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In an effort to provide a computationally convenient approach to the

characterization of partially coherent synchrotron radiation in phase space, a

thorough discussion of the minimum dimensionality of the Wigner distribution

function for rotationally symmetric sources of arbitrary degrees of coherence is

presented. It is found that perfectly coherent, perfectly incoherent and partially

coherent sources may all be characterized by a three-dimensional reduced

Wigner distribution function, and some special cases are discussed in which a

two-dimensional reduced Wigner distribution function suffices. An application

of the dimension-reducing formalism to the case of partially coherent radiation

from a planar undulator and a circularly symmetric electron beam as can be

found in linear accelerators is demonstrated. The photon distribution is

convolved over a realistic electron bunch, and how the beta function, emittance

and energy spread of the bunch affect the total degree of coherence of the

radiation is inspected. Finally the cross spectral density is diagonalized and the

eigenmodes of the partially coherent radiation are recovered.

Keywords: brightness; coherence; Wigner distribution function; emittance; radial symmetry;
undulator radiation.

1. Introduction

In an effort to simulate synchrotron radiation sources (non

free-electron laser), a full numerical characterization of

partially coherent sources has shown itself to be a topic of

some debate. In recent work, Vartanyants & Singer (2010)

have shown that the Gauss–Schell model can be sufficient to

characterize certain undulator sources. Geloni et al. (2008)

have argued that the Gauss–Schell model does not properly

describe the coherence properties of non-homogeneous

undulator sources. In this work, we forgo the use of Gauss–

Schell and other approximate models and provide a method

for computing the Wigner distribution function (WDF) (or,

equivalently, the cross spectral density) directly from the

electron bunch distribution.

In general, complete characterization of a partially coherent

source is a difficult computational challenge. One avenue is to

compute the electric fields produced by each of the different

electrons in a bunch and to sum these fields incoherently

(Chubar et al., 2002). Another approach is to study the

radiation in phase space using the Wigner distribution func-

tion (Bazarov, 2012). In phase space, incoherent super-

positions amount to sums of WDFs, and under appropriate

conditions incorporation of the electron bunch effect may be

accomplished by a simple convolution. Another advantage of

working in phase space is that the WDF may be interpreted

physically as a generalized brightness. Though the WDF takes

on negative values for non-Gaussian sources, the WDF may be

measured uniquely using tomographic techniques (Smithey et

al., 1993; Tran, 2007). The WDF, of course, has its limitations;

for example, when used with beam transport that includes

non-linear optics (aberrations) and spatial filters.

For a general linearly polarized paraxial source, the WDF at

a given radiation frequency is a four-dimensional (4D) object,

which can be cumbersome to work with computationally.

However, the dimensionality of the WDF may be reduced if

the system exhibits rotational symmetry (Alieva & Bastiaans,

2000). Taking advantage of the symmetry of a rotationally

symmetric system minimizes the computational burden by

reducing the dimension of the WDF from 4D to 3D.

Undulator radiation from a single (‘zero’ emittance) elec-

tron beam displays a highly circular nature at odd harmonics.

Thus, to take full advantage of transverse coherence proper-

ties, electron beams should be naturally circular as well. Even

though present day storage rings display large asymmetry

in horizontal versus vertical emittances, a proposed energy-

recovery linac (ERL) source (Bartnik et al., 2013) as well as

ultimate storage ring designs tend to have nearly round beams

(Borland, 2013) with roughly equal emittances. Therefore the

techniques utilizing rotational symmetry presented in this

paper should prove useful for the analysis of next-generation

synchrotron radiation sources.
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The purpose of this paper is to provide a thorough discus-

sion of the minimum dimensionality of the Wigner distribution

function for rotationally symmetric sources and to demon-

strate how these concepts can be applied to the difficult

computational problem of characterizing partially coherent

undulator radiation. Depending on the nature of a model, it is

often, as we shall see in our case, necessary to understand how

the dimensionality of the WDF may be reduced for a source of

arbitrary degree of coherence. In x2 we shall discuss in detail

how perfectly coherent, partially coherent and perfectly

incoherent sources may be described by reduced forms of

the WDF when rotational symmetry is assumed. We shall

demonstrate that a large class of systems of arbitrary degrees

of coherence may be fully characterized by a WDF of three or

fewer dimensions. In x3, we shall apply the concepts developed

in x2 to a model of partially coherent planar undulator

radiation. We will demonstrate how to appropriately char-

acterize the source in a 3D reduced phase space and how a full

characterization of the system allows us to compute the total

degree of coherence and to perform orthogonal mode

decomposition.

2. Reduced forms of the Wigner distribution function

In this section we will introduce a formalism for reducing the

dimension of the WDF of rotationally symmetric sources of

any degree of coherence. First we will need to define the basic

quantities that we will be working with.

