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Full-field X-ray absorption spectroscopy experiments allow the acquisition of

millions of spectra within minutes. However, the construction of the

hyperspectral image requires an image alignment procedure with sub-pixel

precision. While the image correlation algorithm has originally been used for

image re-alignment using translations, the Scale Invariant Feature Transform

(SIFT) algorithm (which is by design robust versus rotation, illumination

change, translation and scaling) presents an additional advantage: the alignment

can be limited to a region of interest of any arbitrary shape. In this context, a

Python module, named SIFT_PyOCL, has been developed. It implements a

parallel version of the SIFT algorithm in OpenCL, providing high-speed image

registration and alignment both on processors and graphics cards. The

performance of the algorithm allows online processing of large datasets.
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1. Introduction

Image alignment is required by many synchrotron beamlines and for

various techniques such as speckle image reconstruction in the field

of coherent X-ray diffraction imaging (CXDI), with module-based

pixel detectors or image stack alignment for full-field X-ray absorp-

tion spectroscopy (FFXAS), or simply for re-positioning a sample on

the experimental stage using visible light.

After a short presentation of the FFXAS experimental set-up

(based on the design of ESRF-ID21), image registration algorithms

(based on keypoint extraction) will be compared with the correlation

algorithms through application to an example using FFXAS data

collected from historical paintings.

Finally, SIFT_PyOCL, the parallel version of the SIFT algorithm

we developed, will be presented. In the same section, some imple-

mentation details will be described along with a short tutorial and

some benchmark figures in the scope of the data pre-processing of a

FFXAS experiment.

2. Full-field X-ray absorption spectroscopy

At the European Synchrotron Radiation Facility (ESRF), beamline

ID21 recently developed a full-field method for X-ray absorption

near-edge spectroscopy (XANES) (De Andrade et al., 2011; Fayard et

al., 2013). In this experiment (Fig. 1), for each energy point across

a given absorption edge, a couple of magnified two-dimensional

transmission images, with and without the sample, are acquired by a

camera coupled with an X-ray scintillator and optics magnifying

visible light. For each sample transmission image, a ‘flat-field’ image,

recorded without the sample, is used for normalization of the spatial

variation of the beam intensity. This flat-field image needs to be

acquired at the same energy (to cope with the scintillator response),

before and after the sample exposure. Since the sample moves in and

out of the beam for every energy step, a realignment procedure has to

be carried out for every frame.

A 3D-XANES stack consists of a series of normalized images

(radiographs) that characterize the sample absorption across the

absorption edge of the element of interest. After taking the negative

logarithm of all transmitted intensities, each pixel of the stack

contains a full XANES spectrum.

The energy resolution of the XANES spectrum depends on the

number of frames in the stack and is therefore only limited by the

energy resolution of the monochromator.

3. Image alignment algorithm

3.1. The limits of phase correlation

Image and phase correlation algorithms, obtained in Fourier space

[see equations (1) and (2)], have extensively been used during the

development of FFXAS for image stack alignment (the latter being

an optimization of the former). However, they can only measure

translation movement and turn out to be very sensitive to artifacts,

such as intensity differences on the image border, defects in the

scintillator or on the camera1 etc.

Offsets (translations) are obtained by the image and phase corre-

lations algorithms

offsetimg cor ¼ argmaxx;y F
�1
Fðimg1Þ � Fðimg2Þ�½ �

� �
; ð1Þ

offsetphase cor ¼ argmaxx;y F
�1 Fðimg1Þ

jFðimg1Þj
�
Fðimg2Þ�

jFðimg2Þj

� �� �
; ð2Þ

where F is the two-dimensional Fourier transform and� denotes the

element-wise product.

1 While those artifacts are weakened by the flat-field normalization, they can
still remain and disturb the alignment.

http://crossmark.crossref.org/dialog/?doi=10.1107/S160057751400023X&domain=pdf&date_stamp=2014-02-04


These defects could be corrected by some sample-specific pre-

processing such as border cropping and apodization. However, in

order to make this procedure automatic and suppress human inter-

vention, image alignment based on keypoints extraction has been

considered.

