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Quantifying three-dimensional spatial distributions of pores and material

compositions in samples is a key materials characterization challenge,

particularly in samples where compositions are distributed across a range of

length scales, and where such compositions have similar X-ray absorption

properties, such as in coal. Consequently, obtaining detailed information within

sub-regions of a multi-length-scale sample by conventional approaches may not

provide the resolution and level of detail one might desire. Herein, an approach

for quantitative high-definition determination of material compositions from

X-ray local computed tomography combined with a data-constrained modelling

method is proposed. The approach is capable of dramatically improving the

spatial resolution and enabling finer details within a region of interest of a

sample larger than the field of view to be revealed than by using conventional

techniques. A coal sample containing distributions of porosity and several

mineral compositions is employed to demonstrate the approach. The optimal

experimental parameters are pre-analyzed. The quantitative results demon-

strated that the approach can reveal significantly finer details of compositional

distributions in the sample region of interest. The elevated spatial resolution

is crucial for coal-bed methane reservoir evaluation and understanding the

transformation of the minerals during coal processing. The method is generic

and can be applied for three-dimensional compositional characterization of

other materials.
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1. Introduction

Three-dimensional imaging of material compositions remains

one of the most challenging aspects of materials character-

ization, and doing so quantitatively adds another level of

complexity to this challenge. Quantitative computed tomo-

graphy (CT) is emerging as a viable solution to this challenge;

however, overcoming technical limitations has proven diffi-

cult, especially the ability to discriminate between three-

dimensional distributions of minerals with similar X-ray

absorption properties. Quantitative identification of fine

features is also very difficult when their sizes are smaller than

the X-ray CT resolution, such that a voxel (volumetric pixel,

the minimum unit of the CT slice image) in the reconstructed

CT image contains multiple compositions. The reconstructed

CT value of the voxel represents a composition-weighted

average. This is the so-called partial-volume effect (Ketcham

& Carlson, 2001). Increasing X-ray CT resolution can reduce

this effect, but the sample size will have to be decreased

accordingly, which may either alter its fine structure or may

not be possible at all owing to its fragility.

Another significant challenge encountered in X-ray CT is

overcoming the limited field of view (FOV), which is dictated

by hardware limitations, most notable from the size of the

imaging detector. The consequence is that samples must either

be physically trimmed to fit within the FOV, or the imaging

resolution must be lowered to accommodate the sample, both

of which are undesirable. A new imaging methodology, called
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local CT, has recently emerged and can overcome the FOV

limitation of the detector. It can enable high resolution in

X-ray CT imaging of large samples and has been broadly

investigated in recent years (Delaney & Bresler, 1995;

Katsevich & Ramm, 1996; Faridani et al., 1992; Kudo et al.,

2008; Kyrieleis et al., 2011). However, most local-CT algo-

rithms are qualitative algorithms or are difficult to apply

in practice because of restrictions, such as requiring global

projections at certain projection angles and knowledge of the

exact sample boundary. It is well know that CT reconstruction

from an interior data generally leads to artifacts in slice in the

form of a global (i.e. feature-independent) elevation of the

gray values towards the edge of the reconstructed region of

interest (ROI) (Lewitt & Bates, 1978). This kind of artifacts

is due to the loss of low-frequency information which can be

suppressed by projection extension (Lewitt, 1979). Pseudo-

global tomography (Chen et al., 2014) uses an effective

strategy to compensate the lost part of projections in the local

CT, which can effectively reduce DC-shift and low-frequency

artifacts caused by projection truncation. It can efficiently

perform quantitative local reconstruction with a standard

calibration and so we have applied this method to our local-

CT analysis.

Previously, data-constrained modelling (DCM) approaches

have been applied in conjunction with synchrotron-based

X-ray CT to quantitatively characterize material compositions

distributions in samples and hydrocarbon reservoir char-

acterizations (Yang et al., 2007, 2008, 2010a, 2010b, 2013; Mayo

et al., 2012; Trinchi et al., 2012). The DCM software is available

at http://www.ict.csiro.au/downloads.php?swid=24. This

approach utilizes X-ray absorption information obtained from

multi-energy CT data as constraints to effectively distinguish

between materials that have similar X-ray absorption prop-

erties, and allows composition distributions at length scales

smaller than the X-ray CT resolution to be modelled as partial

volumes.