2.1. Basic definitions

Let us reproduce the expression for the WDF of a scalar

frequency domain electric field. When applied to light, the

WDF may be normalized to units of brightness in analogy with

a density of states of classical rays (Kim, 1989),

Bðr; hÞ ¼
2c"0

h�2

I

e

Z1
�1

d2r 0

�W r� ðr 0=2Þ; rþ ðr 0=2Þ½ � exp ikr 0 � hð Þ: ð1Þ

c is the speed of light, "0 is the vacuum permittivity, e is the

electron charge and h is Planck’s constant. � and k are the

wavelength and wavenumber of the radiation. I is the average

electron beam current, and W is the cross spectral density

(CSD), i.e. the optical analog of the density matrix from

quantum mechanics. For a monochromatic pure mode,

W r1; r2ð Þ ¼ Eðr1ÞE
�ðr2Þ; ð2Þ

where we have considered only the transverse spatial depen-

dence of the fields. The monochromatic field with frequency !
is measured on a detector with fixed longitudinal position, z:

EðrÞ � Eðr; z;!Þ.
For the treatment of vector fields (polarization), there is an

extension of equation (1) which requires four WDFs referred

to as ‘generalized Stokes parameters’ to describe an arbitrarily

polarized source (Luis, 2005). This method is well understood,

so we shall constrain our discussion to scalar fields and a single

WDF, which are sufficient to characterize linearly polarized

sources such as planar undulator radiation.

Equation (1) is fully invertible such that there is a 1 :1

correspondence between the WDF and the CSD (e.g. see

Bazarov, 2012),

Wðr1; r2Þ ¼

Z1
�1

d2h B
r1 þ r2

2
; h

� �
exp

�
ik r1 � r2ð Þ � h

�
: ð3Þ

Equations (1) and (3) together are known as Wigner–Weyl

transformations, and they tell us that the WDF and CSD are

in fact the same operator viewed in phase space and position

space, respectively. It is a matter of preference in which space

one chooses to work. In this paper we opt to work primarily in

phase space, and we will motivate this decision in x3

Note that, by setting r2 = 0 in (2), one recovers the electric

field up to a complex constant. It follows that there is a 1 :1

correspondence between the WDF and the electric field (up

to a complex constant) for a pure mode. For an extended

discussion of the WDF in application to synchrotron radiation,

see Bazarov (2012).

In this paper we are interested in analyzing the degree of

coherence of the frequency domain fields over space; we will

not treat temporal coherence in this work. The appropriate

quantity for doing this is the complex spectral degree of

coherence. Given in terms of the CSD (Goodman, 2000; Luis,

2007),

�ðr1; r2Þ ¼
Wðr1; r2Þ

Wðr1; r1ÞWðr2; r2Þ
� �1=2

: ð4Þ

Here, �(r1, r2) is a complex quantity with amplitude from zero

to one, and it is related to the visibility. In the case of full

transverse coherence, �(r1, r2) = 1 everywhere, which is the

case for a pure radiation mode produced by a zero-emittance

electron beam.

As in Luis (2007), we take the norm-square of � and

average over space to find the overall spectral degree of

coherence (squared), �2
g. �2

g may be computed via the CSD

(Luis, 2007),

�2
g ¼

R
d2r1 d2r2 jWðr1; r2Þj

2

j
R

d2r Wðr; rÞj2
ð5Þ

or the WDF (Luis, 2007),

�2
g ¼

R
d2r d2h Bðr; hÞ2

½
R

d2r d2h Bðr; hÞ�2
: ð6Þ

�2
g will be our measure of coherence in this paper, and we will

refer to it as simply the overall degree of coherence.

As will be shown later, the undulator radiation in the

central cone from a single electron displays rotational

symmetry. The advent of linac-based synchrotron radiation

sources, where electron beams are also mostly radially

symmetric, motivates the following discussion. Let us intro-

duce a useful set of polar coordinates,
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x ¼ �r cosð’rÞ;

y ¼ �r sinð’rÞ;

�x ¼ �� cosð’�Þ;

�y ¼ �� sinð’�Þ:

ð7Þ

Fig. 1 demonstrates how these coordinates describe a ray in

real space. Though the WDF is not a phase space distribution

in the classical statistical sense, it is still often useful to think of

it in terms of rays.

Next, let us discuss the reduced forms of the WDF. The case

of perfectly coherent beams which are symmetric under spatial

rotation has been discussed elsewhere (Alieva & Bastiaans,

2000). However, their discussion is not exhaustive, and we

seek to understand the minimum dimensionality of the WDF

under rotational symmetry for sources of arbitrary degree of

coherence. We shall see in x3 that this is necessary to

numerically represent our model for partially coherent planar

undulator radiation from a linac-based electron beam.

2.2. Perfectly coherent radiation

A perfectly coherent source is characterized by a single

electric field such that its CSD is of the form given by equation

(2). In general, we must allow a rotationally symmetric

complex field to pick up a global phase. Thus under a spatial

rotation, R(�), the most general transformation of a rota-

tionally invariant field is

EðrÞ �!
Rð�Þ

EðrÞ expðil�Þ: ð8Þ

Fields exhibiting this behavior take the form

ElðrÞ ¼ Rð�rÞ exp i ð�rÞ
� �

exp il’rð Þ: ð9Þ

l must take on integer values in order to satisfy periodic

boundary conditions in ’r . Fields exhibiting helical wavefronts

(l > 0) are called ‘twisted modes’. It can be seen that the fields

in equation (9) are eigenmodes of the orbital angular

momentum operator, Lz = �ih=ð2�Þ@=@’r.

