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A method of calculating the transmission of hard X-ray radiation through a

perfect and well oriented photonic crystal and the propagation of the X-ray

beam modified by a photonic crystal in free space is developed. The method is

based on the approximate solution of the paraxial equation at short distances,

from which the recurrent formula for X-ray propagation at longer distances is

derived. A computer program for numerical simulation of images of photonic

crystals at distances just beyond the crystal up to several millimetres was

created. Calculations were performed for Ni inverted photonic crystals with the

[111] axis of the face-centred-cubic structure for distances up to 0.4 mm with a

step size of 4 mm. Since the transverse periods of the X-ray wave modulation are

of several hundred nanometres, the intensity distribution of such a wave is

changed significantly over the distance of several micrometres. This effect is

investigated for the first time.
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1. Introduction

Photonic crystals are structures in which the refractive index

varies periodically in space on the length scale of the wave-

length of light. They possess a photonic band analogue of the

electron band gap of semiconductors. High-quality photonic

crystals have promising applications in the area of photonics.

There are several synthesis methods for preparing photonic

crystals. For creating one-dimensional crystals (multilayers)

different deposition techniques are used. Two-dimensional

crystals can be made by means of the Si microfabrication

technique including electron-beam lithography, anisotropic

deep plasma etching, LIGA and so on. As for three-dimen-

sional crystals, a widely used technique is the self-assembly of

colloid particles on a vertical surface (Klimonsky et al., 2011).

The main goal is to realise a situation where all the colloidal

particles have the shape of spheres of the same radius, and

form a closely packed structure.

When forming a close-packing structure of identical spheres

in the first layer, a triangular structure occurs in which the

centres of the three neighbouring spheres form an equilateral

triangle with the side length equal to the diameter of the

sphere, D. Each sphere forms six such triangles with all its

neighbours. During the packing of the second layer, spheres lie

in the centre of the triangle, but fill only three of the six

possible positions. At the formation of the third layer there are

two possible combinations. If, in the third layer, spheres

occupy the positions as in the first layer, then a hexagonal

close-packed (h.c.p.) lattice ABABAB is formed. In the

horizontal plane the spheres are ordered with a period D

along the selected row and with a period p = D cos 30� =

0:866 D perpendicular to this row. Spheres in neighbouring

rows are shifted relative to each another by D=2. The period in

the vertical axis is h = 2Dð2=3Þ1=2.

If the third layer is placed over holes in the first and second

layers then a face-centred cubic (f.c.c.) lattice ABCABC is

created. Thus, the third layer is not equivalent to the first one

and all three layers in the structure are different. In such a

f.c.c. lattice a horizontal plane corresponds to the direction

111. The period in the vertical axis is h = 3Dð2=3Þ1=2.

Both structures are almost equally dense and both are

realised in colloidal crystals and often coexist. Colloidal

crystals in turn can be used as a template for making inverted

photonic crystals with a desired refractive index. In order to

obtain crystals with a full photonic band gap the structure

needs to be controlled since the photonic band gap is highly

sensitive to deformation and defects such as stacking faults,

dislocations etc. Unfortunately, the method of self-assembly of

colloidal particles always creates crystals with a large number

of random defects. To achieve perfect crystals, detailed

knowledge about the crystal growth mechanism and resulting

defect structures is required (Klimonsky et al., 2011).

A major obstacle in studying the defect structure is the lack

of appropriate methods that allow the internal structure of

a photonic crystal to be seen in three dimensions. The use of

transmission electron microscopy in the study of these mate-

rials is limited since the techniques’ probing depth is a few

hundred nanometres. Scanning electron microscopy is

restricted to obtaining structural information from the surface.

Different optical methods, such as laser diffraction, confocal
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optical microscopy and optical spectroscopy, are widely

used for the in situ characterization of immersed, fluorescent

and refractive-index-matched colloidal crystals with particle

diameters of the order of a micrometre.

X-ray diffraction is widely used to investigate the crystal

structure over macroscopic distances. However, the difficulty

of this technique for colloids is the large difference in scale

between X-ray wavelength and particle size. To overcome this

problem an X-ray high-resolution diffraction scheme based on

Fourier transformation by compound refractive lenses was

realised (Snigirev et al., 1996; Kohn et al., 2003; Drakopoulos et

al., 2005). Such an approach allows the internal structure of

the colloidal crystals to be accessed and is indispensable for

the study of the internal structure of defects while the struc-

ture at the local level remains unsolved (Petukhov et al., 2006;

Meijer et al., 2012). X-rays can be used for practically all

materials and they do not require index matching or fluor-

escent labelling. Their shorter wavelength lifts restrictions

related to diffraction limitations.