In this study, the DCM approach and pseudo-global

tomography are combined to form a new characterization

approach, which is applied to synchrotron-based multi-energy

X-ray local-CT datasets to investigate the three-dimensional

compositional distributions and physical structure of a coal

sample. Coal was chosen as the model sample owing to its

worldwide significance as an energy source, and quantification

of its volume and spatial disposition of pores, fractures and

minerals, as well as visualizing that the physical structure of

coal is a fundamental requirement for coal-bed methane

reservoir evaluation and understanding the transformation of

the minerals during coal processing. The high quality and

monochromaticity of synchrotron-based X-ray light is optimal

for quantitative CT reconstruction with a high resolution. The

high brightness of synchrotron X-rays effectively reduces the

sample exposure time, which can significantly reduce the

impact of the experimental instabilities associated with time.

In order to evaluate the advantage gained from local-CT-

based DCM, global-CT-based DCM has also been performed.

With the requirement of fitting the whole sample into the FOV

of the detector, the CT resolution is low in global CT. The

result shows that local CT can visualize more details of the

sample, which provide more spatially resolved constraints for

DCM than with global CT. It enables an accurate analysis

of the three-dimensional distribution of coal compositions.

Consequently, the combination of local CT and DCM can

enable the partial volume effect to be characterized at a high

spatial resolution.

2. Sample description and experimental parameters

Coal is a complex polymeric material; its main physical

compositions include: coal matrix (the organic compositions),

void (pores and fractures) and mineral (inorganic constitu-

ents) (Levine et al., 1982). In order to characterize and

visualize the distributions of these compositions, various

techniques have been used (Lawrie et al., 1997; Bruening &

Cohen, 2005; Vassilev & Tascón, 2003; Creelman & Ward,

1996; Galbreath et al., 1996; Saikia & Ninomiya, 2011; Karacan

& Okandan, 2001; Yao et al., 2009). Among all these techni-

ques, X-ray micro-CT has a unique advantage as a sample non-

destructive three-dimensional characterization method.

The coal sample investigated in this study was collected

from an underground mine in Yangquan, originating from

Qinshui basin, which is one of the most gas-rich coal basins in

China. It was carefully sanded by hand into a cylindrical shape

with a diameter of 4 mm and a length of 10 mm. Table 1 shows

a list of composition minerals and their overall volume

percentages (Wang et al., 2013). The total porosity of the coal

sample was estimated as 4.43%.

When X-rays pass through the sample, the X-ray attenua-

tion by each composition depends on both its volume fraction

and its X-ray absorption coefficient. Since the typical noise

level of X-ray CT is 1%, the mineral compositions can be

ignored if their volume fractions are small enough such that

they contribute much less than 1% of X-ray attenuation by the

sample. According to this criteria, pyrite, dolomite, plagioclase

and manganese dioxide can be ignored, and the remaining

compositions of the sample are grouped as follows (Wang et

al., 2013):

(a) Void (group A);

(b) Coal matrix (group B);

(c) Illite, quartz and kaolinite (group C);

(d) Chlorite and titania (group D).
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Table 1
List of minerals and their overall volume percentages in the coal sample
(reproduced from Wang et al., 2013).

Mineral name Molecular formula Volume percentage

Kaolinite Al2O3SiO2H2O 4.32
Illite KAl2(AlSi3O10)(OH)2 0.23
Quartz SiO2 1.21
Pyrite FeS2 2.60 � 10�3

Titania TiO2 0.33
Chlorite Mg(FeAl)5(SiAl)4O10(OH)8 0.077
Dolomite CaCO3MgCO3 0.0664
Plagioclase (NaCa)Al(Al3Si)Si3 0.0185
Manganese dioxide MnO2 9.26 � 10�5

Coal matrix C101H41O4NS 93.75 (including void
volume)



The accuracy of quantitative CT is related to X-ray CT

experimental parameters, including CT resolution, the sample-

to-detector distance (SDD) and X-ray beam energies. A pre-

analysis is required to optimize the sample-specific experi-

mental parameters. This pre-analysis is focused on the

evaluation of impacts of SDD and X-ray beam energy in X-ray

CT of a sample containing the compositions described above.