2.2.1. 2D representations. When l = 0, the field does not

pick up an additional phase after rotation, and we call the

mode ‘non-twisted’. For these fields, E(r) = E(�r), which is to

say that the real and imaginary parts of the field are each

rotationally symmetric. A rotational symmetry implies one

less degree of freedom, so one would expect that the WDF for

non-twisted fields would be two-dimensional. A 2D WDF may

be constructed from the one-dimensional field sample along a

radial line, Eð�r ¼ r; ’r ¼ ’r0
Þ  ! Wrðr; �rÞ, from which the

full 4D WDF may be recovered (Agarwal & Simon, 2000).

However, this 2D WDF will not return the correct electric field

after being propagated through simple drifts because the

Fresnel diffraction in one transverse dimension does not

equate to diffraction in a rotationally symmetric system of two

transverse dimensions. A simple example here is the diffrac-

tion pattern for a 1D slit versus a 2D disk; the former is a sinc

function and the latter is an Airy function. Therefore,

although a non-twisted rotationally symmetric mode only

consists of two degrees of freedom worth of information, we

have not found a convenient manifestation of this fact to allow

for a useful 2D representation in phase space.

One special case that can be treated in 2D is separable

modes. When the electric field separates as E(r) = Ex(x)Ey(y),

the WDF separates accordingly,

Bðr; hÞ ¼ Bxðx; �xÞByðy; �yÞ: ð10Þ

Bx and By are the 2D WDFs of Ex and Ey, respectively. In this

case, the most meaningful 2D representation in phase space

amounts to a projection of a higher dimensional WDF, and the

4D WDF is simply an outer product of two projections. It

follows from (10) that any dynamics which do not couple x

and y, such as simple drifts, cylindrical lenses and radially

symmetric lenses, may be equivalently carried out via the 2D

WDFs. Also, one may compute �2
g, equation (6), for a separ-

able mode as a product of expressions involving the 2D WDFs,

�2
g ¼

R
B2

xðx; �xÞ dx d�xR
Bxðx; �xÞ dx d�x

� �2

R
B2

yðy; �yÞ dy d�yR
Byðy; �yÞ dy d�y

� �2
: ð11Þ

In this way, the treatment of separable modes in 2D phase

space can greatly simplify calculations.

2.2.2. 3D representations. We have already seen that

although non-twisted modes have only two degrees of

freedom, they cannot be usefully represented by a 2D WDF.

We will now show by example that twisted modes have three

degrees of freedom, so there is no chance that a 2D repre-

sentation will suffice. Thus, all modes of the form of equation

(9) will be represented by 3D WDFs.

One can obtain a rough picture of the twistedness of rays

by looking at the averaged cross section Bav(x, �y) �R
d�x Bðx; 0; �x; �yÞ. That is, by taking the cross section along a

radial line (in this case, y = 0) and then averaging over radial

momenta. This gives a rough picture of tangential momentum

versus radius. Fig. 2 shows cross sections of the WDF from

Laguerre–Gauss (LG) modes with l = 0 and l > 0. Notice how

with non-zero orbital angular momentum comes an additional

asymmetry in the tangential momentum (�y) about the radial

line (x). For l > 0, there is a net propagation of rays off their

radial line. This corresponds to a new degree of freedom which

did not exist in the non-twisted case, and therefore the twisted

modes here have three degrees of freedom.
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Figure 1
A ray specified by polar coordinates.



The 3D WDF is defined via a dimension-reducing condition

on the 4D WDF. Alieva & Bastiaans (2000) have shown that

a dimension-reducing condition may be derived directly

from the WDF definition when E(r) = E(|r |). We show in

Appendix A that this condition can be proven to hold for all

fields of the form of equation (9). In rectangular coordinates,

this result can be written as

B

x

y

�x

�y

0
BB@

1
CCA ¼ B

x cosð�Þ � y sinð�Þ
y cosð�Þ þ x sinð�Þ
�x cosð�Þ � �y sinð�Þ
�y cosð�Þ þ �x sinð�Þ

0
BB@

1
CCA; ð12Þ

which holds for any rotation angle �. The coordinates have

been placed into columns only to condense the notation. This

relationship implies that the full four-dimensional distribution

may be recovered from any three-dimensional slice via inter-

polation. We typically choose to work with the slice y = 0 by

setting � = �atan(y/x), which gives the recovery condition

B

x

y

�x

�y

0
BB@

1
CCA ¼ B

ðx2 þ y2Þ
1=2

0

ðx�x þ y�yÞ=ðx
2 þ y2Þ

1=2

ðx�y � y�xÞ=ðx
2 þ y2Þ

1=2

0
BB@

1
CCA: ð13Þ

These will be our most important equations for working with

the reduced-dimension WDF.

2.3. Perfectly incoherent radiation

In the limit of perfect incoherence, radiation fields reduce to

classical geometrical rays, electron wavefunctions reduce to

point particles, and the Wigner function reduces to a classical

density of states (or, more exactly, its Fourier transform). The

uncertainty principle for ultra-relativistic electrons gives tiny

zero-like emittances as compared with the radiation wave-

length, so the electrons behave like point particles. In this

paper we treat the electron bunch as a perfectly incoherent

source. We now briefly discuss the behavior of a classical

distribution under rotational invariance.

2.3.1. 3D representations. For a classical ray described

by polar coordinates (Fig. 1), ’r and ’� vary together under

spatial rotation such that their difference is always unchanged.

