�ð2Þ0 a

i
	n;0 þ Bð2Þn exp

h
i�ð2Þn a

i
; ð11Þ

u0nðaÞ ¼ �i�ð2Þ0 A
ð2Þ
0 exp

h
� i�ð2Þ0 a

i
	n;0 þ i�ð2Þn Bð2Þn exp

h
i�ð2Þn a

i
;

ð12Þ

unð0Þ ¼ Að1Þn ; ð13Þ

u0nð0Þ ¼ �i�ð1Þn Að1Þn : ð14Þ

However, because the Rayleigh coefficients are still unknown,

these do not provide direct boundary values for the unðyÞ

function, only a link between the function and its derivative. In

this situation an algorithm related to the shooting method is

used to solve the BVP.

2.3.1. The simple shooting method. Because the differential

equation is a linear system, we can construct a general solution

that matches the boundary conditions out of a linear combi-

nation of trial solutions. The Fourier expansion for the field

represents a complete basis, so we can use it to generate a

complete set of 2N þ 1 trial solutions ½ ~uuðyÞ	p for the vector

½uðyÞ	, where p = ½�N;N	. Any orthogonal set of particular

solutions that satisfies the boundary conditions at y = 0

[equation (14)] is acceptable, so we choose the following

values for the pth trial solution at y = 0 (Nevière et al., 1974),

~uunð0Þp ¼ 	p;n; ð15Þ

~uu0nð0Þp ¼ �i�ð1Þn 	p;n: ð16Þ

This transforms the 2N þ 1 boundary value problems into

ð2N þ 1Þ � ð2N þ 1Þ initial value problems. All of the trial

solutions can now be individually integrated from y = 0 to

y = a, using equation (9),

½ ~uu00ðyÞ	p ¼ MðyÞ½ ~uuðyÞ	p;

by a reliable numerical integration algorithm.

With the integration complete, we seek a linear super-

position of trial solutions that satisfies the boundary condi-

tions at y = a [equations (11) and (12)],

PþN

p¼�N

cp ~uunpðaÞ ¼ A
ð2Þ
0 exp

h
� i�ð2Þ0 a

i
	n;0

þ Bð2Þn exp
h

i�ð2Þn a
i
; ð17Þ

PþN

p¼�N

cp ~uu0npðaÞ ¼ � i�ð2Þ0 A
ð2Þ
0 exp

h
� i�ð2Þ0 a

i
	n;0

þ i�ð2Þn Bð2Þn exp
h

i�ð2Þn a
i
: ð18Þ

Because of the boundary condition at y = 0 [equation (13)] and

our choice of starting values [equation (15)], the superposition

constants cp can be identified with the coefficients Að1Þn , as cp =

Að1Þn for n = p. Therefore, these represent 2ð2N þ 1Þ linear

equations for the 2ð2N þ 1Þ unknowns Að1Þn , Bð2Þn , which can be

solved using standard techniques of linear algebra. Finally,

with the outgoing field fully determined, we compute the

efficiency for each order using equation (7).

2.4. Numerical challenges

The differential method presented so far is rigorous in that

no approximations, other than the assumption of periodicity,

have been made. However, there are two challenges asso-

ciated with its implementation.

2.4.1. Truncation and convergence. Practical computations

must obviously truncate the Fourier sums to finite values of

�N; for functions with step discontinuities, this can be

problematic. Generally, the minimum acceptable truncation

index would be identified through convergence testing, where

repeated calculations with larger values of N are found to

produce identical results. However, equations (9) and (10) are

based on the convolution theorem: where hðxÞ = f ðxÞgðxÞ, the

Fourier coefficients of hðxÞ are

hn ¼
Pþ1

m¼�1

fðn�mÞgm: ð19Þ

This is valid when the sums are carried to infinity, but it is not

clear that it applies to truncated sums. The theoretical work of

Li (1996b) examined the convergence of products of truncated

Fourier series when the individual functions (for example, the

field coefficients un and the impedance k2) had coincident

or non-coincident discontinuities. For TE polarization, the

tangential electric field Ez and its first derivative are contin-

uous at the boundary of the grating. In this situation the

product is also continuous and convergence is achieved with

low values of N; usually 15 to 45 for typical soft X-ray gratings.

In the case of TM polarization (not shown), the electric field is

normal to, and therefore discontinuous at, the boundary of the

grating. This resulted in convergence problems for many years,

until a reformulation of equation (19) appropriate for func-

tions with coincident discontinuities was suggested (Li,

1996b). The result, applied to the differential method, has

been referred to as the fast Fourier factorization method and

is described by Popov & Nevière (2000) and Nevière & Popov

(2003).

2.4.2. Growing exponentials and the S-matrix algorithm.

The numerical solution of the differential equations described

in x2.3.1 must integrate growing exponential functions over

the distance from y = 0 to y = a. For deep gratings, the

numerical values become very large; however, the final values

of Bn, which must be below unity for physically realistic effi-

ciencies, are computed as differences of products of these

large exponential functions. For computer arithmetic using

standard double-precision floating-point variables, the loss of

significance leads to meaningless results.

To mitigate this problem, extended precision variables can

be used, but this is computationally slow and only extends the

maximum depth of gratings that can be calculated. Instead, a
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deep grating can be divided into slices of horizontal layers,

such that each layer is thin enough to avoid loss of significance.

