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On the basis of the eikonal approximation, X-ray Bragg-case focusing by a

perfect crystal with parabolic-shaped entrance surface is considered theoreti-

cally. Expressions for focal distances, intensity gain and distribution around

the focus spot as well as for the focus spot sizes are obtained. The condition of

point focusing is presented. The experiment can be performed using X-ray

synchrotron radiation sources (particularly free-electron lasers).
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1. Introduction

The focusing of a diffracted X-ray beam may be achieved

using a perfect crystal with parabolic-shaped surface. Theo-

retical and experimental investigations of sagittal focusing in

the Bragg case by such a crystal has been carried out by Hrdý

(1998), Hrdý et al. (2001a), Hrdý & Siddons (1999) and

Artemiev et al. (2001). Meridional focusing in the Bragg case

has been investigated by Hrdý & Hrdá (2000) and Hrdý et al.

(2001b), and Laue-case focusing was considered by Hrdý et al.

(2003). In these works the plane-wave dynamical diffraction

theory is used, and the focusing distance was determined. The

determination of other important parameters, i.e. the focus

spot size, intensity gain and intensity distribution around the

focus spot, require the use of the dynamical diffraction theory

for a spatially inhomogeneous X-ray beam. Takagi’s equations

(Takagi, 1969) describe the diffraction of a spatially inhomo-

geneous X-ray wave depending only on the coordinates of an

observation point in the diffraction plane (usually x and z); the

coordinate perpendicular to the diffraction plane (the coor-

dinate y) is a parameter. However, in the case of focusing by a

perfect crystal with parabolic-shaped surface, the y coordinate

cannot be set as a parameter. It has the meaning of an essential

coordinate (as x and z). Therefore, one needs to improve

Takagi’s equations by taking into account the coordinate y.

It is clear that the wave-optical consideration of the two-

dimensional focusing phenomena based on such equations will

be complicated. However, the main purpose of focusing is to

obtain an image of a point source. Since a point source emits a

spherical wave, which, after reflection by a focusing element,

gives rise to secondary emitted spherical waves, the problem

can be effectively solved using trajectory methods or the

so-called eikonal approximation. This means that the emitted

as well as the secondary emitted spherical waves can be

presented as locally plane waves varying across the wavefront

wavevectors (Solimeno et al., 1986). The gradient of the

eikonal function at an arbitrary point of the wavefront gives

the corresponding wavevector. The eikonal approximation of

Takagi’s equations is considered by Chukhovskii & Shtolberg

(1970) and Kohn (2007), and in textbooks by Authier (2001)

and Pinsker (1982). Further development of the eikonal

approximation, taking into account two-dimensional curva-

ture of the wavefront, is given by Balyan (2013a). Balyan

(2013b) applies this theory for investigation of Laue-case

focusing by a perfect crystal with parabolic-shaped surface.

In this work, the eikonal approximation is used for theo-

retical investigation of X-ray Bragg-case focusing by a perfect

crystal with parabolic-shaped entrance surface (the crystal is

not bent). First, however, in the following section, the general

formulae, given by Balyan (2013a), are discussed and adopted

for Bragg-case diffraction.

2. Eikonal and trajectories in the Bragg case

In the Bragg case it is convenient to take the axis Oz directed

inward to the crystal and the axis Ox towards the entrance

surface in the diffraction plane (Fig. 1). The axis Oy is

perpendicular to the diffraction plane ðx; zÞ. In Fig. 1, a Bragg-

case perfect crystal with parabolic-shaped entrance surface is

shown with its reflecting planes. The reflecting planes are not

curved. The case of an elastically bent crystal here is not

considered. In Fig. 1, incident as well as reflected rays are

shown.

2.1. Eikonal equations inside a perfect crystal and in vacuum
in the case of two-dimensional curvature of the wavefront

In the case of two-wave dynamical diffraction the wavefield

in a perfect crystal for any polarization state is given in the

form

E ¼ ~EE0 expðiK0rÞ þ ~EEh expðiKhrÞ
� �

expðik�0x=2 cos �Þ: ð1Þ
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where K0 is the wavevector of the transmitted wave, Kh = K0 +

h is the wavevector of the diffracted wave, h is the diffraction

vector, K2
0 = K2

h = k2 = ð2�=�Þ2, � is the wavelength in a

vacuum, �0 is the zero-order Fourier component of the crystal

susceptibility, �h and � �hh [see below, equation (2)] are the

Fourier coefficients of the crystal susceptibility for the reci-

procal lattice vectors h and �h, respectively, � is the Bragg

angle, and ~EE0 and ~EEh are the amplitudes of the transmitted and

diffracted waves, respectively. In the case of two-dimensional

curvature of the wavefront, taking into account the second

derivatives with respect to the coordinate y, one can obtain the

following dynamical diffraction equations in a perfect crystal

(Balyan, 2013a, and references therein),

@2 ~EE0=@y
2
þ 2ik@ ~EE0=@s0 þ k2� �hh

~EEhC ¼ 0;

