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A numerical method of reconstruction of an object image using an X-ray

dynamical diffraction Fraunhofer hologram is presented. Analytical approxima-

tion methods and numerical methods of iteration are discussed. An example of

a reconstruction of an image of a cylindrical beryllium wire is considered. The

results of analytical approximation and zero-order iteration coincide with exact

values of the amplitude complex transmission coefficient of the object as

predicted by the resolution limit of the scheme, except near the edges of the

object. Calculations of the first- and second-order iterations improve the result

at the edges of the object. This method can be applied for determination of

the complex amplitude transmission coefficient of amplitude as well as phase

objects. It can be used in X-ray microscopy.
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1. Introduction

In the work of Balyan (2013), an X-ray dynamical diffraction

Fraunhofer holographic scheme was proposed and theoreti-

cally investigated. It was shown that, by illuminating an X-ray

dynamical diffraction Fraunhofer hologram with visible light,

an object image can be reconstructed. In the mentioned work

the corresponding references are given as well.

Numerical methods of reconstruction are important for

phase objects (Snigirev et al., 1995; Momose, 1995). In this

work we briefly describe the scheme mentioned above

(Balyan, 2013) and then discuss a numerical method of

reconstruction of an object image. As an example, the image

reconstruction of a circular cylindrical beryllium wire is

presented.

2. Brief description of an X-ray dynamical diffraction
Fraunhofer hologram recording

In Fig. 1 an X-ray dynamical diffraction Fraunhofer hologram

recording scheme is shown. An object is placed in the path

of an incident plane monochromatic X-ray wave with unit

amplitude. In a thick perfect crystal (of thickness T), under

the condition of two-wave dynamical Laue-case symmetrical

diffraction, the reference plane wave and the object wave

interfere on the exit surface of the crystal and an interference

pattern is formed. By recording this interference pattern in the

diffracted field, one obtains an X-ray dynamical diffraction

Fraunhofer hologram of the object. The crystal is sufficiently

thick and only the weakly absorbing mode of �-polarization

can be taken into account. The intensity distribution of the

diffracted wave is (Balyan, 2013)

Ih ¼ Eh

�� ��2¼ Eh ref

�� ��2þEh refE
�
h obj þ E �h refEh obj þ Eh obj

�� ��2; ð1Þ
where Eh ref is the amplitude of the reference wave and Eh obj is

the amplitude of the object wave. The third term of the right-

hand side after reconstruction gives the real direct image of

the object and the second term gives the virtual image of

the object.

3. Numerical reconstruction of an object image

The analytical analyses given by Balyan (2013) show that by

multiplying (1) by exp[i�(p � x)2/(2D)] (the coordinate axes

Figure 1
X-ray dynamical diffraction Fraunhofer hologram recording scheme. RP,
reflecting planes; PhP, photographic plate. The axes of the coordinate
system are shown.
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in the diffraction plane are shown in the Fig. 1) and integrating

by x over the hologram plane the numerical reconstruction of

the object image can be obtained. Here p is a parameter and

D = �T tan2�, where � is the extinction length and � is the

Bragg angle. We assume that the experimental values of Ih are

known. After integration one can write

Erec ¼
P4

j¼ 1

Erec j; ð2Þ

where

Erec ¼
Rx2

x1

Ihðx; yÞ exp i�ð p� xÞ
2=ð2DÞ

� �
dx; ð3Þ

Erec 1 ¼
Rx2

x1

Eh ref

�� ��2 exp i�ð p� xÞ2=ð2DÞ
� �

dx; ð4Þ

Erec 2 ¼
Rx2

x1

Eh refE
�
h obj exp i�ð p� xÞ

2=ð2DÞ
� �

dx; ð5Þ

Erec 3 ¼
Rx2

x1

E �h refEh obj exp i�ð p� xÞ2=ð2DÞ
� �

dx; ð6Þ

Erec 4 ¼
Rx2

x1

Eh obj

�� ��2 exp i�ð p� xÞ
2=ð2DÞ

� �
dx: ð7Þ

Here x2 = T tan� � aobj, x1 = �x2 are coordinates of the

bounds of the hologram in the diffraction plane, and aobj is half

of the object size in the diffraction plane along the Ox axis.

Our purpose is to reconstruct the amplitude complex trans-

mission coefficient t(x, y) of the object (y is the coordinate

counting perpendicular to the diffraction plane). Note that

Erec and Erec 1 are known but Erec 2, Erec 3 and Erec 4 are

unknown. We have an integral equation (2) for t(x, y).