Therefore, for a rotationally symmetric system the transfor-

mation ’r ! ’r + � and ’� ! ’� + � must leave the WDF

unchanged. In Cartesian coordinates, this is exactly the

symmetry relation we found for the perfectly coherent case,

equation (12). Therefore any rotationally symmetric perfectly

incoherent source may be represented by a 3D WDF in the

same manner that we have shown for the perfectly coherent

case. Three degrees of freedom remain because rays still have

two momentum degrees of freedom and one spatial degree of

freedom. The position and momenta of rays along a radial line

may be arbitrary distributed as long as the distribution along

each radial line is the same. This leaves open the possibility of

a net orbital angular momentum (the so-called ‘magnetized

beams’).

2.3.2. 2D representations. As in the perfectly coherent case,

if the tangential ray momenta are symmetrically distributed

about a radial line, the source will have no net orbital angular

momentum (non-twisted). For the perfectly coherent case, this

allowed us to consider a 2D WDF constructed from the radial

field sample. The same is not possible for incoherent sources

because there is no field to speak of.

In the special case where rays only propagate radially, the

WDF becomes 2D in the sense that all information is given on

a 2D sheet inside of 4D phase space,

B

�r

’r

��
’�

0
BB@

1
CCA ¼

0 if ’r 6¼ ’� ;

B

�r

0

��
0

0
BB@

1
CCA otherwise;

8>>>><
>>>>:

ð14Þ

but ray distributions like this are only produced from point

sources, i.e. sources with zero emittance. Fig. 3 shows how a
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Figure 2
Bav(x, �y) demonstrating twistedness in LG00 (top) and LG02 (bottom).
The fields are computed at the waist, z = 0, and the waist size is specified
to be w0 = 100 mm. The wavelength is � = 1 Å. In the chosen color map,
white corresponds to zero, dark red corresponds to large positive values,
and dark blue corresponds to large negative values.



zero-emittance source produces radially propagating rays.

However, for even a well behaved extended source (emittance

greater than zero), there will always be rays propagating off

of radial lines. Thus we conclude that, for any perfectly in-

coherent rotationally symmetric source of non-zero emittance,

the minimum dimensionality of the WDF is still 3D.

2.4. Partially coherent radiation

So far we have seen that a 2D WDF will only suffice in

special cases of perfectly coherent and perfectly incoherent

rotationally symmetric sources, none of which are instru-

mental for a realistic simulation of synchrotron radiation. For

the more complicated case of partially coherent sources, we

limit the subsequent discussion to cases when a 3D repre-

sentation is appropriate.

Partially coherent radiation cannot be represented by a

single field or visualized by geometrical rays. The radiation

consists of a collection of pure modes that are distributed by a

classical probability distribution. In quantum mechanics, these

systems are known as mixed states and are described by

density matrices (see, for example, Sakurai & Napolitano,

2010). The CSD is the optical analog to the density matrix

(Bazarov, 2012). It is always possible to decompose the CSD

into a set of orthogonal modes,

Wðr1; r2Þ ¼
P

n

�n’nðr1Þ ’
�
nðr2Þ; ð15Þ

where the eigenvalue �n is the new relative weight of the pure

mode ’n, and {’n} is the orthogonal eigenbasis of W. There still

exists a 1 :1 correspondence between the WDF and the CSD,

which are related by equations (1) and (3), so the WDF is an

equally appropriate description of the partially coherent

radiation. It follows from (1) and (15) that the WDF of a

partially coherent source is a weighted sum of pure mode

WDFs.

There are two cases when the WDF for the partially

coherent radiation is guaranteed to be reducible, i.e. obey

equation (12). First, when the pure modes making up the

density matrix (15) have the form of equation (9), then the

total WDF will be a sum of pure mode WDFs obeying equa-

tion (12), and so the total WDF will as well. Second, it can be

shown that the convolution of two WDFs obeying equation

(12) will also obey that symmetry. We shall see in x3 that

our model for partially coherent synchrotron radiation will

be a convolution of a perfectly coherent distribution and a

perfectly incoherent distribution each obeying equation (12).

3. Characterization of realistic synchrotron radiation
sources

Here we will demonstrate an application of using the 3D WDF

for a complete characterization of partially coherent radially

symmetric undulator radiation. We seek to compute and

analyze an object containing all physics of the partially

coherent radiation produced by many electrons.

One may choose to work with the CSD instead of the WDF

for analysis of partially coherent radiation. There is a 1 :1

correspondence between the WDF and the CSD via the

Wigner–Wely transformation equations (1) and (3). Further-

more, if the WDF obeys the dimension-reducing condition

(12), there is a corresponding dimension-reducing condition in

the CSD (see Appendix B for proof),

W

x1

y1

x2

y2

0
BB@

1
CCA ¼ W

x1 cos � � y1 sin �
y1 cos � þ x1 sin �
x2 cos � � y2 sin �
y2 cos � þ x2 sin �

0
BB@

1
CCA: ð16Þ

Then one would compute the reduced CSD by summing over

single electron fields with a statistical weight factor � that

specifies the electron bunch distribution,

Wðx1; y1; x2Þ ¼
P

i

�i Eiðx1; y1ÞE
�
i ðx2; 0Þ: ð17Þ

Ei produced by an electron displaced off-axis would differ

from the field produced by an on-axis electron by a transla-

tion. If the off-axis electron was deflected, it would produce

fields with additional linear phase fronts. These fields could be

computed, and the sum in (17) could be performed, but the

authors find it more appealing to work in phase space.