The pre-evaluation was conducted with a numerical phantom

with 680 � 680 � 1 voxels (a voxel has a size of 3.7 mm �

3.7 mm � 3.7 mm) (Fig. 1). As a parallel beam is used, one

phantom slice is sufficient for the simulation. The numerical

phantom is composed of circular sub-regions which comprise

different proportions of coal matrix and one other main

composition (void, group C minerals, or group D minerals)

with volume fraction step of 10%. The background is coal

matrix. The X-ray total linear absorption and phase-shift

coefficients of main compositions (except void) at energies of

12 keV, 18 keV, 24 keV and 30 keV are listed in Table 2.

Projection images of the phantom were simulated with

monochromatic parallel beams at X-ray energies of 12 keV,

18 keV, 24 keV and 30 keV. A series of SDDs were chosen in

the simulation. Nine hundred projections over a total rotation

angle of 180� around the z-axis (normal to the phantom slice)

were obtained with a 0.2� angular step between projections at

each X-ray energy. The projection images correspond math-

ematically to the Radon transforms of the phantom with X-ray

absorption and refraction. The images contain phase-contrast

effects for non-zero SDDs. That is, the projection images

recorded by the detector were intensity images of the sample

after Fresnel propagation at the SDD distance.

A typical noise level for X-ray CT of 1% Gaussian noise was

added to the simulated X-ray projections. After the simulated

projections were obtained, images were subjected to phase-

retrieval processing prior to tomographic reconstruction.

Phase-retrieval processing is required for the phase-contrast

imaging mode used (non-zero SDD) and results in an

apparent improvement in signal-to-noise level. Furthermore,

it eliminates the phase-contrast ‘edge-enhancement’ effect

to transform the data into a form suitable for quantitative

analysis. Slices of X-ray total linear absorption coefficient at a

given X-ray energy for the phantom sample were obtained by

tomographic reconstruction.

The square region indicated in Fig. 1 was chosen to evaluate

the performance of tomographic reconstruction under

different experimental conditions. The normalized cross-

correlation (NCC) between the reconstructed and original

square region was calculated,

C ¼

PN
i¼ 1

p
ðrÞ
i � �pp ðrÞ

� �
p
ðoÞ
i � �pp ðoÞ

� �
PN
i¼ 1

p
ðrÞ
i � �pp ðrÞ

� �2 PN
i¼ 1

p
ðoÞ
i � �pp ðoÞ

� �2
� �1=2

; ð1Þ

where p
ðrÞ
i and p

ðoÞ
i are the reconstructed and original total

linear absorption coefficient values at the ith pixel, respec-

tively, while �pp ðrÞ and �pp ðoÞ are their mean values. The NCC

represents a template matching of two datasets, which means

that a higher NCC value corresponds to a closer match

between the predicted image and the real sample.

Table 3 gives the NCC values for different compositions and

energies at a simulated noise level of 1% when SDD = 40 mm.

It shows that different compositions are associated with

different optimal energies. For a multi-composition sample,

the optimal energy is a compromise between the optimal

energies for the main compositions of the sample. For the coal

sample in this paper, the optimal energy is near 18 keV.

Considering that NCC is relatively insensitive to the beam

energy and based on the experience about the X-ray stability

on the BL13W beamline at Shanghai Synchrotron Radiation

Facility (SSRF), the energies of 18 keV and 24 keV were

chosen as the experimental energies.
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Figure 1
Schematic of the numerical phantom. The circular sub-regions are
mixtures of coal matrix and one other main composition in various
proportions (the volume fraction step is 10%). From left to right and top
to bottom, the volume fractions of the other main composition are 10%,
20%, . . . , 90%, 100%. The background is the coal matrix. The square
region indicates the region chosen to analyze the influence of different
experimental conditions.

Table 2
X-ray total linear absorption and phase-shift coefficients (� and ’) of the main coal compositions (except void) at energies of 12 keV, 18 keV, 24 keVand
30 keV.