@2 ~EEh=@y
2 þ 2ik@ ~EEh=@sh þ k2�h

~EE0C ¼ 0;
ð2Þ

where s0 = ðx= cos � + z= sin �Þ=2 and sh = ðx= cos �� z= sin �Þ=2

are the coordinates along the transmitted and diffracted

waves, respectively, C is the polarization factor equal to 1 for

�-polarization and to cos 2� for �-polarization. Hereafter, C is

set as equal to 1. For separate amplitudes from (2) one finds

the following dynamical diffraction equations,

@4 ~EE0;h

@y4
þ 2ik

@

@s0

þ
@

@sh

� �
@2 ~EE0;h

@y2
� 4k2 @

2 ~EE0;h

@s0@sh

� k4�h� �hh
~EE0;h ¼ 0:

ð3Þ

The eikonal approximation for amplitudes has the form

~EE0;h ¼ E0;h expði�Þ; ð4Þ

where � is the eikonal and E0;h are slowly varying amplitudes.

The eikonal equation is obtained by substituting expression

(4) into (3) and neglecting the derivatives of amplitudes and

higher-order derivatives of the eikonal,

�2
y þ 2k cos ��x

� �2
� 4k2�2

z sin2 � � k4�h� �hh ¼ 0: ð5Þ

Here a subscript of the eikonal means differentiation with

respect to the corresponding variable.

Inserting (4) into the system (2) and neglecting the deri-

vatives of amplitudes and higher-order derivatives of the

eikonal, one can find the relation between the amplitudes,

Eh ¼
2E0 ð1=2kÞ�2

y þ ðcos ��x þ sin ��zÞ
� �

k� �hh

: ð6Þ

In a vacuum the reflected wave has the form ~EEðeÞh expðiKhrÞ

with slowly varying amplitude ~EEðeÞh which satisfies the parabolic

equation of diffraction (Grigoryan et.al., 2010),

1

sin2�

@2 ~EEðeÞh

@x2
þ
@2 ~EEðeÞh

@y2
þ 2ik cos �

@

@x
� sin �

@

@z

� �
~EEðeÞh ¼ 0: ð7Þ

Here the superscript (e) means external. Representing ~EEðeÞh =

E
ðeÞ
h exp½i�ðeÞ�, substituting into (7) and neglecting the deri-

vatives of amplitude E
ðeÞ
h and higher-order derivatives of the

eikonal one can find the eikonal equation in a vacuum,

1

sin2�
�ðeÞ2x þ�ðeÞ2y þ 2k cos ��ðeÞx � sin ��ðeÞz

� �
¼ 0: ð8Þ

2.2. The complete integral and solutions of eikonal equations

The complete integral of a first-order partial differential

equation of three variables is the solution �ðx; y; z, C1;C2;C3Þ

depending on three arbitrary constants C1;C2;C3. The

complete integral is used for solving first-order partial differ-

ential equations. In our case it can be used for solving the

eikonal equations (5) and (8). The standard procedure is as

follows (Smirnov, 1981; Courant & Hilbert, 1966). Let the

entrance surface of the crystal be given parametrically by

x ¼ x t1; t2ð Þ; y ¼ y t1; t2ð Þ; z ¼ z t1; t2ð Þ: ð9Þ

The eikonal on the entrance surface is a known function

�0ðt1; t2Þ. From the continuity conditions,

�0 t1; t2ð Þ ¼ � x t1; t2ð Þ; y t1; t2ð Þ; z t1; t2ð Þ;C1;C2;C3

� �
;

�0t1
¼ �t1

;

�0t2
¼ �t2

:

ð10Þ

From (10) the constants C1, C2 and C3 are defined as functions

depending on t1 and t2. Inserting these functions into the

expression of the complete integral one finds the so-called

general integral �½x; y; z;C1ðt1; t2Þ;C2ðt1; t2Þ;C3ðt1; t2Þ�. The

general integral depends on two arbitrary parameters, t1 and

t2. From the set

�t1
½x; y; z;C1ðt1; t2Þ;C2ðt1; t2Þ;C3ðt1; t2Þ� ¼ 0;

�t2
½x; y; z;C1ðt1; t2Þ;C2ðt1; t2Þ;C3ðt1; t2Þ� ¼ 0;

ð11Þ

the parameters t1 and t2 can be defined as functions on ðx; y; zÞ.