We choose to work with the WDF for two reasons. First, in

phase space each dimension corresponds to a degree of

freedom, so when we reduce the dimension of the space it is

clear that this is possible because there are fewer degrees of

freedom. Second, an electron bunch that is distributed in

position and momentum produces our radiation source, and it

is most natural to describe this bunch in phase space. Then the

WDF of the partially coherent radiation is computed via a

simple convolution over phase space as we shall discuss.

research papers

J. Synchrotron Rad. (2014). 21, 289–299 Gasbarro and Bazarov � Rotationally symmetric synchrotron radiation 293

Figure 3
Demonstrating a zero emittance (top) and a non-zero emittance (bottom)
source in real space (left) and phase space (right). Only the zero
emittance source is able to produce light with only radially propagating
rays.



The following techniques will only apply for fields obeying

equation (9) and WDFs obeying equation (12). To model the

radiation, we will first compute the radiation field produced by

a single electron and compute the reduced WDF of these

fields. We will incorporate an electron bunch with non-zero

emittance by modeling the bunch by a rotationally symmetric

distribution in classical phase space. The undulator parameters

that we use for our example are given in Table 1. The para-

meters chosen for this example are close to those for the

proposed Cornell ERL (Bartnik et al., 2013).

The coherent radiation fields produced by a single electron

in an undulator may be computed numerically by solving

Maxwell’s equations or from analytical formulae given by Kim

(1989). We use symplectic integration techniques to compute

the fields numerically, and find that they are in good accor-

dance with equation (9). For more details on the numerical

computation of fields, see Bazarov & Gasbarro (2012).

Kim (1989) gives the far-field pattern for the undulator

radiation,

E�;�ð’; Þ / snð�ÞB�;�ð’;  Þ; ð18Þ

sn ¼ sin Nund �!=!1ð�Þ
� �

= sin �!=!1ð�Þ
� �

; ð19Þ

B�

B�

� �
¼

1

�

Z�
��

d	
’=K � cos 	

 =K

� �

� exp i !=!1ð�Þ
� �

	 � p sin 	 þ q sin 2	
� 	
 �

; ð20Þ

where f�̂�; �̂�g is a rotated coordinate system, and Ex ’ E� for

small angles. � = (’2 + ’2)1/2 = atan(r/z) is a radial parameter

such that a function of � alone is exactly rotationally

symmetric. Functions in which ’ and vary independently are

in general not rotationally symmetric. For more details on the

coordinate system, see Kim (1989). The angular dependence

of the resonance frequency which enters equation (18) is given

by the undulator equation,

!1ð�Þ ¼
!1ð0Þ

1þ ½�2�2=ð1þ K 2=2Þ�
; ð21Þ

where K is the undulator parameter and � is the relativistic

factor.

Over a range of ’,  ’ 1/�, the variation in B�,� is slow

varying compared with sn . Thus one can treat B�,� to be

constant to good approximation such that E�;�ð’;  Þ / sn(�) is

rotationally symmetric. The approximation applies only for

odd harmonics. For even harmonics, B� goes to zero on-axis,

and so its effect is not negligible. Kim (1986, 1989) computes

the WDF under this approximation, and it can be seen from

his expression that the WDF obeys equation (12).

Fig. 4 shows slices of the radiation fields computed

numerically and analytically. Both the numerically and

analytically computed fields demonstrate rotational symmetry

in that E(x, 0) ’ E(0, y). The discrepancy between the

analytical and numerical fields arises from the fact that the

analytical fields do not take into account the tuning of the pole

magnets at the ends of the undulator to keep the electron

trajectories on-axis. The numerical computation does include

this and so the fields vary slightly.

We note that helical undulators are rotationally symmetric

sources which carry circular polarization, and therefore they

may be treated using the formalism of x2 in combination with

generalized Stokes parameters (Luis, 2005). The higher

harmonics, which are known to carry orbital angular

momentum (Afanasev & Mikhailichenko, 2011) as well as spin

angular momentum, have the form of equation (9), and so

they may also be represented by a 3D-reduced WDF.

3.1. Convolution with electron beam distribution

Here we will demonstrate the effects of non-zero energy

spread and non-zero emittance in the electron bunch on the

phase space profile of the partially coherent radiation. It is

often considered that �/4� diffraction-limited emittance of the

electron beam is sufficient to obtain transverse coherence. It

should be noted that synchrotron radiation from an undulator

is not Gaussian and therefore X-ray light emittance from

perfect (zero emittance) electron beam differs from �/4�
(Bazarov & Gasbarro, 2012). Beam energy spread also plays a

role. In x3.2 we investigate this question quantitatively in some

detail and show that for electron beam emittance of �/4� and

energy spread 1/Nund the overall degree of coherence �2
g still

significantly differs from 1.

Fig. 5 demonstrates how the phase space profile of the

radiation changes as we convolve over the electron bunch. The
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Table 1
Undulator, beam and radiation parameters.