12 keV 18 keV 24 keV 30 keV

Composition Formula Density (g cm�3) ’ (cm�1) � (cm�1) ’ (cm�1) � (cm�1) ’ (cm�1) � (cm�1) ’ (cm�1) � (cm�1)

Kaolinite Al2O3SiO2H2O 2.60 �2293 24.57 �1524 7.565 �1141 3.418 �912.2 1.969
Illite KAl2(AlSi3O10)(OH)2 2.75 �2414 36.79 �1604 11.38 �1201 5.081 �959.9 2.835
Quartz SiO2 2.65 �2336 28.73 �1552 8.824 �1162 3.955 �928.9 2.250
Titania TiO2 4.23 �3567 177.2 �2370 55.81 �1773 24.45 �1416 13.01
Coal matrix C101H41O4NS 1.36 �1229 2.808 �818.4 1.034 �613.6 0.5862 �490.8 0.4180



Fig. 2 shows that the NCC value first increases and then

keeps constant with SDD. As SDD increases from zero, NCC

increases. This is due to the fact that NCC is sensitive to noise,

and phase-retrieval processing was applied to the non-zero

SDD case which could improve the signal-to-noise of the CT

reconstruction. The NCC almost keeps constant when SDD �

30 mm. However, a larger SDD induces a higher level of

Fresnel diffraction and edge enhancement effect which will

affect the reconstructed absorption indices (Xiao et al., 2005).

In this paper, the SDD was chosen as 40 mm for experimental

convenience with minimum deviation from the ideal case

where NCC = 1.

3. X-ray CT imaging

3.1. X-ray CT experiment

The X-ray CT projection images were acquired on the

BL13W beamline at SSRF. According to the previous analysis,

monochromatic X-ray beam energies at 18 keV and 24 keV

had been selected. The SDD was set at 40 mm.

BL13W is a wiggler beamline which produces monochro-

matic X-rays with narrow energy band (�E/E < 5 � 10�3,

where E is the photon energy) via a Si(111) double-crystal

monochromator. For the purpose of this study, it can be

regarded as an ideal monochromatic beam.

For global CT, the combination of the CCD detector (with a

native pixel size of 7.4 mm) and the optical lens (�2) provided

an effective isotropic projection image with a pixel size of

3.7 mm. For each energy, 1080 global projection images were

collected with equal angular spacing between each view with a

total rotation angle of 180�. The local CT projection images

were acquired under the same experimental conditions except

with a �10 optical lens, providing an effective pixel size of

0.74 mm. The available FOV places a limitation on the size of

the sample region to be imaged in the local CT. The region was

selected to be near the center region of the sample with a

diameter of 1.49 mm. A total of 5400 local projection images

were collected at each energy with a total sample rotation

angle of 180� and equally spaced angular increment.

3.2. CT image reconstruction

The projection images were pre-processed using X-TRACT

software (Gureyev et al., 2011). Paganin’s phase-retrieval

algorithm (Paganin et al., 2002) was applied with parameters

tuned to minimize noise and edge enhancement without loss

of resolution. A ring artifact correction was also applied to

minimize the ring artifacts. For local CT, image slices of size

2013 � 2013 pixels were reconstructed by pseudo-global

tomography (Chen et al., 2014) from local projection images.

Similarly, for global CT, image slices of size 2048� 2048 pixels

were reconstructed from global projection images.

Fig. 3 shows typical two-dimensional CTreconstructed slices

for global and local CT, in which there are some visible ring

artifacts in the global CT. The gray areas in the reconstructed

CT images (Fig. 3) are predominantly coal matrix, while the

white areas are mainly minerals. By comparing Figs. 3(b) and

3(c) it is clear that, because of high resolution in the local CT,

Fig. 3(c) provides more details in the ROI than Fig. 3(b). This

gives fine spatially resolved constraints for DCM.

3.3. Constant shift correction

The reconstructed local CT images using pseudo-global

tomography may differ by a constant shift in the pixel inten-

sity, which is inevitable in local CT using the inverse Radon

transform (Natterer, 1986). Fig. 4 shows the central horizontal

profiles of the ROI shown in Fig. 3 for local and global CT.
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Figure 2
Relation between the NCC and SDD for different energies at
experimental noise. (a) 18 keV energy; (b) 24 keV energy.