Inserting these functions into the expression of the general

integral one finds the eikonal satisfying the given boundary

conditions. The set (11) defines a trajectory, passing through

the points with coordinates ½xðt1; t2Þ; yðt1; t2Þ; zðt1; t2Þ� (on the

entrance surface) and ðx; y; zÞ (inside the crystal). The general

integral is the eikonal on the trajectory for a given pair ðt1; t2Þ.

From (11) it follows that on this trajectory with fixed ðx; y; zÞ

for arbitrary variations of �t1 and �t2 the variation of the

eikonal �� = �t1
�t1 + �t2

�t2 = 0, i.e. on a trajectory the eikonal

has an extremum.
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Figure 1
X-ray focusing scheme in the Bragg case using a parabolic-shaped
entrance-surface perfect crystal. S, X-ray point source; F, point focus; RP,
reflecting planes; for other notations see text.



3. Complete integrals inside a perfect crystal and in
a vacuum

The complete integrals of eikonal equations (5) and (8) can be

found by the method of variable separation. The solution is

presented in the form

� ¼ �1 xð Þ þ�2 yð Þ þ�3 zð Þ: ð12Þ

Inserting (12) into (5) and (8) it is easy to find the following

complete integrals. For the complete integral inside a crystal

we have two solutions,

�ð�Þ ¼ � z A
ð�Þ2
1 cos2 � � �2

h i1=2

= sin � þ A
ð�Þ

2 yþ A
ð�Þ

1 x

� A
ð�Þ2
2 x=2k cos � þ A

ð�Þ

3 ; ð13Þ

and for the complete integral in a vacuum

�ðeÞ ¼ C1ðxþ z cot �Þ þ C2yþ C2
1z=ð2k sin3 �Þ

þ C2
2z=ð2k sin �Þ þ C3; ð14Þ

where A1, A2 and A3, C1, C2 and C3 are arbitrary constants and

� = kð�h� �hhÞ
1=2=2. The signs ‘�’ on the left-hand side of (13)

correspond to the ‘�’ signs on the right-hand side.

4. Continuity conditions

A spatially inhomogeneous incident wave can be presented

in the form E
ðiÞ
0 exp½i�ðiÞ� exp½iK

ðiÞ
0 r�, where E

ðiÞ
0 is the slowly

varying amplitude, �ðiÞ is the eikonal, K
ðiÞ
0 is the carrying

wavevector and r is the radius vector of an observation point.

Here the superscript ‘(i)’ means ‘incident’. For the Bragg-case

diffraction the following continuity condition on the entrance

surface of the crystal can be written [see (1)]

E
ðiÞ
0 exp i�ðiÞ

� �
exp iK

ðiÞ
0 r0

h i
¼ E01 exp i�ð1Þ

� �
þ E02 exp i�ð2Þ

� �� 	
� exp ik�0x0=2 cos �ð Þ exp iK0r0ð Þ;

ð15Þ

where r0 is the radius vector of an arbitrary point of the

entrance surface. �ð1Þ and �ð2Þ are eikonals and E01, E02 are

the amplitudes corresponding to two solutions of the eikonal

(5). Since E01 and E02 are slowly varying functions as E
ðiÞ
0 , and

exp½i�ð1Þ�, exp½i�ð2Þ� have the same order of variation as

exp½i�ðiÞ�, from (15) one can write

E
ðiÞ
0 ¼ E01 þ E02; ð16Þ

�ðiÞ þ K
ðiÞ
0 � K0

h i
r0 ¼ �ð1Þ þ k�0x0=2 cos �

¼ �ð2Þ þ k�0x0=2 cos �: ð17Þ

For the reflected wave one can write the following continuity

conditions,

Eh1 þ Eh2 ¼ E
ðeÞ
h ;

�ðiÞ þ K
ðiÞ
0 � K0

h i
r0 ¼ �ð1Þ þ k�0x0=2 cos �

¼ �ð2Þ þ k�0x0=2 cos �

¼ �ðeÞ:

ð18Þ

5. Solution of the eikonal equation inside the crystal
and amplitudes

The entrance surface of the crystal has parabolic form with the

radius of curvature Rx;y at the apex (Fig. 1) and is given by the

equation

z0 ¼ x2
0=2Rx þ y2

0=2Ry: ð19Þ

Let us consider an X-ray point source S placed at a distance Ls

from the apex of the groove (the origin O of the coordinate

system) (Fig. 2). The line SO is the central ray impinging the

crystal at the origin. The glancing angle between SO and

reflecting planes is �ðiÞ. The source has a radius vector rs with

coordinates xs = �Ls cos �ðiÞ; ys = 0, zs = �Ls sin �ðiÞ. Let us

denote the deviation angle of the central ray from the Bragg

exact direction by �� = �ðiÞ � � (Fig. 2). The point source emits

a spherical wave expðikjr� rsjÞ=jr� rsj, where r is the radius

vector of an arbitrary observation point. For the entrance

surface of the crystal we have expðikjr0 � rsjÞ=jr0 � rsj. In the

denominator with high accuracy one can take jr� rsj ’ Ls. We

expand the argument of the exponential into the Taylor series

with accuracy including quadratic terms, i.e.