Number of periods Nu 1250
Undulator spatial period �u 2 cm
Photon energy Eph0 8000 eV
Beam energy E 5 GeV
Average current I 100 mA
Detector position z0 75 m
Undulator parameter K 0.9839

Figure 4
Undulator radiation electric field amplitude computed numerically (EN)
and analytically (EA). Slices are shown at x = 0 and y = 0 to demonstrate
rotational symmetry.



electron energy is normally distributed with standard devia-

tion �E /E = 1/(4Nund) and the bunch emittance is " = �/(4�). It

is well established that, to good approximation, the WDF of

photons produced by an electron bunch passing through a

magnetic field structure may be computed by convolving the

WDF of photons produced by a single electron, Bph, with

the WDF of the electron bunch distribution, Be. The fields

produced by a single relativistic electron are determined

for an arbitrary trajectory by Maxwell’s equations, so Bph

is perfectly coherent. The electron bunch is modeled as a

statistical distribution of classical particles, so Be is perfectly

incoherent. The total WDF is given by

Btot ¼ Bph � Be; ð22Þ

where * is the convolution operator. Btot is a partially coherent

photon distribution. Note that the WDF is bilinear in the

fields, and so adding Wigner distributions, like adding inten-

sities, is an incoherent superposition.

Any model for the transverse profile of the electron bunch

obeying equation (12) will work. We choose to work with a

Gaussian density of states, which is specified by a single set of

Twiss parameters and a single emittance,

Bðr; hÞ ¼ B0 exp �
�r2 þ 2
r � h þ �h2

2"

� �� 
: ð23Þ

The model equation (22) applies only when the Wigner of

photons produced by off-axis electrons does not differ much

from the WDF of photons produced by an on-axis electron.

For an electron displaced parallel to the plane of the undulator

(what we will call the ‘x’ direction, normally in the horizontal

plane), there will be no non-linear effects because the electron

bunch is very small compared with the size of the magnets.

For electrons displaced perpendicular to the undulator

plane (the ‘y’ direction), there are two non-linear effects to

consider. First, the magnetic field strength experienced by the

electron has a cosh2(ky) dependence such that an electron

displaced in y will experience a stronger magnetic field leading

to a shift of the electric field resonance (Bazarov & Gasbarro,

2012). Second, undulator fields have a weak lensing effect for

electrons displaced in y which pulls them back toward the axis.

These effects may play an important role in certain cases, but

for high-brightness electron beams we have found both of

these effects to be negligible.

In convolving over the electron energy spread, the WDF of

radiation from a single electron does vary appreciably with

electron energy, so the energy convolution is performed with

‘brute force’, i.e. the radiation fields are computed many times

for electrons of various energies, and the 3D WDFs of each of

the fields are computed and then summed according to some

weighing function. Again, we choose a Gaussian energy profile

centered at E with standard deviation �E = E/(4Nund). We note

that an energy spread in the electron beam is related to a

spread in angles due to the relativistic Doppler effect; the size

of the central cone varies as 1/�. Also, the resonant wave-

length �r / 1/�2, so a spread in the electron beam energy is

related to a blurring of frequencies around resonance. None-

theless, experimentally the situation amounts to having a

perfect monochromator downstream from the undulator.

In computing the 4D convolution over the electron bunch

distribution, we avoid 4D arrays by exploiting equations (12)

and (13) and computing the 3D slice of the convolved distri-

bution at y = 0,

Btot

x

y ¼ 0

�x

�y

0
BB@

1
CCA ¼

Z
dy 0 C Bph

x

y 0

�x

�y

0
BB@

1
CCA;Be

x

�y 0

�x

�y

0
BB@

1
CCA

8>><
>>:

9>>=
>>;

x;�x;�y

:

ð24Þ

CfA;Bga1;:::;an
denotes the convolution of the functions A and

B over the variables a1; :::; an. The fully convolved WDF is
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Figure 5
WDF for undulator radiation. Top: single electron. Center: non-zero
energy bandwidth bunch. Bottom: non-zero energy bandwidth and non-
zero emittance bunch. The color map is such that dark red corresponds to
large positive values, and dark blue corresponds to large negative values
(as in Fig. 2).



easily computed via this formula by invoking equation (13).

Fig. 5 shows the WDF projected into 2D during various stages

of the convolution. Notice that, after convolution over the

electron bunch, the phase space of the radiation remains

distinctly non-Gaussian.

3.2. Optimization of electron beam parameters

It is well known that phase space profiles of the electron

bunch and the photons produced by a single electron should

be matched, but which electron beam parameters maximize

coherence? With access to the full WDF of the partially

coherent undulator radiation, we are in a position to inspect

directly the impact of electron beam parameters on the overall

degree of coherence, �2
g. �2

g is computed from the WDF by

equation (6). To compute the numerator of this expression,

many 3D slices are recovered using equation (12) and are

summed over in such a way that 4D arrays are never required.

As in x3.1, we consider an example of radiation produced by

an electron bunch with Gaussian phase space distribution and

Gaussian energy distribution. Let us denote the emittance of

the electron bunch profile by "e, the electron beta function by

�e, and the standard deviation of the energy distribution is �E.

In Fig. 6(a), "e = 0 and �E varies. In Fig. 6(b), �E = 0 and �e is

held fixed to match the �-function of the photon distribution

produced by a single electron, �ph, while "e varies. In Fig. 6(c),

�E = 0, "e = �/(4�) and �e varies.

