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This contribution describes a method for measuring diffraction peaks of a

standard sample to estimate the incident X-ray wavelength at the 1W2A SAXS

beamline at BSRF. A simple simulation has been performed to establish the

factors influencing the accuracy of the wavelength measurement. Appropriate

measurement conditions and error control measures are presented. An actual

experimental example further verifies the effectiveness of the simulation. This

method is particularly suitable for synchrotron radiation beamlines using bent

triangular crystal monochromators.
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1. Introduction

The incident X-ray wavelength or energy is one of the char-

acteristic parameters of any X-ray instrument. With double-

crystal monochromators it can sometimes easily be calibrated

using the absorption edge of a standard sample (Schilling et al.,

1995). However, for beamlines with a bent triangular crystal

monochromator (Zheng et al., 1995) or beamlines with a

double-crystal monochromator where the wavelength does

not correspond to an edge, one has to find other methods to

estimate the wavelength. The new beamline 1W2A at Beijing

Synchrotron Radiation Facility (BSRF) is a fixed-energy

(about 8 keV) beamline dedicated to small-angle X-ray scat-

tering (SAXS). This beamline shares the same synchrotron

radiation source with the protein crystallography beamline

1W2B through a triangular bending Si(111) crystal mono-

chromator. In principle, one does not have to know the

wavelength very accurately in SAXS because one is usually

only interested in the calibration of the q- or s-axis. An

accurate knowledge of the wavelength is, however, useful for

absorption and scattering angle calculation. One of the

possible methods is to measure the diffraction peak(s) of a

standard sample. This short contribution reports the results of

a simple theoretical simulation and an experimental verifica-

tion. The method may be applied to similar beamlines.

2. Theory and simulation

2.1. Wavelength and error

A schematic diagram of a typical scattering or diffraction

experiment is shown in Fig. 1. The monochromatic X-rays

irradiate the sample and the scattering or diffraction signals

are recorded by a detector. Obviously, there exists a simple

mathematical relation (1) valid if the direct beam is perpen-

dicular to the detector plane,

2� ¼ arctanðP=LÞ; ð1Þ

where 2� is the scattering or diffraction angle, P is the radius of

the scattering or diffraction ring on the detector plane, and L

is the sample-to-detector distance.

Assuming a known crystalline sample with distinct diffrac-

tion peaks is used for the experiment, Bragg’s law (Bragg &

Bragg, 1913), (2), states that the incident X-ray wavelength �
can be derived from the distance d between atomic layers in

the crystal and the diffraction angle 2�,

n� ¼ 2d sin �; ð2Þ

where n is an integer. Combining (1) and (2) one obtains (3),

n� ¼ 2d sin
arctanðP=LÞ

2
: ð3Þ

For a given standard sample with known d-spacing, once the P

and L values for a known diffraction peak are measured, one

can derive � using (3). According to the error propagation

principle (Ma & Wang, 2009), the error on � (named ��)

depends on P, L and their errors �P and �L,

Figure 1
Schematic diagram of a typical X-ray diffraction or scattering.
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Equation (4) shows that �� varies linearly with both �P

and �L. Fig. 2, derived from (4) assuming �P = 0.10 mm and

�L = 0.10 mm, illustrates the variation of �� with L and P.

For a given value of L, the greater P, the smaller ��, and, for a

given value of P, the shorter L, the smaller ��. So for a given

expected value of ��, P and L should lie in a limited range.

For example, if one expects �� � 0.00154 Å (� � 1%), then

the combination of P and L must be above the curve for �� =

0.00154 Å in Fig. 2. Supposing L = 100 mm, one has to keep

P� 116.45 mm. Conversely, if P = 116.45 mm, one has to keep

L � 100 mm.

P and �P are usually easily estimated from the known pixel

size or point spread function of the detector. But L and �L

are difficult to measure accurately, as the real position of the

photosensitive plane of the detector is rarely known. In the

case of a Mar165 CCD detector with a pixel size of 79 mm, �P

may be about 0.1 mm. �L mainly depends on the measure-

ment method. When measuring with a tape or ruler, �L is

large and about several millimetres. Therefore, the key for the

determination of � with expected error �� is measuring L

with a limited error �L.

2.2. Sample-to-detector distance and error

The sample-to-detector distance L can be determined with

a standard sample. Either of the two simple schemes shown in

Fig. 3 can be used. In the first, the standard sample position

is fixed and two independent diffraction peaks are measured

once (see Fig. 3a). In the second, the standard sample position

is displaced and one diffraction peak is measured twice (see

Fig. 3b).