k r0 � rs



 

 ¼ k ðx0 � xsÞ
2
þ ðy0 � ysÞ

2
þ ðz0 � zsÞ

2
� �1=2

’ k Ls þ x0 cos �ðiÞ þ z0 sin �ðiÞ
�
þ x2

0 sin2 � þ y2
0 þ z2

0 cos2 �
� �

=ð2LsÞ
�

¼ kLs þ K
ðiÞ
0 r0 þ k x2

0 sin2 � þ y2
0 þ z2

0 cos2 �
� �

=ð2LsÞ:

ð20Þ

According to (20), E
ðiÞ
0 = expðikLsÞ=Ls, �ðiÞ = kðx2

0 sin2 � + y2
0 +

z2
0 cos2 �Þ=ð2LsÞ, the carrying wavevector K

ðiÞ
0 has components

K
ðiÞ
0x = k cos �ðiÞ, K

ðiÞ
0y = 0;K

ðiÞ
0z = k sin �ðiÞ. In the quadratic terms

we take � instead of �ðiÞ since �� is the order of a few arc-
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Figure 2
Scheme of reflection in the plane ðx; zÞ (y = 0). SO, central incident ray;
OP, central reflected ray; �ðiÞ, glancing angle between central ray SO and
reflecting planes RP; the glancing angle between the central reflected ray
OP and the reflecting planes is also �ðiÞ; 1 and 2, lines parallel to the exact
Bragg directions of the incident and reflected waves, respectively; �� =
�ðiÞ � �; O�, axis of the � coordinate perpendicular to the direction of line
2; �Lh�� is the � coordinate of an arbitrary point on the central ray PO
at a distance Lh.



seconds. K0 [see (1)] has components K0x = k cos �, K0y = 0,

K0z = k sin �: According to (19) and (20),

�ðiÞ ¼ k
x2

0 sin2 �

2Ls

1þ
x0

2Rx tan �

� �2

þ
y2

0

4RxRy tan2 �

" #

þ k
y2

0

2Ls

1þ
y0 cos �

2Ry

� �2

þ
x2

0 cos2 �

4RxRy tan2 �

" #
: ð21Þ

We are interested in the region near the apex of the groove

where jx0=Rx;yj < 1 and jy0=Rx;yj < 1. In the case of sufficiently

large Ls, particularly for the case of a plane incident wave, the

second and the third terms in the brackets of (21) are small.

After neglecting these terms,

�ðiÞ ¼ k
x2

0 sin2 �

2Ls

þ k
y2

0

2Ls

: ð22Þ

Now the continuity conditions (10) for a transmitted wave,

taking into account (13), (17), (19) and (22), take the form

(t1 = x0, t2 = y0)

� �0x0 þ k cos ���z0 þ k
x2

0 sin2 �

2Ls

þ k
y2

0

2Ls

¼

� z0 A
ð�Þ2
1 cos2 � � �2

h i1=2

= sin � þ A
ð�Þ

1 x0

� A
ð�Þ2
2 x0=2k cos � þ A

ð�Þ

2 y0 þ A
ð�Þ

3 ;

Q1x0 � �0 ¼ �
x0

Rx

A
ð�Þ2
1 cos2 � � �2

h i1=2

= sin � þ A
ð�Þ

1

� A
ð�Þ2
2 =2k cos �; ð23Þ

Q2y0 ¼ �
y0

Ry

A
ð�Þ2
1 cos2 � � �2

h i1=2

= sin � þ A
ð�Þ

2 ;

where

�0 ¼ k sin � �� þ �0= sin 2�ð Þ;

Q1 ¼ k sin �
sin �

Ls

þ
��

Rx tan �

� �
;

Q2 ¼ k
1

Ls

þ
cos ���

Ry

� �
:

ð24Þ

According to the third equation of (23), A2 is linear on y0 and

in (23) the term A2
2 is quadratic on y0 and can be neglected.