Naturally, coherence will always decrease with increased

electron bunch emittance and electron energy spread.

Figs. 6(a) and 6(b) demonstrate precisely how quickly coher-

ence is lost as emittance and energy bandwidth increase while

all else is held fixed. Fig. 6(c) illustrates the dependence of �2
g

on the electron bunch �-function, �e, with emittance and

energy bandwidth held fixed. Analyses of this kind are

significant for the design of beamlines when seeking to

produce highly coherent radiation from insertion devices. The

�-function which maximizes coherence varies with electron

beam and undulator parameters, and the explicit calculation

shown in Fig. 6(c) is necessary to find the optimal �-function

value for a particular system.

3.3. Modal decomposition

With the full WDF that we have computed, we are able to

decompose partially coherent undulator radiation into its

constituent modes. In order to do this, we recover the CSD

from the WDF via equation (3) and then diagonalize. In order

to perform this diagonalization, we unfold the 3D CSD into a

4D array. The question of whether this diagonalization can be

done entirely in 3D remains open.

Fig. 7 shows the first two modes after a convolution over the

energy bandwidth. Only two modes are given because the

eigenvalue of the third mode is smaller than the numerical

error, so this mode cannot be trusted to be accurate. Even if

the error were reduced, the contribution of additional modes

to the radiation would be insignificant compared with the two

modes given. The rapidity with which the eigenvalues fall off

illustrates that the source is still fairly coherent after only an

energy convolution. Fig. 8 shows the first few modes after

convolution over energy bandwidth and spatial bunch distri-

bution. Notice how more modes are needed after coherence

decreases from the spatial convolution.

From equations (15), (1) and (6) it follows that the overall

degree of coherence may be given by the eigenvalues of the

decomposition (Luis, 2007),

�2
g ¼

P
n �

2
n=
P

n �n


 �2
: ð25Þ

For a perfectly coherent source, there is only a single � equal

to 1 and a single pure mode. For a perfectly incoherent source,

an infinite number of modes are needed, and all �i approach

zero. For the modal decomposition of the partially coherent

undulator radiation which has been convolved over energy

bandwidth and space, Fig. 9 shows how the the eigenvalues of

the modal decomposition fall off for less and less heavily

weighted modes.
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Figure 6
(a) Coherence versus electron energy spread with "e = 0. (b) Coherence versus electron bunch emittance with �E = 0, �e = �ph. (c) Coherence versus
electron betatron function with �E = 0 and "e = �/(4�).



We expect that the eigenmodes of the CSD with corre-

sponding WDF obeying equation (12) will have the form of

equation (9). Figs. 7 and 8 demonstrate that this holds true in

our example. Modes with a helical structure in their complex

phase correspond to a non-zero orbital angular momentum.

Notice that, for the decomposition in Fig. 8, the modes with

helical phases come paired with a mode of opposite helicity,

and the eigenvalues are almost equal for two paired modes

such that the helicity is almost cancelled. This cancellation is

not exact only because of numerical error. At high resolution,

the eigenvalues of paired modes would become equal,

reflecting the fact that planar undulator radiation has zero

orbital angular momentum. We note that the phases shown in

Fig. 8 are a particular gauge choice as any radial line can be

chosen as ’ = 0.

4. Conclusion

In this paper, we have provided computationally convenient

alternatives to the full 4D WDF for sources of arbitrary

degrees of coherence. For perfectly coherent sources, we

showed that a 2D WDF can suffice for separable modes and

for non-twisted rotationally symmetric sources. For twisted

rotationally symmetric sources, we expanded the applicability

of a dimension-reducing condition given by Alieva &

Bastiaans (2000), equation (12), to all fields of the form (9).

We found that this same formula could also be applied to

perfectly incoherent sources exhibiting spatial rotational

symmetry. In doing so, we have identified that a large class of

rotationally symmetric systems of arbitrary degree of coher-
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Figure 8
Amplitude (left) and complex phase (right) of the first six modes from
decomposition after convolution over an electron bunch of non-zero
energy bandwidth and non-zero emittance. �2

g = 0.23 for this radiation.

Figure 9
Eigenvalues of mode decomposition after convolution over energy and
space.

Figure 7
Amplitude (left) and complex phase (right) of the first two modes from
decomposition after convolution over an electron bunch of non-zero
energy bandwidth and zero emittance. The abrupt changes in phase
correspond to phase transitions of �. �2

g = 0.74 for this radiation.



ence can be represented by a WDF of three of fewer dimen-

sions.

In x3, we modeled partially coherent undulator radiation as

a convolution of a perfectly coherent photon source and a

perfectly incoherent electron source. In three dimensions, we

successfully performed the convolution. This gave us a

complete physical picture of the synchrotron radiation in

phase space, and also allowed us to examine how the overall

degree of coherence of the radiation was effected by the

electron bunch parameters. We diagonalized to CSD to

recover the constituent eigenmodes, and we confirmed the

prediction of equation (9) that the constituent modes of a

rotationally symmetric partially coherent source should be

states of definite orbital angular momentum. These modes can

be conveniently applied to scattering experiment simulations

for a realistic picture of how the partially coherent radiation

interacts with matter.