3.2. Feature-based image registration algorithm

Feature-based registration methods establish a correspondence

between a number of distinctive points in images. These keypoints are

not only defined by their spatial position on the image (x and y) but

are also associated with the scale of the feature and its orientation (or

angle), making keypoints naturally robust versus translation, rotation

and change of scale. In addition, each keypoint is associated with a

descriptor specific to the neighbourhood of the keypoint which is

used during the matching procedure. Position, scale and orientation

can be further used for filtering-out outliers, for example by using a

RANSAC-like algorithm (Moisan et al., 2012).

The SIFT algorithm (Lowe, 1999, 2004), widely used for panoramic

image stitching, has been adapted to FFXAS from the IPOL imple-

mentation (Yu & Morel, 2011). Another registration algorithm,

SURF [for speeded up robust feature (Bay et al., 2008; Oyallon &

Rabin, 2013)], has been evaluated; it produces fewer keypoints with a

keypoint descriptor twice as small as that generated by SIFT (64

bytes instead of 128). While being faster than SIFT, this algorithm was

not retained due to some coarse approximation in the blurring

procedure (box-filtering) and its inadequate descriptor size, making

matching less reliable.

Initially, the image offset between a given frame and a reference

frame (i.e. the translation to be applied for shifting the frame) was

obtained from the median value of the difference in keypoint posi-

tions for all matched keypoints. The median value turned out to be

more reliable than the mean value when false matches are present.

Knowing the correspondence between a set of keypoints in images,

more sophisticated transformation patterns like rotation, affine or

projective transformations can be envisaged after a least-squares fit

of the transformation parameters on the matched keypoints. Stack

alignment of FFXAS data obtained by SIFT keypoints extraction and

match using a simple translation is comparable with image correlation

in terms of quality while exhibiting very good robustness against

artifacts.

Moreover, the possibility to easily remove keypoints in unwanted

regions of the image is a major asset. Regions containing non-char-

acteristic features of the sample, e.g. scintillator-specific, may be

removed. Alternatively, keypoints located within the region of

interest (with an arbitrary shape) may be selected.

This possibility is illustrated in Fig. 2 which shows a typical frame

extracted from an XANES stack. The image represents the normal-

ized X-ray transmission of the sample at 2.46 keV. The image stack,

composed of 346 frames, was collected at the K-edge of sulfur (2.45–

2.66 keV) from a resin-based thin section (15 mm) of Matisse’s

Flowers in a Pitcher (1906) fragment, from the Barnes foundation

(accession number 205), and analyzed in the context of investigations

on the yellow cadmium pigment degradation in historical paintings.

In Fig. 2, the brighter top right corner corresponds to a place where

no resin is present. Very few scintillator artifacts remain visible after

flat-field normalization. Each arrow on the figure represents a

keypoint, as extracted by the SIFT algorithm. Red arrows are inside

the region of interest (i.e. on the sample) while the blue ones are

outside it and correspond either to features of the resin (matrix) or

features present on the scintillator (which absolutely need to be

removed as they do not move with the sample). The size of the arrow

is proportional to the scale of the feature detected and its direction

depends on its orientation, as given by the SIFT algorithm.

The XANES stack alignment using image correlation has failed for

this sample, possibly due to the strong change in intensity on the resin

borders, forcing an alignment on the related line. Evidence of the

poor alignment (on the pixel scale) is given in Fig. 3 which is a vertical

section of the 3D XANES map; the sample is cut vertically at x = 500

and for y 2 [490, 580] (picture coordinates of Fig. 2), and the frame

number2 is used as the horizontal axis. To check the alignment, the

computer programs
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Figure 1
Experimental set-up of a full-field X-ray absorption spectroscopy experiment at ID21, as taken from Fayard et al. (2013).

2 The horizontal axis is not given as energy because energy steps were not
constant in this scan.



transmission signal has been derived along the vertical axis to high-

light the sample boundaries. When the alignment is perfect, maxima

(red lines) and minima (blue lines) of the derivative become hori-

zontal lines. In this example, it should be noted that the stack aligned

using image correlation presents clear bent sections. Fig. 4 shows the

measured offsets with both methods. Offsets in the horizontal

direction (�x) agree within an error lower than 0.5 pixels which is

acceptable for experimental purposes, but offsets in the vertical

direction (�y) differ sometimes by up to two pixels. While showing the

same trend, the correlation algorithm apparently underestimates the

displacement.