Solving the system (23) one finds the following solutions,

A
ð�Þ

1 ¼

 
ðQ1x0 � �0Þ cos � � ½x0=ðRx tan �Þ�

�

n
ðQ1x0 � �0Þ

2 cos2 � � �2 1� x2
0= R2

x tan2 �
� �� �o1=2

!
.

cos � 1� x2
0= R2

x tan2 �
� �� �� 	

;

A
ð�Þ

2 ¼ �Q
ðyÞ
� y0;

A
ð�Þ

3 ¼
Q
ðxÞ
� x2

0

2
þ

Q
ðyÞ
� y2

0

2
; ð25Þ

where

Q
ðxÞ
� ¼ �

A
ð�Þ2
1 cos2 � � �2

h i1=2

Rx sin �
�Q1

8><
>:

9>=
>;;

Q
ðyÞ
� ¼ �

A
ð�Þ2
1 cos2 � � �2

h i1=2

Rx sin �
�Q2

8><
>:

9>=
>;:

ð26Þ

Here the signs correspond to the signs in the complete integral

expression (13). Inserting the obtained A1;2;3 into (13) we find

the general integral (the term with A2
2 is neglected). The

trajectories are obtained using the set (11) (t1 = x0, t2 = y0),

�
A
ð�Þ

1 cos2 �A
ð�Þ

1x0

sin � A
ð�Þ2
1 cos2 � � �2

h i1=2

h
z�

x0

Rx

ðx� x0=2Þ

�
y0

Ry

ðy� y0=2Þ
i
þQ

ðxÞ
� ðx0 � xÞ ¼ 0;

Q
ðyÞ
� ðy0 � yÞ ¼ 0: ð27Þ

From the second equation of (27), y0 ¼ y. Near the entrance

surface of the crystal, where z ’ x2=ð2RxÞ þ y2=ð2RyÞ =

z0ðx; yÞ, from the first equation of (27) we have x0 ’ x.

Inserting the obtained x0 and y0 into the general integral

�ð�Þ½x; y; z;A
ð�Þ

1 ðx0; y0Þ, A
ð�Þ

2 ðx0; y0Þ;A
ð�Þ

3 ðx0; y0Þ�, one finds

the eikonal near the entrance surface of the crystal,

�ð1;2Þ ¼ �
A
ð�Þ2
1 cos2 � � �2

h i1=2

sin �
z� z0ðx; yÞ
� �

þ
Q1x2

2

þ
Q2y2

2
� �0x: ð28Þ

Here the superscript 1 corresponds to the ‘+’ sign on the right-

hand side and the superscript 2 corresponds to the ‘�’ sign.

Using (28) and (6) (neglecting �2
y) one finds the amplitude of

the diffracted wave on the entrance surface z = z0ðx; yÞ,

Ehð1;2Þ ¼
2E0ð1;2Þ

k� �hh

A
ð�Þ

1 cos � � A
ð�Þ2
1 cos2 � � �2

h i1=2
� �

: ð29Þ

From the second equation of (23) and the first equation of

(25),

� A
ð�Þ2
1 cos2 � � �2

h i1=2

¼ 
� Q1x� �0ð Þ cos �

x

Rx tan �
�

n
Q1x� �0ð Þ

2cos2 �

� �2 1� x2= R2
x tan2 �

� �� �o1=2
!.

1� x2= R2
x tan2 �

� �� �
:

ð30Þ

As can be seen from (28) and (30), in the region where the

argument of the square root of the right-hand side of (30) has

a negative real part, only the solution with the ‘+’ sign must be

taken. This region corresponds to the total reflection region

for a plane entrance surface crystal. Hereafter we will call this

region the ‘reflection region’. According to (30), in this region
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ðQ1x� �0rÞ
2 cos2 � < �2

r 1� x2= R2
x tan2 �

� �� �
: ð31Þ

Here �0r and �r are the real parts of the corresponding

quantities. Taking into account the definition of �0 [see (24)]

one can put �0r = 0 and �� = j�0rj= sin 2�. For a crystal with

a plane entrance surface this corresponds to the middle point

of the total reflection region for the central incident ray SO

(Fig. 2). From (31),

xj j <
�r

Q2
1 cos2 � þ �2

r = R2
x tan2 �ð Þ

� �1=2
� ax: ð32Þ

For jRxj ! 1 (crystal with a flat entrance surface),

ax sin � ¼ Ls �hr



 

= sin 2�; ð33Þ

and, for Ls !1 (plane incident wave),

ax ¼ Rx



 

 tan �
�hr



 


�0r



 

2 þ �hr



 