Within each layer, 2ð2N þ 1Þ orthogonal trial solutions for

upgoing and downgoing waves are integrated from the bottom

to the top of the layer. (This constitues a multiple shooting

method.) The values for all trial solutions at the top of the

layer give the T-matrix describing the effect of that layer on

the Rayleigh coefficients above and below it. It would be

possible to calculate the T-matrix for the entire grating as the

matrix product of all the layers; however, this produces the

same large numerical values we need to avoid. Instead, the S-

matrix algorithm (Li, 1996a) uses algebraic manipulation to re-

arrange the matrix multiplications so that the products of the

growing exponentials never appear in the result; a stable

recursive algorithm is used to compute the cumulative effect

of each layer on the entire stack below it. Once the S-matrix

for the entire stack is computed, the Bn coefficients are

extracted from it. Detailed application of the S-matrix to the

differential method can be found by Nevière & Montiel (1996)

and Nevière & Popov (2003).

With this modification in place, we find that efficiencies

calculated using the differential method are in excellent

agreement with measurements of the soft X-ray gratings

shown in x6.

2.5. Refractive indexes for grating materials and soft X-rays

The differential method assumes that the grating material is

not perfectly conducting, so that it can be described by a

complex refractive index �ð�Þ = nþ i
. (The real part n

describes the dielectric strength and related phase velocity

within the material; the extinction coefficient 
 describes the

attenuation.) For soft X-rays, the light frequency is higher than

the plasma frequency in metals, so both metals and conven-

tional dielectrics behave as absorbing weak dielectrics; the

assumption is therefore acceptable. For many materials at soft

X-ray wavelengths, n is smaller than but approximately unity,

so the refractive index is listed as

� ¼ 1� 	þ i
:

To determine refractive indexes for materials as a function of

wavelength, we use the semi-empirical database of atomic

scattering factors gathered by Henke et al. (1993). The

complex refractive index for a compound material can be

determined from the scattering factors of the constituent

atoms as

~nn ¼ 1� 	� i� ¼ 1�
re

2�
�2
XQ

q¼1

nq fqð0Þ;

where there are Q different types of atoms in the material, nq

is the number density of atoms of type q, fqð0Þ is the tabulated

complex forward scattering factor f ð0Þ for atom q, and re is the

classical electron radius (Henke et al., 1993). (Note that the

refractive index ~nn here uses the opposite sign convention to �
defined above; � = ~nn�:Þ

Using this method to calculate the refractive index assumes

that the photoabsorption cross section does not depend on the

bonding environment of atoms in the material; i.e. it assumes

that the individual atoms scatter independently as dipoles. In

the vicinity of absorption edges, two processes invalidate this

assumption: transitions to weakly bound excited states

produce fine structure near the absorption edge (NEXAFS),

and backscattering of outgoing photoelectrons from the atoms

in a crystal causes oscillations above the edge (EXAFS)

(Henke et al., 1993). Therefore, the refractive indexes and

corresponding efficiencies we calculate are not expected to be

accurate in the vicinity of absorption edges.

3. Computer implementation

In the initial design of the XES endstation, we used a

commercial implementation of the differential method called

Gradif, sold by M. Nevière (2003). Recently, the need for

higher performance during optimization and fitting inspired

us to write our own implementation, designed specifically

to exploit multi-core processors and high-performance

computing (HPC) resources. Unlike previous implementa-

tions of the differential method, it can handle arbitrary groove

profiles, including those generated from AFM measurements

of the actual groove shape, in addition to standard profiles

(rectangular, blazed, trapezoidal and sinusoidal). The S-matrix

propagation algorithm is used to allow deep gratings, with

automatic determination of the number of layers required.

The ODE integration is performed using an Adams–Bash-

forth multi-step method (Byrne & Hindmarsh, 1975) with

adaptive step sizes, which provides high performance and

stability. Gratings can consist of a bare modulated substrate

like the one in Fig. 1, or they can have a thick or thin (inter-

penetrating) coating of a different material. A database of

common materials is included for automatic look-up of the

refractive index as a function of wavelength, based on the

Henke scattering factors. To generate efficiency spectra, the

program provides three scanning modes: (i) scans over a range

of wavelengths at constant incidence, (ii) scans over a range of

incident angles at a constant wavelength, or (iii) scans over a

range of wavelengths while maintaining a constant included

angle from the incident to the diffracted beam (‘mono-

chromator mode’).

The solver supports fine parallelization of a single efficiency

calculation over multiple processor cores, and the command-

line program also features coarse parallelization of calcula-

tions over nodes in a HPC cluster.

Currently, the new software only calculates the TE effi-

ciency; work is ongoing to implement TM calculations. For

most soft X-ray applications, this is not a major limitation

because the TE and TM efficiencies converge at grazing

incidence, and, despite small differences in absolute values,

the shapes of the efficiency spectra are similar. Therefore,

designers will not be misled when using TE calculations to

optimize grazing-incidence optics for TM or mixed polariza-

tion light.

The new software was validated for consistency with

physical principles. For non-absorbing gratings (i.e. materials

with real refractive indexes), the sum of all the transmitted
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and reflected efficiencies must be unity. For absorbing gratings,

this sum is always less than unity. The Helmholtz reciprocity

principle provides another test: applied to optics, it requires

that the quantity of light transmitted be unaffected under

interchange of the source and detector (Jark, 1988). For

general gratings, an analytic proof shows the efficiency of a

diffracting order n under incidence angle �1 and outgoing

angle �2 must be the same as the efficiency under incidence

��2 and outgoing angle ��1 (Maystre & McPhedran, 1974).