Table 3
NCCs for different compositions and energies at experimental noise level
(1%) when SDD = 40 mm.

Normalized cross-correlation

Energy (keV) Kaolinite Illite Quartz Titania Void

12 0.9927 0.9928 0.9928 0.9907 0.9927
18 0.9926 0.9927 0.9927 0.9929 0.9926
24 0.9924 0.9926 0.9925 0.9930 0.9922
30 0.9921 0.9924 0.9922 0.9929 0.9916



A constant offset is evident. In order to obtain the correct

quantitative information, this constant shift must be corrected.

This correction was performed as follows. Based on the

histogram of the ROI in each slice, the absorption coefficient

as a function of CT slice position was plotted and then fitted

with a fourth-order polynomial (Fig. 5). By comparing the

fitted curves for global and local CT, the shift between them

was calculated. This calculated shift value was used to correct

the offset. Fig. 6 shows the corrected result. The constant shift

has disappeared.

4. Data-constrained microstructure
prediction

The reconstructed local CT images have

a voxel size of 0.74 mm � 0.74 mm �

0.74 mm, while the reconstructed low-

resolution global-CT images have a

voxel size of 3.7 mm � 3.7 mm � 3.7 mm.

Consequently, the features which were

directly observable from CT images,

such as pores, cannot be smaller than

such a voxel size. The DCM approach

can reveal fine features smaller than the

CT image voxel size (Yang, 2012; Yang

et al., 2007, 2008, 2010a,b, 2012, 2013;

Mayo et al., 2012; Trinchi et al., 2012) as

compositional partial volumes in the

same voxel by incorporating multiple

sets of X-ray CT data acquired at

different X-ray energies as constraints.

Obviously, higher-resolution X-ray CT

data provide more spatially resolved

constraints for DCM, which would

enable more accurate DCM character-

ization of microstructures. In other

words, local CT would enable elevated

DCM accuracy for regional micro-

structures. It overcomes the limitation

of the FOV and enables high-resolution

observation of the ROI in a large sample. In the DCM model a

cubic grid of N = 2013 � 2013 � 245 voxels was used to

represent the ROI in local CT, where 245 is the number of

selected slices, while for global CT a cubic grid of N = 403 �

403� 49 voxels was used to represent the same ROI, where 49

is the number of selected slices. The size of a voxel in the DCM

model was equal to the voxel size of reconstructed CT images.

For voxel i (i = 1, 2, . . . , N), where N is the total number of

voxels in the system, the DCM nonlinear optimization

approach was used to solve for the volume fraction values
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Figure 3
Typical two-dimensional CT reconstructed slices at X-ray energy 18 keV. (a) The low-resolution
global reconstruction. The white circle indicates the ROI for the local CT. (b) Magnified view of the
ROI in (a). (c) The high-resolution local reconstruction in the ROI on the same slice. The pixel
intensity is proportional to the total linear absorption coefficient.

Figure 4
Central horizontal profiles of the ROI in Fig. 3 for local and global CT.

Figure 5
Typical histogram of one slice and the histogram peak as a function of slice position. (a) Typical histograms of one slice for global and local CT. (b) The
histogram peak as a function of slice position for global and local CT and their fit curves.



of compositions voxel by voxel. The

approach is to minimize the following

objective function (Yang, 2012),

Ti ¼
PL
l¼ 1

PM
m¼ 1

�ðl;mÞ� ðmÞi � ��� ðlÞi

� �2

þ
PM

m¼ 0

� ðmÞi S ðmÞ; ð2Þ

where L (= 2) is the number of X-ray

CT data sets acquired from the sample

at X-ray energies 18 and 24 keV; M (= 3)

is the number of non-void compositions;

�ðl;mÞ (l = 1, 2) are the expected X-ray

total linear absorption coefficient values of composition group

m at the two X-ray energies; � ðmÞi are volume fractions for

composition group m on voxel i, and S ðmÞ are the self-energy

(phenomenological chemical potential) of composition group

m; ��� ðlÞi (l = 1, 2) are X-ray CT measured total linear absorption

coefficient values on voxel i at the above X-ray energies. In

equation (2), the first term represents the difference between

the expected and CT-reconstructed X-ray total linear

absorption coefficients, and the second term accounts for the

chemical potential differences among different compositions.