2
 �1=2
: ð34Þ

For definiteness, without loss of generality, let us consider the

case of a concave surface, i.e. Rx;y < 0. In the reflection region

�ax 	 x 	 ax the eikonal � = �ð1Þ, E01 = E
ðiÞ
0 ;E02 = 0, Eh1 is

given by (29) and Eh2 = 0. In the region ax 	 x 	 jRxj tan � and

for Q1 < 0 (particularly for the case of an incident plane wave)

the same solution must be taken [since the absolute value of

the corresponding amplitude decreases, see (35) below]. In the

region �jRxj tan � 	 x 	 �ax we have � = �ð2Þ, E02 = E
ðiÞ
0 ,

E01 = 0, Eh2 is given by (29) and Eh1 = 0. For the case Q1 > 0,

� = �ð1Þ in the reflection region and in the region

�jRxj tan � 	 x 	 �ax, and � = �ð2Þ in the region

ax 	 x 	 jRxj tan �. At the point x = �jRxj tan � the incident-

beam central ray propagation direction is almost parallel to

the entrance surface, the specular reflected waves must be

taken into account and the presented formulae near this point

are not valid. In the region x < �jRxj tan � the mixed Laue–

Bragg case is realised. Similarly, at the point x = jRxj tan � the

reflected-beam central ray propagation direction is almost

parallel to the entrance surface and the presented formulae

near this point are also not valid. In the region x > jRxj tan �
the mixed Bragg–Laue case is realised. Thus, for Q1 < 0 in the

region �ax 	 x < jRxj tan �,

Eh ¼ Eh1 ¼



2E
ðiÞ
0

n
Q1x� �0ð Þ cos �

þ ðQ1x� �0Þ
2 cos2 � � �2 1� x2=R2

x tan2 �
� �� �1=2

o�
.

k� �hh 1þ x=Rx tan �ð Þ
� �

; ð35Þ

and, in the region �jRxj tan � < x 	 �ax,

Eh ¼ Eh2 ¼



2E
ðiÞ
0

n
Q1x� �0ð Þ cos �

� ðQ1x� �0Þ
2 cos2 � � �2 1� x2=R2

x tan2 �
� �� �2

o�
.

k� �hh 1þ x=Rx tan �ð Þ
� �

: ð36Þ

For Q1 > 0, Eh = Eh2 in (35) and Eh = Eh1 in (36) must be taken.

The corresponding reflection coefficient

RðxÞ ¼ EhðxÞ=E
ðiÞ
0




 


2 sin½� þ 	ðxÞ� = sin½� � 	ðxÞ� ð37Þ

can be calculated. Here tan	ðxÞ = x=Rx. Below (in x8, Fig. 3),

an example of RðxÞ will be presented.

6. Focusing in a vacuum and focusing distance

According to (28), on the entrance surface of the crystal z =

z0ðx; yÞ,

�ð1;2Þ ¼
Q1x2

2
þ

Q2y2

2
� �0x: ð38Þ

According to (18), on the entrance surface,

�ðeÞðx; yÞ � �ðeÞ½x; y; z ¼ z0ðx; yÞ�

¼
Q1x2

2
þ

Q2y2

2
� kx sin ���: ð39Þ

Using the Huygens–Fresnel principle for a curved surface

(Grigoryan et al., 2010) and the corresponding Green function

in a vacuum in the parabolic approximation (Fresnel propa-

gator) for the amplitude ~EEðeÞh in a vacuum at an observation

point ðx; y; zÞ, one can write the following approximate

expression,

~EEðeÞh ¼ �
ik sin �

2�Lh

Zax

�ax

dx0
ZjRyj

�jRyj

dy0 Eh1ðx
0
Þ exp

n
ik ð� � �0Þ2=ð2LhÞ
�

þ ðy� y0Þ2=ð2LhÞ
�
þ i�ðeÞðx0; y0Þ

o
; ð40Þ

where x0; y0 are the coordinates of an arbitrary point on the

entrance surface of the crystal, �0 = x0 sin � + z0ðx
0; y0Þ cos �, � =

x sin � + z cos � is the coordinate across the diffracted beam in

the diffraction plane (Fig. 2), Lh = �z= sin � > 0 is the crystal-

to-observation point distance along the propagation direction

of the diffracted beam, the line � = 0 is parallel to the exact

Bragg direction of the reflected beam and the line � = �Lh��
is the central ray OP of the reflected wave (Fig. 2). The region

of integration, for simplicity, we take in the form of the

rectangle ½�ax; ax� � ½�jRyj; jRyj�. The term k�0 2=ð2LhÞ in

the phase of the integrand with the accuracy of quadratic

terms can be taken as kx0 2 sin2 �=ð2LhÞ. In the phase of

the integrand, combining the terms �k�z0ðx
0; y0Þ cos �=Lh and
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Figure 3
Dependence of the reflection region size on Ls.