All of these requirements were confirmed in testing. Addi-

tional self-consistency checks were performed: results for thin

gratings using single and multiple layers in the S-matrix

method were identical, and the arbitrary groove profile mode

produced identical results when used to define standard

profiles. Finally, the new software was tested for consistency

with the commercial Gradif program. Depending on the

numerical accuracy requested from each program, the agree-

ment is typically better than three significant figures.

The new implementation has been released under an open-

source license for others to use and extend as required; the

code and documentation can be found at http://github.com/

markboots/peg. Beamline designers can either download the

code or they can access it through our online calculator at

http://www.dgembe.com/ for simple calculations of grating

efficiency over a range of wavelengths or incidence angles.

Work is ongoing to add more advanced optimization features

to the online application.

4. Application to instrument design

4.1. Factors affecting the grating efficiency

We used the software to survey trends in the factors that

affect grating efficiency: substrate and coating material,

coating thickness, groove density, groove shape and geometry,

incidence angle, and wavelength. Several of our conclusions

from these surveys are well known, such as the fact that:

(i) Blazed gratings with facets that ‘reflect’ light in the

direction of the desired order significantly outperform

rectangular and sinusoidal gratings, as long as the incidence

angle and wavelength remain close to the on-blaze condition

(Johnson, 1978; Palmer & Loewen, 2005).

(ii) Increasing the groove density always reduces the

maximum efficiency.

(iii) Coating materials of light elements like carbon and

nickel offer high peak reflectivity but also have strong

absorption edges in the soft X-ray range, whereas heavy

elements like gold, platinum and iridium offer lower but near-

constant reflectivity.

(iv) Owing to short penetration depths, coating thicknesses

of 
50 nm or more are indistinguishable from infinitely thick

gratings of the same material.

Other results provided surprising insights for instrument

design, as follows.

4.1.1. Optimal incidence angles. The reflectivity of plain

mirrors increases monotonically as a function of incidence

angle when approaching grazing incidence; we might expect

the same to apply for diffraction gratings. While this is true in

the n = 0 diffraction order, we find that for all useful orders

there is an optimal incidence angle below 90� that maximizes

efficiency. This is important in instrument design, since using

higher (more grazing) incidence reduces the amount of light

captured by the grating and hence the geometric efficiency.

If a certain arbitrary incidence angle is required for other

reasons, the groove geometry, i.e. the blaze angle for blazed

gratings and the groove depth for rectangular and sinusoidal

gratings, can always be adjusted to maximize efficiency at that

incidence. However, Fig. 2 shows that when the geometry

parameters are optimized simultaneously for each incidence

the absolute maximum efficiency occurs at a specific optimal

angle. [This approach differs from the efficiency maps of Jark

(1988), where the blaze angle was kept constant as the

wavelength and incidence were varied. Here we seek to

optimize the incidence and blaze angle for every wavelength.]

We conducted more calculations to determine that this

optimal incidence depends only on the groove density and

wavelength. For rectangular gratings, the optimal incidence

angle for the first inside order (n = �1) occurs at the n = +1

Wood anomaly. (This happens when the first outside order

goes from propagating to evanescent; intuitively, it makes

sense that its energy must be re-distributed, increasing the

efficiency of the remaining propagating orders.) Therefore, the

optimal incidence �i;max can be computed from the grating

equation by setting the diffraction angle for the +1 order

to 90�,

sin �i;max ¼ 1� �=d:

Fig. 3 plots the optimal incidence angle for rectangular grat-

ings as a function of groove density and wavelength, deter-

mined through global optimization of the incidence and

groove geometry. It shows that the optimal angle tracks the
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Figure 2
First-order efficiency as a function of blaze angle and incidence angle. The
blaze angle can always be adjusted to optimize the efficiency for a given
incidence angle. However, there exists an optimal incidence angle (and
corresponding blaze angle) where the highest possible efficiency is
achieved. Grating: 1200 lines mm�1, blazed profile, platinum coating;
photon energy: 400 eV.



analytic formula within the accuracy of the global optimization

(�0.1�).

The situation for blazed gratings is different. Here, the

optimal incidence angle cannot be predicted analytically by

the Wood anomaly. We currently cannot offer a simple

formula for the optimal incidence of blazed gratings; a full

numerical optimization is required to find it.

Using the Wood anomaly explanation might suggest that

the efficiency advantage gained through this technique would

be lost as soon as the incidence angle or wavelength changes

enough for the first outside order to begin propagating.

Instead, we find that this does not happen; the peak width of

the optimization is wide enough to use in practical designs

over a range of wavelengths or incidence angles.

The optimal incidence angle provides a useful starting point

when designing fixed-incidence instruments, such as the

emission spectrometer on the REIXS XES endstation.

Depending on the wavelength range and other constraints, it

might also be useful for variable-incidence instruments

(constant-deviation monochromators, etc.).

4.1.2. Third-order operation. Typically, the grating effi-

ciency decreases significantly for higher orders, so most

instruments operate in the n = �1 order. Previous soft X-ray

research has calculated low efficiencies in the third order, and

measured efficiencies that were even lower (Jark & Nevière,

1987), which were attributed to profile irregularities. However,

while attempting to maximize the resolution of the REIXS

XES spectrometer, we discovered a useful efficiency peak in

the third diffraction order. We therefore added two additional

gratings, optimized intentionally for operation in the third

order, to provide a special high-resolution mode.