The interactions between compositions had been ignored

considering the absence of further measurement data (Yang,

2012). In this paper, the chemical potentials were treated as

adjustable parameters to reproduce the measured composi-

tional volume fractions of the whole sample.

The minimization of equation (2) is solved using a

constrained search algorithm (Yang,

2012) with the following constraints,(
0 � v

ð0Þ
i ; v

ð1Þ
i ; v

ð2Þ
i ; v

ð3Þ
i � 1;

v
ð0Þ
i þ v

ð1Þ
i þ v

ð2Þ
i þ v

ð3Þ
i ¼ 1:

ð3Þ

When the chemical potentials of groups

A, B, C and D were set as 0.0002652,

4.5705 � 10�5, �0.001173 and

�0.0103822, respectively, the computed

overall volume fractions of composi-

tions reproduced the measured value

using helium gas porosimetry and the

ash analysis process.

Fig. 7 shows the DCM results on the

same slice as in Fig. 3. The average

compositional volume fractions are

listed in Table 4. Obviously, there

are some colour mixed regions in

Fig. 7(a), indicating that multiple

compositions coexist in these regions.

For instance, the yellow (red mixed

with green) pixels indicate the coex-

istence of void and coal matrix. Colour

mixing also means that these voxels

contain compositions smaller than the

X-ray CT resolution. It should be noted

that the colour mixing becomes less

obvious when a voxel is dominated by one composition.

Figs. 7(b) and Fig. 7(c) show a high occurrence of void near the

boundary between the minerals group C and the coal matrix.

This observation is consistent with the results of Wang et al.

(2013).

Fig. 8 shows the physical structure of the ROI in the coal

sample. It indicates that the distribution of group C compo-

sition tends to take a clustered form, while group D takes a

dispersed form and regions of this composition are not

connected with each other. The voids are dispersed but

connected with each other in the coal sample. It should be

pointed out that, although there are a significant numbers of

voxels with non-zero void volume fractions, the proportion of

void-dominated voxels is small. The void connectivity as

shown in the figure is predominately due to such partial

void voxels.
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Figure 6
Central horizontal profiles of the ROI in Fig. 3 for local and global CT after constant shift
correction.

Figure 7
DCM results of the ROI in Fig. 3. In image (a), void is displayed as red, coal matrix is displayed as
green, minerals of group C are displayed as blue, and minerals of group D are displayed as purple.
Image (b) gives the distribution of group C, and image (c) gives the distribution of void. On a pixel,
the displayed intensity for each colour is proportional to an appropriate compositional volume
fraction. The co-existence of multiple compositions in a voxel is shown as colour mixing in (a).

Table 4
DCM computed volume fractions.

Overall volume fractions (%) Overall volume fractions on the sub-region (%)

Group name Fig. 7 Fig. 8 Local tomography Global tomography

Group A 3.37 3.69 3.46 4.47
Group B 91.60 91.18 90.70 89.90
Group C 4.93 5.05 5.74 5.59
Group D 0.10 0.08 0.10 0.08



The global-CT-based DCM had also been performed to

facilitate comparison. In order to minimize the impact of ring

artifacts in the global CT (Fig. 3) and for fine structure display

clarification, a sub-region (100 � 100 � 49 voxels) of the ROI

with minimal artifacts in global CT was selected for DCM

analysis. Consequently, the same sub-

region (500 � 500 � 245 voxels) in local

CT had been selected for comparison.

The DCM computed volume fractions

for groups A, B, C and D on the selected

sub-region are listed in Table 4.

Fig. 9 shows a three-dimensional view

of distributions of void and minerals

groups C and D in the ROI sub-region.

Fig. 10 shows separate three-dimen-

sional views of void, group C and

group D.