Q1x0 2=2þQ2y0 2=2, taking in these terms � = �Lh�� (with the

accuracy of quadratic terms), (40) can be rewritten in the form

~EEðeÞh ¼ �
ik sin �

2�Lh

Zax

�ax

dx0
ZjRyj

�jRyj

dy0 Eh1ðx
0Þ exp i�ð�; �00; y; y00Þ½ �;

ð41Þ

where �00 = x0 sin �,

�ð�; �00; y; y0Þ ¼ kð� � �00Þ2=ð2LhÞ þ kðy� y0Þ
2=ð2LhÞ

þ�ðeÞ0 ð�
00; y0Þ;

�ðeÞ0 ð�
00; y0Þ ¼ kA�00

2
=ð2 sin �Þ þ kBy0

2
=2� k�00��;

A ¼ sin �=Ls þ 2 cot ���=Rx;

B ¼ 1=Ls þ 2 cos ���=Ry:

ð42Þ

According to the stationary phase method the trajectories are

obtained by differentiation of the phase of the integrand with

respect to the integration variables and setting them equal to

zero,

�00
sin �

Lh

þ A

� �
�

�

Lh

þ��

� �
sin � ¼ 0;

y0
1

Lh

þ B

� �
�

y

Lh

¼ 0:

ð43Þ

As can be seen from (43), the trajectories are straight lines

which in the plane ð�;LhÞ are intersected at the point with the

coordinates ð�f;LhfxÞ (meridional focusing) and in the plane

ðy;LhÞ are intersected at the point with the coordinates

ðyf;LhfyÞ (sagittal focusing). The coordinates of the focus

points satisfy the relations

1=Ls þ 1=Lhfx ¼ 1=Fx;

�f ¼ �Lhfx��;
ð44Þ

and

1=Ls þ 1=Lhfy ¼ 1=Fy;

yf ¼ 0:
ð45Þ

Here the focal distances Fx;y are determined as

Fx ¼ �Rx sin �=ð2 cot ���Þ;

Fy ¼ �Ry=ð2 cos ���Þ:
ð46Þ

Since in the reflection region at the apex of the groove �� > 0

(for central incident ray SO; Fig. 2), then for the focusing in

both directions it should be Rx;y < 0, i.e. the groove must have

a concave form. For the middle point of the reflection region

for a crystal with a plane entrance surface, �� = j�0rj= sin 2�
[see (31)] (Authier, 2001; Pinsker, 1982), and in this important

case

Fx ¼ �Rx sin3 �=j�0rj;

Fy ¼ �Ry sin �=j�0rj:
ð47Þ

This result is the same as in the papers by Hrdý & Siddons

(1999) and Hrdý et al. (2001b) obtained on the basis of the

usual plane-wave dynamical diffraction theory. It follows from

(47) for a point focusing,

Ry ¼ Rx sin2 �: ð48Þ

7. Focus spot size and intensity

Let us consider the point focusing case [see the condition

(48)]. At the distance Lhf = Lhfx = Lhfy (on the point focusing

plane) from (41) one obtains

I
ðeÞ
h ¼

~EEðeÞh




 


2 ¼ S

�Lhf

sin P�

P�

sin Py

Py

� �2

�EEh1



 

2; ð49Þ

where S = 4axjRxj sin3 � is the area of the integration region (in

the plane perpendicular to the propagation direction of the

reflected beam), P� = kax sin �ð�� þ �=LhfÞ, Py = kjRyjy=Lhf .
�EEh1 is the mean value of the diffracted wave amplitude on the

entrance surface of the crystal inside the reflection region and

j �EEh1j
2
’ 1. From (49) one can estimate the maximal value of

the intensity at the focus point,

Imax ¼ S=�Lhfð Þ
2 �EEh1



 

2: ð50Þ

The equation (49) allows the focus spot sizes ��f and �yf to

be estimated in the O� and Oy directions, respectively. In

particular, for the important case of an incident plane wave,

��f ¼
�F

ax sin �
¼ 2�=�’x ð51Þ

and

�yf ¼
�F

Ry



 

 ¼ 2�=�’y: ð52Þ

Here, F = Fx = Fy is the common focal distance when the

condition (48) (point focusing) is fulfilled. The angles �’x =

2ax sin �=F ’
ffiffiffi
2
p

2j�hrj= sin 2� (assuming j�0rj ’ j�hrj) and

�’y = 2jRyj=F ’ 2 cos � 2j�hrj= sin 2� are the view point angles

of the groove reflection region from the focus point in the

ðx; zÞ and ðy; zÞ planes, respectively. These angles are

approximately proportional to the angular width of the

dynamical diffraction reflection curve for a crystal with a plane

entrance surface. The formulae (51) or (52) are the same as for

a curved mirror (Michette, 1986) if we replace angles �’x and

�’y with the angular size of the specular reflection region

proportional to ðj�0rj=2Þ1=2, which in some order is larger than

the dynamical diffraction reflection region. Thus, in the case

of the same wavelength, the focus spot size for a mirror is

smaller. However, the mirrors are used for soft X-ray focusing,

which can have a significantly large wavelength.