The justification for this decision is shown in Fig. 4. To

increase the resolution of the machine without exceeding the

space constraints of the beamline, two hypothetical alter-

natives could provide equivalent resolution: one could (i)

triple the groove density of the grating, or (ii) use the third

diffraction order at the original groove density.

Fig. 4 includes an example optimized for 280 eV. When all

grating parameters are optimized for operation in the

intended order, the third-order grating with 1800 lines mm�1

actually has higher efficiency than its triple-density equivalent

(5400 lines mm�1) in the first order. This applies even for

sinusoidal as well as blazed profiles. In another example

optimized at 710 eV, the third-order grating (2600 lines mm�1)

has slightly lower but comparable efficiency with the first-

order version (7800 lines mm�1).

In practice, the third-order alternative is actually the only

option: it would be almost impossible to manufacture gratings

for the first-order designs with such high groove densities.

(Even if the grating could be ruled, the expected low quality

would reduce its real-world efficiency.) For the REIXS

instrument, the third-order design is the only option to achieve

such high resolution without extending the physical size of the

machine. With proper blazing, the predicted efficiencies are

low but usable (
2%).

4.2. Design process for the REIXS XES endstation

The design process for the new spectrometer considered the

interplay between factors affecting resolution and efficiency; it

will be described alongside initial experimental results in a

forthcoming paper. Here we summarize some of the principles

determined from efficiency studies.
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Figure 4
The justification for our third-order instrument design: the same
resolution can be achieved using the third order, or using another
grating with three times the groove density in the first order. When
optimizing for 280 eV (top) we find that a properly optimized 1800 lines
mm�1 grating in the third order has higher efficiency than the optimized
5400 lines mm�1 grating in the first order. This is true for sinusoidal (red)
as well as blazed profiles (blue). When optimizing for 710 eV (bottom),
the third-order grating has comparable but slightly lower efficiency than
the first-order alternative. However, it would be impossible to rule a
7800 lines mm�1 grating with acceptable quality, so the third-order
grating is the only practical choice.

Figure 3
The optimal incidence angle depends on the groove period and the
wavelength. Solid lines are the calculated angles for the n = +1 Wood
anomaly where the first outside order becomes evanescent. Markers
represent optimal incidence angles for first inside order efficiency found
using global optimization of the groove geometry and incidence to �0.1�.
Open markers: rectangular profile. Filled markers: blazed profile.



The design goals for the spectrometer were to provide a

‘workhorse’ instrument with excellent performance at specific

emission lines of interest to many research groups: Si L�
(92 eV), C, N and O K� (277, 392, 525 eV) lines, along with

good performance at many transition-metal L and rare-earth

M lines (600–1100 eV). Blazed gratings were chosen based on

significantly higher (�2) efficiency, but had to be optimized for

each wavelength; initially, we proposed using a separate

optimized grating for each edge of interest. Many of these

were found to be overlapping in performance, so the total

number was reduced to include only the LEG, MEG and HEG

gratings described in Table 1. A fourth ‘impurity’ grating

(IMP) was added to offer a high-efficiency low-resolution

mode over a wide wavelength range for studying dilute

samples. The incidence angles for each grating were chosen

using the optimal incidence principle (above) as a starting

point, and refined based on focusing constraints and ray-

tracing results. Finally, we added two gratings (HRMEG,

HRHEG) optimized for third-order operation to enable very

high resolution RIXS studies.

The groove geometries and coatings were all optimized

using efficiency calculations; Table 1 lists the relevant para-

meters for each grating. Fig. 5 plots the predicted nominal

efficiencies over each grating’s usable energy range.

5. Characterization of grating parameters and
efficiency

The spectrometer gratings were fabricated by Bach Research

Corporation using mechanical ruling. All the gratings were

ruled in a gold layer on a fused silica substrate; nickel or

platinum coatings were subsequently evaporated for all except

the LEG. Before installing the gratings in the spectrometer, we

characterized their actual groove profile and efficiency.

5.1. Profile measurements using AFM

The surfaces of the gratings were characterized using AFM.

Measurements were taken in non-contact (tapping) mode at

two locations (centre and edge) on each grating, with each

image covering between five and ten groove periods (Fig. 6).

The measurements were conducted at the Center for X-ray

Optics at the Lawrence Berkeley National Laboratory

(LBNL), using a reference sample to calibrate the scaling of

the z-axis for realistic estimates of the blaze angles. The

grating cross sections were integrated over the width of the

image to produce an average groove profile, shown in Fig. 6.

From the averaged profiles, we fitted the slopes of each groove

to provide an estimate of the blaze angles (Table 2).

5.2. Efficiency measurements using the beamline 6.3.2
diffractometer

The efficiencies of the gratings as a function of wavelength

(‘efficiency spectra’) were measured on the Calibration and

Standards Beamline (6.3.2) at the Advanced Light Source,

LBNL. This bending-magnet beamline provides synchrotron

radiation through a monochromator with a resolving power

ð�=��Þ of approximately 7000 (Underwood et al., 1996).

Interchangeable filters of different elements are used to

suppress higher-order radiation from the monochromator and

calibrate the wavelength. On reaching the grating, the light is

90% linearly polarized perpendicular to the plane of inci-

dence, which is ideal for comparison with the TE efficiency

calculated by our software.
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Figure 5
Theoretical (calculated) efficiency spectra for the gratings in the REIXS
XES spectrometer, over their intended ranges of operation. Using the
LEG, MEG and HEG, we achieved our goal of >10% efficiency from 100
to 1000 eV. The IMP grating provides high efficiency at low resolution
over a wide wavelength range, and the two third-order gratings provide a
very high resolution mode.