3.1. Analytical approximation

This mathematical procedure of image reconstruction is

equivalent to image reconstruction by visible light on the

focusing plane of the real image. In this plane Erec 2;4 can be

neglected. According to Balyan (2013), as the result of inte-

gration an approximate expression for the object amplitude

complex transmission coefficient t can be found,

t ð pþ k cos ���D=�; yÞ ’ Erecð p; yÞ=Erec 11: ð8Þ

Here k is the wavenumber, �� is the deviation from the exact

Bragg angle (it is assumed that the deviation from the exact

Bragg angle is not large and the influence of �� on the

amplitude can be neglected),

Erec 11 ¼
Rþ1
�1

Eh ref

�� ��2exp i�ð p� xÞ
2=ð2DÞ

� �
dx

¼ ðD=8Þ1=2 exp ��dT=ð2 cos �Þ þ i�=4
� �

; ð9Þ

the subscript1 of Erec 11 means that in (4), instead of x1, x2,

the infinite integral limits of the integral are taken, and �d is

the diffraction linear absorption coefficient of the crystal. The

parameter p is varied in the limits �aobj � k cos ���D=� �
p � aobj � k cos ���D=�. Thus, according to (8),

t ðx; yÞ ’ Erecðx� k cos ���D=�; yÞ=Erec 11; ð10Þ

and x is varied in the limits �aobj � x � aobj. An example will

be considered below (x4).

3.2. Image reconstruction by numerical method of iterations

For more detailed and precise reconstruction an iteration

procedure is necessary. Eh obj is a convolution along the

entrance surface of the crystal of the point source function and

the amplitude of the incident wave (see Balyan, 2013). For

zero-order approximation, ignoring Erec 2;4 in (2) and in the

expression of Eh obj under the integral sign of convolution

expanding Sðx 0; yÞ = 1� t ðx 0; yÞ into Tailor series around the

point x0ð pÞ = pþ k cos ���D=�, taking only the first term of

the expansion, i.e. Sðx 0; yÞ = Sð0Þ½x0ð pÞ; y�, and taking out

Sð0Þ½x0ð pÞ; y� under the integral sign in (6) and using (2), one

can find

t ð0Þðx; yÞ ¼ 1� Erecðx� k cos ���D=�; yÞ � Erec 1

� �

=Erec 3 absðx� k cos ���D=�; yÞ: ð11Þ

In (11), Erec 3 abs is Erec 3 for a completely absorbing object [for

such an object t ðx; yÞ = 0] of the same size as the considered

object. In all of the terms on the right-hand side of (11) the

integration is performed in the finite limits x1; x2.

For the first-order approximation in the expression of Eh obj

under the integral sign of the convolution we expand Sðx 0; yÞ

into Tailor series around the point x0ð pÞ including linear

terms, i.e. Sðx 0; yÞ = Sð1Þ½x0ð pÞ� + Sð0Þ 0 ½x0ð pÞ�½x
0 � x0ð pÞ�, where

Sð0Þ 0 ½x0ð pÞ� is the approximate value of the derivative of

Sðx 0; yÞ with respect to x 0 at the point x 0 = x0ð pÞ. Using now (2)

and taking out Sð1Þ½x0ð pÞ� under the integral sign in (6) one can

find

t ð1Þðx; yÞ ¼ t ð0Þðx; yÞ � t ð0Þ 0ðx; yÞE
ð1Þ
rec 3ðx� k cos ���D=�; yÞ

=Erec 3 absðx� k cos ���D=�; yÞ; ð12Þ

where E
ð1Þ
rec 3ðx� k cos ���D=�; yÞ is Erec 3ðx� k cos ���D/

�; yÞ in which Sðx 0; yÞ is replaced by the linear Sðx 0; yÞ =

x 0 � x0ð pÞ.

For the second-order approximation in the expression of

Eh obj under the integral sign of convolution of the expression

of Eh obj we expand Sðx 0; yÞ into Tailor series around the point

x0ð pÞ including quadratic terms, i.e. Sðx 0; yÞ = Sð2Þ½x0ð pÞ� +

Sð1Þ 0 ½x0ð pÞ�½x
0 � x0ð pÞ� + Sð1Þ 00 ½x0ð pÞ�½x

0 � x0ð pÞ�
2=2. Using

once again (2) and taking out Sð2Þ½x0ð pÞ� under the integral

sign in (6) one can find

t ð2Þðx; yÞ ¼ t ð0Þðx; yÞ

�
�
t ð1Þ 0ðx; yÞE

ð1Þ
rec 3ðx� k cos ���D=�; yÞ

=Erec 3 absðx� k cos ���D=�; yÞ
�

�
�
t ð1Þ 00ðx; yÞE

ð2Þ
rec 3ðx� k cos ���D=�; yÞ

=2Erec 3 absðx� k cos ���D=�; yÞ
�
; ð13Þ
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where E
ð2Þ
rec 3ðx� k cos ���D=�; yÞ is Erec 3ðx� k cos ���D=

�; yÞ with the quadratic Sðx 0; yÞ = ½x 0 � x0ð pÞ�
2. The iteration

procedure can be continued. A corresponding example will be

considered in the next section.