8. Example

Let us consider the case of a Si(220) reflection, � = 0.71 Å

(17.46 keV) radiation, incident plane wave, �-polarization,

jRxj = 1 mm, jRyj = jRxj sin2 � = 34 mm (point focusing), �� =

j�0r= sin 2�. According to (47), F = Fx = Fy = 1.98 m. In Fig. 3
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the dependence of the reflection region size 2axðLsÞ [see (32)]

is shown. For Ls = 2F, the reflection region size has maximum

value 2axð2FÞ = 2jRxj tan � = 375 mm. According to (32) the

reflection region size for an incident plane wave 2axðLs !1Þ

= 2axðFÞ = 193 mm. In Fig. 4 the intensity distribution IhðxÞ =

jEhðxÞj
2=jEðiÞ0 j

2 on the entrance surface in the region

�jRxj tan � < x < jRxj tan � is presented. In the reflection

region�96.7 mm	 x	 96.7 mm the intensity increases and has

a maximum value at x = ax = 96.7 mm. The behavior of the

intensity significantly differs from the intensity behavior for

a plane-entrance-surface perfect crystal. Despite this, the

reflection coefficient RðxÞ [see (37)] has the same behavior

(Fig. 5) as for a plane-entrance-surface perfect crystal. Its

behavior differs from the behavior of intensity. The difference

between the behaviors of the intensity and reflection coeffi-

cient in our case is due to geometrically asymmetric reflection

on both sides of the apex of the groove; meanwhile, for a

curved mirror the reflection geometrically is symmetric in the

whole reflection region. For a curved mirror the reflection

coefficient and intensity have the same behavior. The behavior

of the reflection coefficient shows that the whole reflected

flux is less than for the incident beam (taking into account

absorption), despite the fact that the intensity can be greater

than unity (Fig. 4). But, as in our case as well as for a curved

mirror, the absorption gives rise to an asymmetric reflection

curve. In Fig. 6 using (41) the numerically calculated intensity

distribution I
ðeÞ
h ð�; 0;FÞ = E

ðeÞ
h j

2=jEðiÞ0 j
2 on � at the focal

distance F in the plane y = 0 is shown. As can be seen, the

intensity has a maximum at the point � = �f1 =�15.8 mm which

slightly differs from the focus point coordinate �f = �17.3 mm

defined in (45). This difference is due to the phase of the

reflected wave on the entrance surface of the crystal. For � <

�f1 the intensity is less than for � > �f1. This coincides with the

behavior of the amplitude of the reflected wave on the

entrance surface of the crystal (Fig. 4). The numerically

calculated intensity distribution on y, I
ðeÞ
h ð�f1; y; FÞ =

jE
ðeÞ
h j

2=jEðiÞ0 j
2, at the focal distance F for � = �f1 is shown in

Fig. 7. According to Figs. 6 and 7 the behavior of the intensity

distribution coincides with theoretical predictions [formula

(50)]. The focus spot’s sizes predicted by (51) and (52), ��f ’

8 mm and �yf ’ 4 mm, coincide with the numerically calcu-

lated focus spot’s sizes presented in Figs. 6 and 7. According to

(50) the intensity maximum value Imax ’ 103 is overestimated

but has almost the same order as the numerically obtained

intensity maximum Imax ’ 309 (see Figs. 6 and 7).

The crystal data are taken from Pinsker (1982).

9. Summary

In this work, on the basis of the eikonal approximation, Bragg-

case X-ray focusing with a parabolic-shaped entrance-surface

perfect crystal is considered theoretically. The expressions for
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Figure 4
Intensity of the reflected wave on the entrance surface.

Figure 5
Reflection coefficient of the reflected wave.

Figure 6
Intensity distribution of the reflected wave on � near the focus point on
the focal plane, y = yf = 0, Lh = F.

Figure 7
Intensity distribution of the reflected wave on y near the focus point on
the focal plane, � = �f1, Lh = F.



focal distances, intensity gain and focus spot size are obtained.

The point focusing condition is found.

An example is considered. The focusing experimentally can

be realised using X-ray synchrotron sources of radiation

(particularly FELs). The Bragg-case lens can be a focusing

element of an X-ray beamline or FEL.

The author is grateful to Dr J. Hrdý for discussion and

support.
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