3.3. SIFT algorithm overview

The keypoints are detected in several steps according to Lowe’s

original paper (Lowe, 1999). The scale variation is simulated by

blurring the image: a very blurred image represents a scene seen from

a longer distance, where small-scale details are not visible. Features

vanishing on a given scale are local maxima as obtained when

subtracting the next blurred image from the current one. Finally, the

keypoint orientation and descriptor are obtained from gradient

orientation histograms.

3.3.1. Keypoints detection. The image is increasingly blurred by

convolution with Gaussian kernels, in order to imitate the scale

variations. Consecutive blurs are subtracted to obtain the so-called

differences of Gaussian (DoG) images where pixels are defined in a

three-dimensional scale-space, composed of their spatial positions

(x, y) and their scale positions s (related to the blur factor). Keypoints

are local maxima in this scale-space (x, y, s).

3.3.2. Keypoints refinement. At this stage, still many keypoints

are not reliable: low-contrast keypoints are discarded using a fixed

threshold, and many keypoints are located in regions of strong

intensity gradient called edges. As keypoints situated on such

edges can slide along the edge (due to noise for example), they are

rejected in favour of those more constrained located on corners

(based on the curvature of the edge). To improve the keypoints’

accuracy, the coordinates are interpolated by a second-order Taylor

expansion.

3.3.3. Orientation assignment. In order to make SIFT descriptors

invariant to rotation, they are calculated according to the keypoint

orientation, obtained using the following procedure. For each blurred

version of the image, the gradient magnitude and orientation are

computed. From the neighbourhood of a keypoint, a histogram of

orientations is built (36 bins, 1 bin per 10�).

The maximum value of this histogram is the so-called dominant

orientation, which represents the characteristic orientation of the

keypoint. Additionally, every peak greater than 80% of the maximum

peak generates a new keypoint with a different orientation.

3.3.4. Descriptor computation. Histograms of gradient orienta-

tions are generated around every keypoint to define its descriptor.

The neighbourhood of a keypoint is divided into four regions of four

sub-regions of 4� 4 pixels. In every sub-region, an 8-bin histogram is

computed; then all histograms are concatenated into a 128-value

descriptor. The histogram is weighted by the gradient magnitudes and

the current scale factor in order for the descriptor to be robust with

respect to rotation, illumination, translation and scaling.
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Figure 3
Comparison of the alignment quality obtained from the correlation method (upper
frame) with the SIFT method (lower frame). All frames are aligned on frame 11.
The figure is a vertical slice through the sample in Fig. 2 at x = 500 through all
frames. To highlight the sample boundaries, the y-derivative of the transmission
function is represented in false colours.

Figure 4
Offset along the x and y axes measured using image correlation and the SIFT
procedure, respectively. All frames were aligned on frame 11.Figure 2

X-ray radiograph of a thin section of the painting taken at ID21 at the sulfur K-edge
(2.46 keV). Arrows represent the position of SIFT keypoints, those corresponding
to the sample in red and those from artifacts and from the matrix in blue.



4. Implementation

Correlation algorithms have been easily ported on graphics cards

(GPU) thanks to PyCUDA (Klöckner et al., 2012) and cuFFT

(Nvidia, 2007–2013), which makes them very fast and well suited for

online data pre-processing. Conversely, the SIFT implementation

used at the ESRF beamline ID21, based on Yu & Morel (2011), takes

about 8 s per 4 Mpixel frame (a stack can contain up to 500 frames)

using a single core. Although the process is distributed using the

EDNA framework (Incardona et al., 2009) on a 16-core computer, the

performance limits are heavily constraining.

The SIFT algorithm (much more complicated than correlation

algorithms) needed to be parallelized in order to benefit also from

modern largely parallel hardware like GPU and other accelerator

devices to achieve the required data rate.

SIFT_PyOCL is a Python library implementing this algorithm for

GPU and other massively parallel computing devices. Like other

synchrotron-centric tools (Mirone et al., 2013; Favre-Nicolin et al.,

2011; Kieffer & Karkoulis, 2013), SIFT_PyOCL benefited from both

a large scientific ecosystem based on NumPy (Oliphant, 2007) and the

high-performance computing GPU capabilities.