The DCM incorporates multiple sets

of X-ray CT data as constraints to

generate material volume fractions at

X-ray CT resolution. The low CT reso-

lution would make it difficult to resolve

fine structures of the sample. It causes

these fine structures to become blurred

or invisible in the DCM results, as can

be seen in Figs. 9 and 10. Some fine

structures are clearly visible in local-CT-

based DCM, but they appear to be

blurred or have disappeared in global-

CT-based DCM. This demonstrates

that, although DCM can incorporate effects of fine structures

smaller than the CT resolution, its display resolution is

restricted by the CT resolution. Higher spatial resolution CT

can provide DCM with more spatially resolved constraints,

which enables it to display finer structures and give more

accurate three-dimensional distributions of compositions in

the sample.

The limited resolution also leads to a broadened distribu-

tion of the CT-reconstructed values (Yang et al., 2013). Such a

distribution would lead to a small numerical overestimation of

void in the coal sample, which is indicated in Table 4. Table 4

shows that the average void volume fraction in global CT is

clearly bigger than the average void volume fractions in

local CT.
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Figure 8
Physical structure of the ROI. In image (a), void is displayed as red,
minerals of group C are displayed as blue, minerals of group D are
displayed as green. Images (b), (c) and (d) are the distributions of void,
group C and group D in the ROI, respectively. On a pixel, the displayed
intensity of each colour is proportional to the appropriate compositional
volume fraction. Co-existence of multiple compositions in a voxel is
shown as colour mixing. The size of the ROI is 1489.6 mm � 1489.6 mm �
181.3 mm.

Figure 9
Physical structure of a sub-region in the ROI. Images (a) and (b) are
DCM results based on global and local CT, respectively. In the image,
void is displayed as red, minerals of group C are displayed as blue, and
minerals of group D are displayed as green. On a pixel, the displayed
intensity of each colour is proportional to the appropriate compositional
volume fraction. The size of the sub-volume is 370 mm � 370 mm �
181.3 mm.

Figure 10
Distributions of void, group C and group D in the sub-region of the ROI. Upper images are global-
CT-based DCM results, and lower images are local-CT-based DCM results. (a), (d) are the
distribution of void; (b), (e) are the distribution of group C; and (c), ( f ) are the distribution of group
D. The volume fraction is represented by the pixel intensity on the image.



5. Conclusions

A quantitative local-CT-based DCM has been developed. The

method enables quantitative characterization of three-

dimensional distributions of material compositions and void in

a ROI of a sample. It has been demonstrated using a coal

sample collected from Yangquan mine. The optimal experi-

mental parameters for CT scanning of the coal sample were

determined through prior simulations on a numerical

phantom and used as a basis for the experimental local-CT

measurements. The microscopic physical structure of the ROI

in the sample has been determined from this local-CT data

using DCM analysis. The material compositions of the sample

were categorized into four groups in accordance with their

X-ray absorption characteristics. The numerical results of

DCM analysis of the local-CT data have been compared with

low-resolution global-CT-based DCM.

The results demonstrated the following:

(i) The optimal sample-to-detector distance has been

established as 40 mm, and X-ray energies as 18 keV and

24 keV by considering the X-ray energy range and stability on

the beamline, experimental convenience and experimental

noise level (1%).

(ii) The three-dimensional distributions of four composi-

tions groups including coal matrix, minerals and void in the

ROI of the coal sample can be obtained non-destructively with

local-CT-based DCM.

(iii) The accuracy of the DCM result is related to CT

resolution. Higher-resolution CT enables DCM to produce a

more accurate result. Local CTovercomes the limitation of the

FOV of the detector, which enables high-resolution CT

imaging and accurate DCM modelling.

(iv) Some compositions at length scales smaller than the

X-ray CT resolution have been detected and displayed. There

were obvious mixings of compositions at the voxel level.

(v) There were a significant amount of voids which were

smaller than the X-ray CT resolution. Dispersed sub-voxel-

sized voids formed connected clouds. The distribution of

group C components takes a clustered form, while group D

takes a dispersed form with group D regions not connected to

each other.

(vi) Elevated spatial resolution can reduce the over-esti-

mation of void caused by broadened distribution of the CT

reconstructed values which is common in CT.

Compared with global-CT-based DCM, the local-CT-based

DCM approach has an advantage in resolution. It can display

fine structures of compositions in the sample ROI, which is

particularly useful when there is a need to see the fine struc-

tures in a small region of a large sample.
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