Table 1
Gratings chosen for the REIXS spectrometer, with target energies used for optimization, accessible energy ranges, and optimized nominal grating
parameters.

Grating
Optimization
energy (eV)

Energy
range (eV)

Groove density
(lines mm�1)

Incidence
angle (�) Coating

Blaze
angle (�)

First order
Low energy (LEG) 92 eV (Si) 30–300 600 86 Au 1.85
Impurity (IMP) 400 eV (N) 75–750 900 87 Ni 1.11
Medium energy (MEG) 400 eV (N) 250+ 1200 88 Ni 1.48
High energy (HEG) 719 eV (Fe) 400+ 2000 88 Pt 1.52

Third order
High-resolution medium energy (HRMEG) 280 eV (C) 280+ 1800 88 Ni 4.85
High-resolution high energy (HRHEG) 719 eV (Fe) 525+ 2600 88.25 Pt 4.05



The diffractometer endstation on beamline 6.3.2 provides

for the mounting, alignment and measurement of the gratings

under test. Independent rotary stages with encoders are used

to set the incidence angle of the beam on the grating as well

as the outgoing angle to the detector. Multiple detectors are

available: gallium arsenide and silicon photodiodes, a CCD

camera and a channeltron; we used the Hamamatsu GaAs

photodiode. A 2 mm pinhole over the photodiode is standard

for grating measurements.

From previous long trace profilometer (LTP) measure-

ments, we knew the actual groove density of each grating with

high accuracy. This allowed us to scan the incident wavelength

of the beamline while moving the detector angle to keep it

centred on the diffraction peak in the order of interest. The

efficiency at each wavelength was computed by taking the

ratio of the diffracted beam intensity to the direct beam

intensity, which was measured in a subsequent scan using the

same photodiode. (The scans were normalized using the pre-

diffractometer beam intensity I0, and corrected for dark

current of the photodiode.)

6. Analysis and results

6.1. Differences between ideal and manufactured gratings

The measured efficiency spectra are substantially different

from our theoretical predictions in Fig. 5. This means that

either (a) the theory or software implementation is incorrect,

or (b) the gratings we received differ from the nominal

specifications. Since there is deviation inherent in any grating

manufacturing process, we examine the second possibility

before rejecting the theory. Some of the manufacturing

differences can be accounted for in revised calculations, while

others cannot be modelled using the differential theory.

6.1.1. Blaze angle and groove-shape errors. Errors in the

manufactured blaze angle shift the efficiency peaks along the

energy/wavelength axis, as well as change the ratio between

the first- and second-order peak efficiencies. In general, it is

also common for manufactured groove shapes to differ from

the triangular, rectangular or sinusoidal ideals. Deviations

from the nominal groove geometry can be easily incorporated

into the efficiency calculations, as long as they are consistent

from groove to groove. When the exact profile is known from

AFM measurements, the arbitrary groove profile mode

implemented in our software can be used to model any real

groove shape.
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Table 2
Comparison of nominal and fitted grating parameters, using fitting to
match the calculated efficiency spectra to the measured curves. The
predicted (Fit) blaze angles agree very closely with estimates from AFM
measurements.

Blaze angle (�) Roughness Oxide thickness

Nominal Fit AFM estimate Fit (nm) Fit (nm)

LEG 2.26 2.35 2.45 � 0.20 0.025 N/A
IMP 1.11 1.65 1.60 � 0.11 0.5 2.0
MEG 1.48 1.95 2.04 � 0.22 0.1 1.0

Figure 6
Groove profiles for all of the REIXS XES gratings, generated by
integrating calibrated AFM image data along the grooves. A separate
AFM image was measured at the centre and edge of each grating.



6.1.2. Oxidation of coatings. Nickel coatings offer theo-

retically high reflectivity up to 850 eV; however, an oxide

layer affects the efficiency significantly, particularly above the

O K� edge (543 eV). The software now makes it possible to

calculate the efficiency of an oxidized grating by using a thin

layer (in our case a layer of NiO) on top of a metal substrate.

The detrimental effect of the oxide layer is obvious in the

results for the IMP and MEG gratings. This problem can be

avoided by evaporating a protective layer of MgF2 over the

nickel coating before exposing the gratings to air. In this case

the same calculation technique could be used to model the

effect of the MgF2 coating. The effect of a 1 nm coating

is compared with the pure and oxidized nickel efficiency

curves in Figs. 8 and 9; it actually increases the theoretical

efficiency.

6.1.3. Non-uniform variation in groove shape. During

mechanical ruling, variation in the hardness of the metal

causes the ruling tip to penetrate shallower or deeper. This

causes variation in the groove shape, both along a single

groove (across the grating) and from groove to groove. This

disrupts the perfect periodicity of the grating, and reduces

the constructive interference that forms the diffracted plane

waves. The result is an increase in scattered light (‘stray

radiant energy’) and a reduction in efficiency (Palmer &

Loewen, 2005). Gratings produced using the holographic

method also suffer from aperiodicity, owing to variation in the

intensity of the interference pattern used to record the grating

(Palmer & Loewen, 2005). However, Johnson (1978) reports

that holographic ion-etching methods can produce more

uniform profiles with lower scattered light than mechanical

ruling, even for blazed gratings.