Recently, the high-resolution X-ray microscopy (HRXRM)

technique was applied to study mesoscopically structured

materials, employing compound refractive lenses (Bosak et al.,

2010; Snigireva et al., 2011). The advantage of the lens-based

method is the possibility to retrieve a high-resolution

diffraction pattern and real-space images in the same experi-

mental set-up. Methodologically the proposed approach is

similar to the studies of crystals by high-resolution transmis-

sion electron microscopy. The proposed microscope was

applied for studying natural and synthetic opals, inverted

photonic crystals and colloidal goethite board-like particles

(Snigireva & Snigirev, 2013; Meijer et al., 2013; Byelov et al.,

2013).

The development of the HRXRM method makes relevant

the task of the numerical calculation of the intensity distri-

bution of radiation in the near field, i.e. immediately behind

the crystal, as well as at short distances. It should be noted that

so far such a problem has not been considered. Standard

methods of X-ray crystal diffraction are inapplicable, since the

photonic crystal has a very long period in comparison with the

radiation wavelength. Bragg conditions are fulfilled for a large

number of reciprocal lattice vectors, so there is multiple

scattering.

Moreover, the scattering from a single sphere cannot be

considered weak. The situation is close to the transmission

electron microscopy (Cowley, 1995) or channelling effect of

fast particles in the crystal (Kagan & Kononets, 1970). On the

other hand, the problem can be solved by a method which is

used in calculating the X-ray phase contrast (Snigirev et al.,

1995). However, this method has to be modified to take into

account the strong radiation scattering inside the photonic

crystal as well as the strong modulation of radiation in the free

space. This paper deals with the development of the method of

calculating the transmission of hard X-ray radiation through a

thick three-dimensional photonic crystal, and the propagation

of a strongly modulated X-ray beam in free space. A computer

program has been developed and numerical calculations were

performed.

2. Method of computer simulation

X-ray beams delivered at third-generation synchrotron

radiation sources have a very small angular divergence;

therefore divergence can be neglected in the task of deter-

mining the beam transmission in the object or propagation in

free space over a small distance. If a parallel beam (a plane

wave) propagates through a three-dimensional photonic

crystal, a rather pronounced contrast can be obtained only for

definite orientations of the crystal. This fact is easy to under-

stand from an analogy with the channeling effect. It is clear

that these orientations have to be the ones with the smallest

period along the beam direction.

Consider a monochromatic wave of X-ray radiation of

frequency ! incident on the entrance surface of a photonic

crystal which is normal to the beam direction. The latter

coincides with the z-axis of the Cartesian coordinate system

(see Fig. 1). The amplitude of the electric field of this wave can

be written as follows,

Eðr; tÞ ¼ expðikz� i!tÞAðr; !Þ; ð1Þ

where k = !=c = 2�=� is the wavenumber, � is the wavelength

of monochromatic radiation, c is the speed of light and r =

(x; y; z) is a position in space of the observation point. The

function Eðr; tÞ is a solution of Maxwell’s wave equation,

tuEðr; tÞ ¼
1

c2

@2

@t2

Z
dt 0�ðr; t 0ÞEðr; t � t 0Þ; ð2Þ

where

tu ¼ ��
1

c2

@2

@t2
; � ¼

@2

@x2
þ
@2

@y2
þ
@2

@z2
ð3Þ

and �ðr; tÞ is the time-dependent susceptibility of matter.

We substitute (1) into (2) and obtain the equation for a

slowly varying function Aðr; !Þ,

@A

@z
¼

ik

2
�ðr; !ÞAþ

i

2k
�A; ð4Þ

where �ðr; !Þ is a time Fourier image of �ðr; tÞ. We note that

for X-rays the parameter k has a rather large value, and

therefore the second term on the right-hand side of (4) is small

compared with the first term even for a relatively small

interaction of X-rays with matter which leads to a small value

of �ðr; !Þ. We will assume that the matter is homogeneous,

i.e. �ðr; !Þ = 2ðn� 1Þ is a constant inside the matter, where
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Figure 1
Coordinate axes relative to the photonic crystal.



n = 1� � is a complex refraction index, and � = �� i�.