For the first scheme, the following relation can be derived

from (3),

d1 sin
arctan P1 =Lð Þ

2

� �
¼ d2 sin

arctan P2 =Lð Þ

2

� �
: ð5Þ

After measuring P1 and P2 for two different diffraction peaks

with known d1 spacing and d2 spacing, L can be derived from

(5). Equation (5) is a transcendental equation, which has no

analytical solution, but a numerical solution. According to the

error propagation principle, �L depends on P1, P2, �P1 (error

of P1), �P2 (error of P2) and L,

�L ¼

(
d1 cos

arctan P1 =Lð Þ

2

� �
L

L2 þ P 2
1

����
�����P1

þ d2 cos
arctan P2 =Lð Þ

2
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L
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)
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Further setting P2 = P1 + P 0 and �P1 = �P2 = 0.10 mm, one

can derive the variation of �L with L and P 0 as shown in Fig. 4.

For a given value of L, the greater P 0, the smaller �L; for a

given value of P 0, the shorter L, the smaller �L. Therefore for

an expected value �L, P 0 and L should lie in a limited range.

For example, if one expects �L � 0.10 mm to match �� �
0.00154 Å, then the combination of P 0 and L must be above

the curve for �L = 0.10 mm in Fig. 4. Supposing L = 44.00 mm,
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Figure 2
Variation of �� with L and P assuming �P = �L = 0.10 mm.

Figure 3
Schematic diagram of set-ups for determining the sample-to-detector
distance. (a) The sample position is fixed and two independent diffraction
peaks are measured once. (b) The sample is displaced and one diffraction
peak is measured twice.



one has to keep P1 � 94.49 mm according to (4) and Fig. 2,

P 0 � 104.40 mm and P2 � 198.89 mm according to (6) and

Fig. 4. This means that the detector must have an active area

with diameter or length larger than 198.89 mm. On the

contrary, if P1 = 94.49 mm, P 0 = 104.40 mm and P2 =

198.89 mm, one has to keep L � 44.00 mm. It can be

concluded that, to match the specific restriction of �� (e.g.

1%), L is limited (for instance L � 44.00 mm) by the parti-

cular detector (say 200.00 mm diameter of active area) based

on the scheme of Fig. 3(a).

For the second scheme, it is easy to obtain the relationship

in (7) from Fig. 2(b),

P1

L
¼

P2

Lþ L0
: ð7Þ

After measuring P1, P2 and L0 with the corresponding errors

�P1, �P2 and �L0, respectively, L can be derived from (7).

�L depends on P1, P2, L0, �P1, �P2 and �L0,

�L ¼
P2L0

P2 � P1ð Þ
2 �P1 þ

P1L0

P2 � P1ð Þ
2 �P2 þ

P1

P2 � P1

�L0: ð8Þ

Further setting �P1 = �P2 = 0.10 mm and �L0 = 0.01 mm

[this is easily achieved using a precise (several micrometers)

displacement stage], one can derive the variation of �L with L

and L0 as shown in Fig. 5. For a given value of L, the larger L0,

the smaller �L; for a given value of L0, the shorter L, the

smaller �L. Therefore for a given expected value of �L, L0

and L should lie in a certain limited range. For example, if one

expects �L � 0.10 mm to match �� � 0.00154 Å, then the

combination of L0 and L must be above the curve of �L =

0.10 mm in Fig. 5. Supposing L = 31.00 mm, then one has to

keep P1 � 85.78 mm according to equation (4) and Fig. 2, and

L0 = 39.95 mm and P2 � 196.33 mm according to equation (8)

and Fig. 5. This means that the detector must have an active

area with diameter or length larger than 197.00 mm. Conver-

sely, if P1 = 85.78 mm, L0 = 39.95 mm and P2 = 196.33 mm, then

one has to keep L � 31.00 mm. It can be concluded that, to

match the specific restriction of �� (e.g. 1%), L is still limited

(for instance L � 31.00 mm) by the particular detector (say

197.00 mm diameter of active area) based on the scheme of

Fig. 3(b).

The choice between the above schemes to determine the

sample-to-detector distance with limited errors depends on

the actual situation. In the first scheme the position of the

standard sample is fixed while in the second scheme the

standard sample must be accurately displaced. The first

scheme measures two diffraction peaks with different d-

spacings once, while the second measures the same diffraction

peak of the standard sample twice. Both schemes avoid the

direct influence of the error of the sample-to-detector distance

on the error on the wavelength calculation.

The use of several more diffraction peaks of the standard

sample to determine the sample-to-detector distance is not

discussed here, but it could be analyzed with methods similar

to those above.