The assumption of periodicity is fundamental to the

differential method; we know that aperiodicity will reduce the

real efficiency, but we cannot model this effect. This limitation

is not unique to the differential method; it applies to all

Fourier-based methods, including the modal method. Model-

ling it rigorously would require the integral method or

modified integral method, applied across hundreds or thou-

sands of unique grooves. Unfortunately, existing imple-

mentations of the integral method also apply a pseudo-

periodic simplification (Goray & Seely, 2002) in order to

achieve adequate performance; calculations involving

hundreds of unique grooves are not computationally feasible.

6.1.4. Surface roughness. As with plain mirrors, micro-

roughness on the surface of a grating contributes to diffuse

scattering and stray light (Palmer & Loewen, 2005), both in

and out of the plane of incidence. Unlike mirrors, roughness

on gratings also disrupts the essential periodicity of the

grooves, as discussed in the previous section.

Substantial research has been devoted to modelling the

effect of surface roughness, even in the simpler case of flat

surfaces: Elfouhaily & Guérin (2004) categorized 260 refer-

ences, 177 since 1980, into 30 different methods, before

concluding that ‘ . . . there does not seem to be a universal

method that is to be preferred systematically. All methods

present a compromise between versatility, simplicity, numerical

efficiency, accuracy and robustness, with a different weighting

in these various fields. [ . . . ] No approximate model has

fulfilled all listed criteria.’

For flat surfaces, two simplifications are commonly used to

estimate the reduction in reflectivity as a function of the RMS

surface roughness �. The Beckmann factor (Beckmann &

Spizzichino, 1987) contains a small-angle approximation that

restricts it to near-normal incidence applications, but is

appropriate for ‘rough’ surfaces up to ð� cos � � �Þ, where � is

the incidence angle from the normal,

R0 ¼ R exp �
4�� cos �

�

� 	2
" #

: ð20Þ

The X-ray Data Booklet (Thompson & Vaughan, 2001) gives

another correction factor based on the X-ray specific work of

Sinha et al. (1988); it is appropriate for grazing incidence, but

restricted to ‘smooth’ surfaces (� � �),

R0 ¼ R exp �
4��

�

� 	2

sin � Re �2
� sin2 �

� �1=2
h i( )

: ð21Þ

It is not clear that these expressions for mirror reflectivity can

be applied by analogy to grating efficiencies. First, it is not

obvious that surface roughness should affect all reflected

orders in the same way, considering that the outgoing angles

are different for each. Additionally, substantial random

roughness creates groove-to-groove variations that should

disrupt diffraction, beyond the simple effect of diffuse scat-

tering. However, Goray & Seely (2002) tested the integral

method without pseudo-periodic simplification over a very

large number of groove periods modified by a non-Gaussian

roughness distribution function. They suggest that similar

results can be obtained in a feasible time by simply multiplying

the outgoing field amplitudes by a factor exp½�ð2�� cos �=�Þ2	
almost identical to the Beckmann factor. This conclusion was

found at near-normal incidence; for grazing-incidence gratings

we have attempted to account for roughness using equation

(21) instead, but we recognize that this approach is not

rigorous, nor accurate for large roughness values.

6.2. Using efficiency calculations and fitting to predict real-
world grating parameters

No grating can ever be manufactured exactly as specified, so

we would expect the real efficiencies to be different than

initially predicted. To what extent is it possible to account for

the discrepancies using the differential method? Given that we

have (a) real efficiencies measured over a range of wave-

lengths, (b) AFM measurements of the grating geometry, and

(c) the ability to model arbitrary groove profiles, we answered

this question using a curve-fitting process to generate theo-

retical efficiency curves that match the measurements, and

then compared the fitted parameters with the actual grating

parameters.

The fitting process used fixed values for the parameters that

could be measured exactly. The exact groove densities had

been previously determined from LTP measurements. The

incidence angles measured by the diffractometer encoders
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were taken as given. Because the AFM blaze angle estimates

vary from groove to groove and are subject to uncertainty in

the z-axis calibration, we left these (and the anti-blaze angles)

as free parameters in the fitting process. The oxide layer

thickness for the nickel gratings and the surface roughness

parameter � in equation (21) were also left as free parameters.

We note that a single measurement at a single wavelength

would not be sufficient for this technique; we need an effi-

ciency spectrum over wavelength. The power of the fitting

process comes from the fact that each parameter (groove

density, incidence angle, groove geometry, etc.) affects the

shape of the spectrum in a different way; the spectral shape

acts as a ‘fingerprint’ or ‘hash’ of the grating parameters.

Although the shapes of the measured spectra were similar

to our calculated curves, the measurements were always lower

than predicted in absolute value. This is reasonable based on

the effects identified above that act to reduce the efficiency.

However, neither of the roughness expressions [equations (21)

and (20)] can describe this well on their own: both of them

decrease too rapidly with increasing photon energy while

providing negligible reduction at low energies, and the size of

the required parameter � ends up far outside the valid range

for equation (21) (� � �).

Instead, it seems that a constant scaling factor is required to

achieve a good fit between the measured and calculated

curves. (Typical scaling values for our measurements are

between 0.5 and 0.8.) Many of the causes identified above

could account for the reduction, but currently we do not have

a rigorous physical derivation for this factor. If it is due to

roughness alone, then neither equation (21) nor equation (20)

are adequate for describing gratings. The reduction could also

be a measurement effect: for example, focusing or dispersion

of the diffractometer beam by the spherical grating on its way

to the photodiode would change the apparent intensity;

sagittal tilt of the grating would cause conical diffraction and

cause some light to miss the photodiode.