4.1. Parallelization of the algorithm

Besides the Pythonic interface, most of the SIFT_PyOCL code is

divided into dozens of functions designed to be executed in parallel

and called kernels. These kernels are written in Open Computing

Language (OpenCL) (Stone et al., 2010) and can be run on various

devices like GPU, multi-core CPU and accelerators. They are laun-

ched subsequently from a Python module using PyOpenCL

(Klöckner et al., 2012), which provides both execution speed and code

readability.

Once the above-mentioned descriptors of two images are

computed and matched, a least-squares method is used to determine

the transformation which will convert keypoint positions of one

image into the keypoint positions of the other. As yet, only affine

transformations between images have been implemented in OpenCL

using bi-linear interpolation.

Unlike existing parallel versions of SIFT (Lu, 2013; Rister et al.,

2013; Vasilyev et al., 2011), the entire process is performed on the

compute-device to avoid time-consuming transfers between central

memory and the device’s memory. This leads to several subtle tasks

such as the use of atomic instructions or writing different versions of

the same kernel to adapt it to various platforms (CPU or GPU) and

devices (e.g. compute capabilities for Nvidia GPUs).

The implementation of the first steps of the algorithm (keypoints

detection and refinement) did not raise any particular difficulty, since

device parallelism allows handling every pixel by a single thread.

Besides, convolution was implemented in the direct space (without

Fourier transform), currently up to 100 times faster than the convo-

lution performed in the C++ reference implementation of IPOL (Yu

& Morel, 2011) (and even faster, depending on the CPU/GPU pair).

A pyramid is used to represent the image in the scale space (Lowe,

2004).

The parallel implementation of the further steps (orientation

assignment and descriptors computation) was more complex. For a

given kernel, the performances strongly depend on the image

complexity and on the device the code is executed on. Consequently,

different versions have been written for a given kernel, each tailored

to different platforms and devices, the optimal version being selected

at run-time by the Python module based on the compute capabilities

of the selected device.

4.2. Installation and usage

SIFT_PyOCL, as any Python module, can be installed from its

sources, available on GitHub (Paleo & Kieffer, 2013). Whilst

SIFT_PyOCL is open source and licensed under a very permissive

MIT license, the SIFT algorithm itself is patented by the University of

British Columbia (Lowe, 2003). This patent apparently applies only in

the USA (and was not extended to other countries) and even there its

use is tolerated for academic research purposes.3 For any other use,

the reader is referred to the University–Industry Liaison Office of the

University of British Columbia.

Besides Python (version 2.6 or 2.7) and NumPy, SIFT_PyOCL

needs PyOpenCL. All of them are available on Windows, Linux and

MacOSX. It was tested on the OpenCL drivers from Nvidia on a large

variety of their GPUs (Tesla, Fermi and Kepler generations), on

accelerator cards such as the Intel Xeon Phi, and on multi-core

processors with drivers from Intel, AMD and Apple. The full

installation procedure is simply (including testing)

$ python setup:py build test install

Every single OpenCL kernel has been tested versus the reference

implementation and can be run without installing the library by

executing test=test all:py.

4.3. Examples

In this section we have collected some basic examples of how

SIFT_PyOCL can be used in IPython (Pérez & Granger, 2007) with

Pylab (Hunter, 2007) mode: a Python interactive interface with

scientific visualization capabilities.

4.3.1. Extract keypoints.

In ½1�: import fabio

In ½2�: img1 ¼ fabio:openð 0image1:edf0 Þ:data

In ½3�: import sift

In ½4�: siftplan ¼ sift:SiftPlanðtemplate¼img1;

devicetype¼ 00GPU00Þ

In ½5�: kp1 ¼ siftplan:keypointsðimg1Þ

After having imported the FabIO (Knudsen et al., 2013) module in

[1], a first absorption image is read in [2]. The SIFT_PyOCL library is

loaded in [3] and the GPU is initialized in [4] with the whole required

memory allocated on the device (depending on the image size). In [4],

the keypoint extraction takes 60 ms for a 4 Mpixel image and returns

a 261 keypoints vector as a numpy array named kp1 (depending on

the image).

4.3.2. Match keypoints between images.

In ½6�: img2 ¼ fabio:openð 0image2:edf0 Þ:data

In ½7�: kp2 ¼ siftplan:keypointsðimg2Þ

In ½8�: matchplan ¼ sift:MatchPlanðdevicetype¼00GPU00Þ

In ½9�: m ¼ matchplan:matchðkp1; kp2Þ

A second image is read [6] and its keypoints are extracted [7]. In [8],

a matching object is created, targeted to run on a graphics card.