There still remain a few open questions whose answers

could enhance the presented methods. We have discussed that

a non-twisted pure mode has only two degrees of freedom, but

we were unable to find a useful 2D-reduced WDF. Does such a

representation exist such that it is convenient and accessible

(in the sense of computing the overall degree of coherence, for

example)? When we performed mode decomposition, we

resorted to using a 4D array to perform the diagonalization.

Is there a way to perform decompositions of rotationally

symmetric partially coherent sources entirely in 3D?

In summary, we have provided a viable numerical approach

to phase space treatment of synchrotron radiation. Using

reduced forms of the WDF, one may fully simulate rotationally

symmetric light in phase space without large memory

requirements and rigorously extract coherence and brightness

properties of such sources.

APPENDIX A
Dimension-reducing condition for WDF

Here we prove that fields of the form equation (9) have WDFs

obeying the symmetry equation (12). It is simplest to work in

phase space polar coordinates as defined in equation (8).

Plugging the expression for the fields into the definition of the

WDF yields

B

�r

’r

��

’�

0
BBB@

1
CCCA ¼ B0

R
d2r 0 Rð�þÞRð��Þ

� exp i  ��ð Þ �  �þ

 �� �� 	

� exp il ’� � ’þ

 �� �

exp ikr � hð Þ; ð26Þ

where we have defined

�	 � r	 r 0=2
�� �� ¼ �2

r þ
1
4 �
0 2
r 	 �r �

0
r cos ’r � ’

0
rð Þ

� �1=2

ð27Þ

tanð’	Þ � y	 y 0=2ð Þ= x	 x 0=2ð Þ

and ð� 0r; ’
0
rÞ is a set of polar coordinates describing the inte-

gration variable r 0. Using some basic trigonometry, one can

work out that

’� � ’þ ¼ atan
�r �

0
r sinð’r � ’

0
rÞ

�2
r �

1
4 �
0 2
r

� 
: ð28Þ

So now everything in the integrand except the last exponential

factor can be written as a function of only �r, �
0
r and ð’r � ’

0
rÞ.

Define

R0ð�r; �
0
r; ’r � ’

0
rÞ � Rð��ÞRð�þÞ exp i  ��ð Þ �  �þ


 �� �� 	
� exp il ’� � ’þ


 �� �
: ð29Þ

Putting this all together the WDF expression has become

B

�r

’r

��

’�

0
BBB@

1
CCCA ¼ B0

R
d2r 0 R0 �r; �

0
r; ’r � ’

0
rð Þ

� exp � 0r�� cos ’ 0r � ’�

 �� �

: ð30Þ

In polar coordinates, equation (12) takes the form

B

�r

’r þ �
��

’� þ �

0
BB@

1
CCA ¼ B

�r

’r

��
’�

0
BB@

1
CCA: ð31Þ

Then evaluating the left-hand side of (31) using (30) we find

B

�r

’r þ �

��

’� þ �

0
BBB@

1
CCCA ¼ B0

R
d2 r 0 R0 �r; �

0
r; ’r � ’ 0r � �ð Þ

� �

� exp � 0r�� cos ’ 0r � �ð Þ � ’�
� �� 	

: ð32Þ

We then make a substitution for the angular integration

variable ’ 00r = ’ 0r � �, and we are left with the dimension-

reducing expression equation (31). QED.

APPENDIX B
Dimension-reducing condition for CSD

For systems with WDF obeying equation (12), we can derive a

corresponding dimension-reducing condition for the CSD. It

is simplest to show this in Cartesian coordinates. The CSD is

computed from the WDF using equation (3),

W

x1

y1

x2

y2

0
BBB@

1
CCCA ¼

Z
d2h B

ðx1 þ x2Þ=2

ðy1 þ y2Þ=2

�x

�y

0
BBB@

1
CCCA

� exp ik
�x

�y

 !
�

x1 � x2

y1 � y2

� �" #
: ð33Þ

The coordinates have been placed into columns to condense

notation. The expression in the exponent is a dot product
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between two column vectors. We can apply equation (12) to

the WDF in the integrand,

W

x1

y1

x2

y2

0
BBB@

1
CCCA ¼

Z
d2h B

½ðx1 þ x2Þ=2� cos � � ½ðy1 þ y2Þ=2� sin �

½ðy1 þ y2Þ=2� cos � þ ½ðx1 þ x2Þ=2� sin �

�x cos � � �y sin �

�y cos � þ �x sin �

0
BBB@

1
CCCA

� exp ik
�x

�y

 !
�

x1 � x2

y1 � y2

� �" #
: ð34Þ

Now we make a substation of integration variables,

� 0x ¼ �x cos � � �y sin �

� 0y ¼ �y cos � þ �x sin �:
ð35Þ

Note that this substitution is just a simple rotation, and so the

Jacobian is unity. Applying the substitution, we find

W

x1

y1

x2

y2

0
BBB@

1
CCCA ¼

Z
d2h 0 B
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� 0x

� 0y

0
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¼

Z
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The last expression is simply equation (3) evaluated at new

arguments. Thus this expression yields the dimension-reducing

expression

W

x1

y1

x2

y2

0
BB@

1
CCA ¼ W

x1 cos � � y1 sin �
y1 cos � þ x1 sin �
x2 cos � � y2 sin �
y2 cos � þ x2 sin �

0
BB@

1
CCA: ð37Þ
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