Reasonable fitting results can be found by using the same

scaling factor for the first-order and second-order efficiencies.

However, much better agreement in the shapes of the curves

is found using independent scaling factors for the first-order

and second-order curves. Whether this is justifiable depends

on the explanation for the scaling factor; both roughness and

focusing effects could be affected by the outgoing angle and

hence the diffraction order.

Fitted parameters for the blaze angle, oxide thickness and

RMS roughness are tabulated in Table 2. In all cases the blaze

angles generated via fitting are in very close agreement with

the AFM estimates. Work is ongoing to validate the oxide

thickness and roughness predictions. In the following section

we compare the measured and fitted (calculated) efficiency

curves for each grating.

6.3. Individual grating results

6.3.1. LEG. The LEG was one of the easiest gratings to

manufacture, owing to low groove density and lack of a

secondary coating. The AFM measurements (Fig. 6) show a

clean triangular profile; however, we estimate from these

measurements that the blaze angle at the centre of the grating

is 2.45� � 0.20� instead of the requested 1.85�.

The effect of the blaze angle error on the measured effi-

ciency is obvious in Fig. 7: the locations of the efficiency peaks

are shifted compared with the theoretical prediction for a

nominal grating with 1.85� blazing. The higher blaze angle also

increases the second-order peak efficiency at the expense of

the first.

By matching the calculated to the measured spectra, our

fitting process predicts a blaze angle of 2.35�, using scaling

factors of 0.93 and 0.84 for the first and second orders,

respectively. The agreement in the shape of the curves is very

good (Fig. 7), and the predicted blaze angle agrees closely with

the AFM estimate (2.45�). The high scaling factors compared

with the IMP and MEG gratings suggest low roughness; it

makes sense that this bare gold grating would be smoother

than the over-coated gratings.

Although only a fraction of a degree, the blaze angle error

causes a significant reduction in real efficiency: at 140 eV, the

theoretical and measured first-order efficiency is less than 0.3,

compared with 0.4 that could be achieved with correct blazing.

Fortunately, this is still high compared with the other gratings

and should be acceptable for all experiments.

6.3.2. IMP. The AFM measurements of the impurity grating

show clean facets on the blazed side (Fig. 6), although once

again the blaze angle is 
0.5� higher than specified. The

estimated blaze angle at the grating centre is 1.60� � 0.11�

compared with the requested 1.11�.

Originally intended to cover the range from 200 to 800 eV,

the IMP grating suffers a drop in real efficiency near 540 eV

(Fig. 8). The fact that this occurs at the oxygen absorption

edge (543 eV) strongly suggests an oxide layer on the surface.
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Figure 7
Measured and calculated efficiencies for the LEG. The manufactured
blaze angle is higher than requested, which shifts the efficiency peaks to
lower energies and transfers energy to the second order. (Dashed lines
are calculations based on the nominal parameters we requested from the
manufacturer. Solid lines are the result of using a curve-fitting process to
determine the grating parameters that best match the measured curves.)



We modelled this using a layer of NiO of unknown thickness

over a nickel substrate. The fitting results suggest that the

measured efficiencies can be explained very well using a

2.0 nm oxide layer, a blaze angle of 1.65�, a 5� anti-blaze angle,

an RMS roughness of 0.5 nm, and scaling factors of 0.91 and

0.62, respectively (Fig. 8). Again, the blaze angle predicted

from fitting falls well within error of the AFM estimate (1.60�).

As mentioned in x2.5, we should not expect the Henke-

based refractive indexes to be accurate near the oxygen and

nickel edges around 543 and 853 eV; in particular, the EXAFS

profile is absent in the calculated spectra above the edge.

6.3.3. MEG. Owing to its increased groove density of

1200 lines mm�1, the MEG shows a less regular surface than

either the LEG or IMP. AFM measurements of the profile

(Fig. 6) estimate an average blaze angle of 2.04� � 0.22� at the

centre of the grating. Once again, this is consistently 0.5�

higher than the nominal specification (1.48�).

The nickel-coated MEG suffers the same fate as its oxidized

sibling. The measured efficiency (Fig. 9) is further affected by

the error in the blaze angle. The fitting process predicts a blaze

angle of 1.95�, an NiO oxide layer of 1 nm, and scaling factors

of 0.70 (first order) and 0.37 (second order). The lower scaling

factors are likely attributed to the groove-to-groove variation

visible in the AFM profile, which is significant compared with

the LEG and IMP grating. Once again, the fitted blaze angle

agrees closely with the AFM estimate (2.04�).

6.3.4. HEG. Measurements of the HEG show that the effi-

ciency spectrum is dramatically lower than predicted across

the entire energy range (Fig. 10). The AFM measurements

(Fig. 6) clearly reinforce that something went very wrong in

the ruling process. At the centre of the grating there is a

double-peaked structure, and the dimensions differ substan-

tially from groove to groove. We know that the HEG blank

was re-ruled after a previous failed attempt, and we hypo-

thesize that some structure was left over from the first ruling.

Could the double-peaked shape of the HEG grooves be

responsible for its poor efficiency? To answer this question we

used the arbitrary profile mode of the new software. We

extracted a representative shape from one of the AFM

grooves and used it to specify the set of ðx; ypÞ points for the

profile function yp = g(x).