4. Example

Let us consider an example, i.e. the case of a Si(220) reflection,

with � = 0.71 Å (17.46 keV) radiation, �� = 0, T = 5 mm, �-

polarization is taken, and �T = 7.3. As an object we take a

circular cylindrical beryllium wire, with the axis perpendicular

to the diffraction plane. The radius Robj of the wire Robj =

aobj= cos � = 30 mm. The refractive index of beryllium is n =

1� � + i�, where � > 0 and defines the refraction, � > 0 defines

the absorption. For beryllium, � = 1.118 � 10�6, � = 2.69 �

10�10 (Grigoryan et al., 2010). The complex amplitude trans-

mission coefficient is

t ðx; yÞ ¼ exp �2ikð�� i�Þ R2
obj � x2 cos2 �

� �1=2
h i

: ð14Þ

Now we must numerically reconstruct (14) using the numerical

methods described above. Using (14) we can calculate the

intensity distribution on the Fraunhofer hologram of the

considered object. In Fig. 2 the calculated intensity distribu-

tion on the hologram is shown. We take the values of the

calculated intensity as the experimentally measured known

values. Using these values, according to (10), one can calculate

the analytical approximate values of t ðxÞ. In Figs. 3(a) and 3(b)

the results of calculations are compared with the real and

imaginary parts of the exact values (14). According to Balyan

(2013), the resolution of the scheme for the considered

example is about 8 mm. This means that the obtained result

coincides with the exact value predicted by the estimated

value of the resolution. Near the edges of the object t ðxÞ varies

rapidly and the limit of the resolution is not sufficient for

reconstruction. Using the method of iterations described

above one can improve the obtained result near the edges of

the object also. In Figs. 4(a) and 4(b), Figs. 5(a) and 5(b), and

Figs. 6(a) and 6(b) the real and imaginary parts of the zero-

order, first-order and second-order iterations [calculated

according to formulas (11), (12) and (13) accordingly],

respectively, are compared with the real and imaginary parts

of the exact values of t ðxÞ. The second-order iteration values
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Figure 2
Intensity distribution on the dynamical diffraction Fraunhofer hologram
of the beryllium wire.

Figure 3
Comparison of the reconstructed analytical approximation with exact
amplitude complex transmission coefficient of the beryllium wire. (a)
Real parts: solid line, exact values; dashed line, analytical approximation.
(b) Imaginary parts: solid line, exact values; dashed line, analytical
approximation.

Figure 4
Comparison of the reconstructed zero-order iteration with the exact
amplitude complex transmission coefficient of the beryllium wire. (a)
Real parts: solid line, exact values; dashed line, zero-order iteration. (b)
Imaginary parts: solid line, exact values; dashed line, zero-order iteration.



have non-physical oscillating character. This is partially

avoided by taking the average of t ð2ÞðxÞ and t ð1ÞðxÞ. In Figs. 6(a)

and 6(b) the second-order iteration values correspond to
�tt ð2ÞðxÞ = ½t ð2ÞðxÞ + t ð1ÞðxÞ�=2. As can be seen in Figs. 4, 5 and 6,

the object complex amplitude transmission coefficient is

reconstructed also near the edges of the object, where the

resolution is not sufficient for reconstruction. The non-

physical oscillations of the second-order iteration can be

avoided by averaging the obtained values.

5. Conclusion

In this paper a numerical method of an object image recon-

struction using an X-ray dynamical diffraction Fraunhofer

hologram is presented. Methods of analytical approximation

and numerical methods of iterations are discussed. An

example of a reconstruction of an image of a cylindrical

beryllium wire is considered. The results of analytical

approximation and zero-order iteration coincide with exact

values of the amplitude complex transmission coefficient of

the object (except near the edges of the object) as predicted by

the resolution limit of the scheme. Calculations of the first-

and the second-order iterations improve the result near the

edges of the object.

This method can be applied for determination of the

complex amplitude transmission coefficients of amplitude as

well as phase objects. It can be used in X-ray microscopy.

Further development of this method could use an asym-

metrical reflection or an X-ray LLL interferometer.
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Figure 5
Comparison of the reconstructed first-order iteration with the exact
amplitude complex transmission coefficient of the beryllium wire. (a)
Real parts: solid line, exact values; dashed line, first-order iteration. (b)
Imaginary parts: solid line, exact values; dashed line, first-order iteration.

Figure 6
Comparison of the reconstructed second-order iteration with the exact
amplitude complex transmission coefficient of the beryllium wire. (a)
Real parts: solid line, exact values; dashed line, second-order iteration.
(b) Imaginary parts: solid line, exact values; dashed line, second-order
iteration.
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