However, the matter can be absent in some regions inside the

object, and therefore we need to introduce the function �ðrÞ
which is equal to 1 at a point inside the matter, and 0 at a point

in free space.

It is known that for X-rays a paraxial (small-angle)

approximation is met with very good accuracy. According to

this approximation we can neglect the term ið2kÞ
�1@2A=@z2

which is much smaller than the term @A=@z. Taking into

account all assumptions, we finally obtain [see also Kohn

(2002) and Kohn (2003)]

@A

@z
¼ �ik��ðrÞAþ

i

2k

@2A

@x2
þ
@2A

@y2

� �
: ð5Þ

We have to apply this equation to a photonic crystal where the

function �ðrÞ changes its value along the z-axis periodically,

and the period is rather small. We will assume that we know

the function AðrÞ in the plane (x; y) at some point z = z0 along

the optical axis (z). This is the boundary condition for the

equation. We want to find a solution in some plane at z > z0.

It is convenient to eliminate the first term on the right-hand

side of (5) by means of the substitution

A ¼ CB; C ¼ exp �ik�
Rz
z0

dz0� x; y; z0ð Þ

" #
: ð6Þ

Then we obtain for the new unknown function B the same

boundary condition and the following equation,

@B

@z
¼

i

2k

@2B

@x2
þ
@2B

@y2
þOðrÞ

� �
: ð7Þ

Here

OðrÞ ¼ C�1 2
@B

@x

@C

@x
þ 2

@B

@y

@C

@y
þ B

@2C

@x2
þ
@2C

@y2

� �� �
: ð8Þ

The term OðrÞ contains derivatives of C, which is proportional

to the integral over the interval from z0 to z.

The solution of (7) is very complicated. Fortunately, if we

consider only a small distance z� z0, then the function OðrÞ

will be small and it can be neglected. Equation (7) without

OðrÞ has the well known solution

Bðx; y; zÞ ¼
R

dx0 dy0P2ð�x;�y;�zÞBðx0; y0; z0Þ; ð9Þ

where �x = x� x0, �y = y� y0, �z = z� z0, P2ðx; y; zÞ =

Pðx; zÞPðy; zÞ and

Pðx; zÞ ¼
1

ði�zÞ
1=2

exp i�
x2

�z

� �
ð10Þ

is the Fresnel propagator.

Finally, for the initial function we have the solution

Aðx; y; zÞ ¼ exp �ik�
Rz
z0

dz0 �ðx; y; z0Þ

" #

�
R

dx0dy0 P2ð�x;�y;�zÞAðx0; y0; z0Þ: ð11Þ

This solution describes two processes. The first process is a

transmission through the object layer of small thickness �z

similarly to the free-space propagation. The second process is

described by the exponential factor which takes into account

the complex phase shift due to the difference of the speed of

light in matter compared with in free space, and due to

absorption of X-ray radiation in matter. In reality this solution

corresponds to the object that is obtained from our object

by compressing the layer of thickness �z to a very thin layer

at the position z with the same amount of matter in each

point x; y.

It can be shown that within the same approximation the

object can be compressed to a thin layer at the position z0.

However, a more accurate approximation corresponds to the

situation of a very thin layer with the total amount of matter

placed at the middle point of the layer thickness. In this case

the X-ray beam propagates through free space over a distance

of half the thickness of the layer; then the phase shift is taken

into account for the total layer and then the distance of half

the thickness of the layer is calculated as in free space once

again. Such a solution satisfies the reciprocity principle. We

write it in a short form as

AðzÞ ¼ P2ð�z=2Þ � C ½P2ð�z=2Þ � Aðz0Þ�; ð12Þ

where the symbol � means a convolution.

In the theory of X-ray phase contrast such an approxima-

tion is applied to the total object. Then the factors describing

the convolution do not play a significant role; they just add the

distance �z=2 to the distances before and after the object, and

the object can be represented as a zero-thickness plate, but

with the correct phase shift according to geometrical optics.

The phase factor C alone describes the object. It is called the

transmission function.

However, the applicable value for the distance �z depends

on the derivatives of C. In the case of a three-dimensional

photonic crystal they are not small. Therefore we cannot apply

the solution (12) to the total thickness of the photonic crystal.