The efficiencies calculated from this profile are also shown

in Fig. 10. While the double-peaked shape does reduce the
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Figure 9
Measured and calculated efficiencies for the MEG grating. The difference
between the nominal and actual efficiency is explained by a higher blaze
angle (1.95� instead of 1.48�), the presence of a 1.0 nm oxide layer, and
0.1 nm RMS surface roughness. A 1 nm MgF2 coating (dashed lines)
could have protected the grating from oxidation.

Figure 10
The HEG grating efficiency was measured to be extremely low. AFM
measurements suggest that this might be due to a non-triangular profile
and strong variation from groove to groove (Fig. 6). Calculations (solid
lines) using a representative groove shape taken from one period of the
AFM measurements cannot fully explain the reduced efficiency, owing to
significant groove-to-groove variation.

Figure 8
Measured and calculated efficiencies for the IMP grating. The difference
between the nominal and actual efficiency is explained by a higher blaze
angle (1.65� instead of 1.11�), the presence of a 2.0 nm oxide layer, and
0.5 nm RMS surface roughness. A 1 nm MgF2 coating (dashed lines)
could have protected the grating from oxidation.



theoretical efficiency compared with the nominal profile, it

cannot explain the near-zero efficiencies that we measured.

Instead, we attribute this to the substantial aperiodic variation

from groove to groove, which disrupts the proper formation of

diffracted plane waves. (In the limit of complete random

variation from groove to groove, the grating simply reduces to

a diffuse scattering surface.)

This grating highlights the practical importance of char-

acterization. Without efficiency and AFM measurements, we

would have accepted and installed this grating in the spec-

trometer, but this version of the HEG would have been

unusable. Instead, we used the characterization data to ask the

manufacturer to re-rule it one more time.

6.3.5. HRMEG and HRHEG. The high-resolution third-

order gratings were also characterized using AFM and

diffractometer measurements. Unfortunately, the efficiency

measurements were affected by an error in the diffractometer

control software, causing problems with the normalization. It

might be possible to correct this problem in post-processing,

but currently the full efficiency spectra are not ready for

publication. We include summary results taken from the valid

measurement points here.

The nickel-coated HRMEG has a measured third-order

efficiency peak of 3.5%, but unfortunately the peak occurs at

500 eV instead of the 285 eV design energy. Like the other two

nickel gratings, it shows fine structure and a serious decrease

in efficiency at the oxygen edge (543 eV). AFM measurements

of the HRMEG profile show a beautiful triangular structure

(Fig. 6); unfortunately the blaze angle is 4.43� � 0.30� instead

of 4.85� at the centre of the grating. Unlike the other gratings,

this is 0.4� lower than requested. The blaze angle error

explains why the measured efficiency peak is shifted to higher

energy compared with the nominal calculations. The effect

on the spectrometer performance is almost a factor of two:

instead of >3% third-order efficiency that could be achieved

at 285 eV with proper blazing, we obtain only 1.5%.

For the HRHEG, AFM measurements show a rough profile

and an extremely high blaze angle of 6.34� � 0.28�, more than

2� higher than the required 4.05�. Accurate blazing is essential

for exploiting the third-order efficiency peak, so it was

unfeasible to use this grating in the role we originally

designed: the third-order efficiency is less than 0.5% at 400 eV,

and decreases to 0.28% at the design energy of 710 eV.

However, the blaze angle error contained a lucky coin-

cidence: it actually makes the HRHEG ideally blazed for first-

order operation from 400 eV to 900 eV. (Owing to the extreme

groove density, the first-order efficiencies are low but usable: it

was measured to provide 2% efficiency at 400 eV, and >1%

efficiency at 800 eV.) Simultaneously, the failure of the HEG

left us lacking a first-order grating for experiments above

530 eV. Therefore, we installed the HRHEG in the spectro-

meter as a temporary first-order HEG replacement until the

manufacturer completes re-ruling of the actual HEG. A

corrected version of the HRHEG will be re-ruled and

measured in the future. This example highlights again the

usefulness of careful grating characterization from an engi-

neering perspective.

7. Conclusions

To summarize, we have used insights from rigorous grating

efficiency calculations to design a high-performance soft X-ray

emission spectrometer, which intelligently navigates the

inherent trade-off between resolution and efficiency. We

identify and exploit a principle of optimal incidence angle, and

use blazed gratings optimized for third-order operation to

achieve higher resolution than would otherwise be possible

within the space constraints of the machine.

In order to model real gratings with arbitrary profiles, and

increase the computational performance of efficiency calcu-

lations, we implement new open-source software for calcu-

lating efficiencies using the differential method. A simple

online application is provided at http://www.dgembe.com/ so

that beamline designers can quickly evaluate the efficiency of

a proposed design; they can also download the command-line

version for automation, optimization or integration into other

applications.

Finally, we compare measurements and calculations of

grating efficiency as a function of wavelength. We find that the

differential method accurately describes the shape of effi-

ciency spectra for typical grazing-incidence gratings once real-

world effects are accounted for (geometry errors, oxide

thickness and surface roughness). Because different grating

parameters affect the shape of efficiency curves in different

ways, we find that it is actually possible to predict unknown

grating parameters based on efficiency measurements, using a

curve-fitting process to ‘invert’ the calculations. For all the

gratings we analyzed, the blaze angles predicted through

fitting agree very closely, within error, with AFM measure-

ments of the actual groove profiles. In the future, this might

provide a way to characterize grating parameters that are

difficult or impossible to measure directly.
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