2.3. Influence of the tilt of the detector

The schemes presented above are based on the situation

where the detector is perpendicular to the beam (see Fig. 1). If

the angle between the detector and the direct beam is �, it is

easy to derive the following relationship,

P ¼
sinð2�Þ

sinð2� þ �Þ
L: ð9Þ

Then the error of P can be computed according to the error

propagation principle,

�P ¼
� sinð2�Þ cosð2� þ �Þ

sin2
ð2� þ �Þ

����
����L ��; ð10Þ
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Figure 5
Variation of �L with L and L0 assuming �P1 = �P2 = 0.10 mm and �L0 =
0.01 mm.

Figure 4
Variation of �L with L and P 0 assuming P2 = P1 + P 0 and �P1 = �P2 =
0.10 mm.



where �� is the error on � and just the tilt

angle of the detector. Apparently, there

exists a linear relation between �P and

��. One can further derive the ratio of

�P/P,

�P

P
¼ � cotð2� þ �Þ
�� ����: ð11Þ

Equation (11) indicates that �P/P

depends on �� by a linear relation.

Assuming � = 90�, then one can derive

the variation of �P/P with 2� and ��
as shown in Fig. 6. It can be seen that

the larger ��, then the larger �P/P.

Obviously, �� has a distinct influence on the error on P

especially for large diffraction angles. The maximum allowable

value for �� depends on the expected values of �P. For

example, if 2� = 70� and P = 100 mm, then one has to set � �
0.02� to keep �P � 0.10 mm. One should thus pay great

attention to control the tilt angle of the detector for wide angle

diffraction measurement. Modern mechanical displacements

and consoles enable the detector attitude to be adjusted

accurately. The perpendicularity of the detector to the beam is

easy to verify by the symmetry of a diffraction ring of a given

sample, so �� can easily reach the acquirement of �P.

3. Experimental example

The experiment has been performed at the 1W2A SAXS

station at BSRF. Aluminium powder (purity 99%) (Tianjin

Heowns Biochem LLC) was used as a standard sample with

distinct diffraction peaks (the standard data are from JCPDS

65-2869) and mounted on a high-precision (�5 mm) posi-

tioning stage. An area detector (Mar 165 CCD), set perpen-

dicular to the incident X-rays, was used to record the

diffraction pattern. The experimental conditions were based

on the previous considerations. The partial diffraction profiles

of the aluminium powder sample with the schemes of

Figs. 3(a) and 3(b) are shown in Figs. 7(a) and 7(b), respec-

tively. The detailed experimental conditions and results are

listed in Tables 1 and 2.

The results shows that the calculated X-ray wavelength

values from both schemes in Fig. 3 are very close to each other

and to the design value of 1.54 Å for the Si(111) crystal
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Figure 7
(a) Partial diffraction pattern of aluminium powder performed with the scheme in Fig. 3(a) at the 1W2A SAXS station at BSRF. (b) Partial diffraction
pattern of aluminium powder performed with the scheme in Fig. 3(b) at the 1W2A SAXS station at BSRF.

Figure 6
Variation of �P/P (% error on P) with diffraction angle 2� and the error
on �.

Table 1
Experimental conditions and results with the scheme in Fig. 3(a).

d (Å) P (mm) �P (mm) L (mm) �L (mm) � (Å) �� (Å)

1.221 70.729 0.100 15.064 0.077 1.536414 0.001267
1.169 109.480 0.100 15.064 0.077 1.536413 0.000720

Table 2
Experimental conditions and results with the scheme in Fig. 3(b).

d (Å) L0 (mm) �L0 (mm) P (mm) �P (mm) L (mm) �L (mm) � (Å) �� (Å)

1.169 6.000 0.010 64.485 0.100 8.836 0.0688 1.536908 0.001106
1.169 6.000 0.010 108.273 0.100 14.836 0.0695 1.536908 0.000664



monochromator. The small difference might result from a

small alignment error. All ��/� values are lower than 1%.

4. Conclusion

This presentation describes how to estimate the X-ray wave-

length from a monochromatic X-ray beam or instrument

especially in the case where this cannot be easily done using

the absorption spectrum of a metallic foil (e.g. when using a

bent triangular crystal monochromator). Two possible proto-

cols are described in which either one or two independent

diffraction peaks of a standard sample are measured. Analysis

of the resulting wavelength value error is performed in terms

of error propagation of several measurement quantities.

Neither protocol needs a direct measurement of the distance

between the sample and the detection plane which is rarely

known with precision. The limitation to the measurement

quantities depends on the expected error on the wavelength.

Although based on simple well known geometrical equations,

the presentation provides new insights into the interplay

between the various parameters, and the results could be

useful for optimizing the scheme and operation of such beams.
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