Keypoint association is performed in [9], returning a numpy array of

66 lines and 2 columns of matched keypoints (execution time: 2.7 ms),

each keypoint having attributes x, y, scale and angle in addition to the

128-byte descriptor.
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4.3.3. Align an image on a reference.

In ½10�: aligner ¼ sift:LinearAlignðimg1;

devicetype¼00GPU00Þ

In ½11�: img2 cor ¼ aligner:alignðimg2Þ

It is also possible to align directly an image on a reference frame using

an affine transformation: combination of translation, rotation,

homothety, reflection, etc. An aligner object is defined in [10] by

instantiating the LinearAlign class from a reference image and the

device type. The aligner contains keypoints of the reference, a Sift-

Plan and a MatchPlan object plus the least-squares refinement and a

bi-linear interpolation kernel. The align method performs keypoint

extraction, matching, least-square optimization of the affine trans-

formation coefficients and eventually applies the correction to the

frame [11] by returning the corrected frame (execution time: 75 ms,

all timings were measured on a Nvidia GeForce Titan GPU).

4.4. Performances

The SIFT_PyOCL implementation has been compared with the

SIFT implementation from ASIFT (Yu & Morel, 2011) found on the

IPOL server (reference implementation, single threaded) on a dual

Intel E5-2667 (12 cores, 2.90 GHz) computer with an Nvidia Tesla

K20m GPU. Execution speeds are summarized in Table 1. The

acceleration measured on large images (more than 3 Mpixels) is

between 30 and 100 times (on a GPU), depending on the image

complexity, and from four to ten times when running on a multicore

CPU. The most considerable speed-ups have been obtained on large

images thanks to the massive acceleration of the Gaussian blurring.

4.5. Limitations

While all calculations are performed in single precision floating

point (which is compatible even with the oldest graphic cards

supported by OpenCL), the memory consumption has been traded

off for performance: to prevent memory allocation on the device at

run time (which is very costly), all buffers are allocated when the size

of the image is given (at the plan creation). If the requested device

does not have enough memory, the library tries to find another

device, and is likely to pick the CPU which is slower. Moreover, the

SIFT algorithm has been developed for linear colour scales and has

some fixed built-in thresholds, making it unsuitable for high dynamic

range images like diffraction patterns or even some back-light images

with little contrast in dark areas.

5. Future prospects

SIFT_PyOCL has been included in the 4.7 release of the PyMca

imaging tool (Solé et al., 2007) as a plugin for image stack alignment,

offering a user-friendly graphical interface which makes the image

stack alignment both intuitive and easy to use. Registration of three-

dimensional objects has a huge application potential, especially in the

field of tomography and medical images. This field of research is very

active and is fostered by the rapid progress in applied mathematics

and computer vision.

6. Conclusion

The SIFT algorithm is currently used at the ID21 beamline of the

ESRF for full-field X-ray absorption spectroscopy image alignment

due to its robustness against scale, rotation and illumination changes.

The SIFT_PyOCL Python module implements a parallel version of

the SIFT algorithm running both on graphics cards and on multi-core

processors, with appealing speed-ups. Its programming interface tries

to be simple to use and pythonic while supporting high-performance

computing ‘under the hood’. We believe that it can be adopted by

other software developers as a general purpose image alignment tool;

this is why the code was made open-source and free for re-distribu-

tion.
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Table 1
Execution times for typical FFXAS images (2560 � 2160) using different
implementations on a dual Intel E5-2667 (12 cores, 2.90 GHz) with an Nvidia
Tesla K20m.

Implementation Driver
Keypoint
extraction

Keypoint
matching

Image
alignment

ASIFT C++ 3610 ms 95 ms –
SIFT_PyOCL AMD 522 ms 21 ms 578 ms
SIFT_PyOCL Intel 741 ms 13 ms 843 ms
SIFT_PyOCL Nvidia 75 ms 5.8 ms 90 ms
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Pérez, F. & Granger, B. E. (2007). Comput. Sci. Eng. 9, 21–29.
Rister, B., Wang, G., Wu, M. & Cavallaro, J. R. (2013). IEEE International

Conference on Acoustics, Speech and Signal Processing, http://hgpu.org/
?p=8983.
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