It is convenient to apply it for one period along the optical

axis consisting of two layers in the h.c.p. crystal (structure

ABABAB), or three layers in the f.c.c. crystal (structure

ABCABC). In this case the solution (12) should be considered

as a recurrent relation which is used iteratively and the factor

C is the same on each iteration.

Such an approach is close to the well known ‘multi-slice

approximation’ proposed by Goodman and Moodie [see

chapter 11 of Cowley (1995)] for the transmission electron

microscopy simulations. We note that X-rays interact with

matter quite differently than electrons. For X-rays the main

effect is a phase shift of the wavefunction but not an

absorption. For a crystal consisting of many periods the free-

space propagation over the distance �z=2 has to be made only

for the first and last periods. In between them, the propagation

over the distance �z can be calculated directly.

Making an analytical estimation of the accuracy of such an

approach in the task of calculating the three-dimensional

photonic crystal is rather complicated. One can choose a small

change of the phase factor Cðx; yÞ for the period as a criterion.

It is useful to compare the results of calculations with different

values of the step �z, for example one and two periods.
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Another test is a comparison with the experimental data, but

first one has to have both theoretical and experimental results.

We note that the X-ray beam, transmitted through the

three-dimensional photonic crystal, becomes modulated with

a very short period in the plane x; y. In such a case even the

task of propagating radiation through free space is rather

difficult because a very small step of a numerical set of points

is necessary. On the other hand, the total number of points

cannot be large. In addition, the intensity of radiation changes

significantly over a small distance �z of propagation in free

space, and such modulation is a new physical phenomenon,

which has not been observed in experiments so far.

3. Specific example and computing details

For the practical realisation of the method presented above we

calculated the transmission of an X-ray beam through a Ni

inverted photonic crystal of type ABCABC and propagation

of a strongly modulated X-ray beam in free space. The

considered object was used in the experiment (unpublished).

It was prepared by the electrodeposition technique and

utilizing a colloidal film as a template. Artificial opals were

fabricated using a novel synthetic approach based on electric-

field-assisted vertical deposition of monodisperse polystyrene

microspheres of average diameter 500 nm onto a Si(100) wafer

coated with a 100 nm-thick gold layer.

In order to obtain the free-standing metallic structure on

the substrate, the polystyrene microspheres were dissolved by

placing the sample in toluene for several hours (Sapoletova et

al., 2010). According to scanning electron microscope imaging,

the inverse opal consists of nine layers. The X-ray beam is

directed along the z axis which is normal to the layers of the

photonic crystal (see Fig. 1). The period along the z axis is

equal to h = 3Dð2=3Þ1=2 = 1.2247 mm. The nine layers contain

only three periods. The matter thickness for a period is

described by the function

sðx; yÞ ¼
Rzþh

z

dz0 �ðx; y; z0Þ ð13Þ

where z is arbitrary.

Computer simulations are always performed on a finite area

on the x; y plane. Since the function sðx; yÞ is periodical, it is

sufficient to perform a calculation inside a region of no more

than 2D. We choose a set of 1024 � 1024 points with a step of

0.001 mm. Fig. 2 shows the function sðx; yÞ as a linear black–

white contrast in limits of the calculating area. The black

colour is used for the minimum value smin = 0.1067 mm and

the white colour corresponds to the maximum value smax =

0.7331 mm. The periods of the image are 0.5 mm horizontally

and 0.2887 mm vertically.

The computer simulation of the transmission of the X-ray

beam through the photonic crystal consists of iterative calcu-

lations of the wavefunction Aðx; yÞ. We begin with Aðx; yÞ = 1.

Each iteration includes two operations. The first one is a

multiplication of Aðx; yÞ by

Cðx; yÞ ¼ exp �ik� sðx; yÞ½ �: ð14Þ

The second operation is a convolution of Aðx; yÞ with the

Fresnel propagator P2ðx; y; hÞ. In the last iteration step the

propagator P2ðx; y; h=2Þ should be used. A convolution is

performed by means of two Fourier transformations. We

calculate the Fourier image of Aðx; yÞ, then multiply it by the

Fourier image of the Fresnel propagator, which is known in an

analytical form, and then calculate the inverse Fourier image

of the product. The Fourier image is calculated by means of

the fast Fourier transformation (FFT) procedure.

The FFT method computes the result for a finite area,

whereas our integrals have infinite limits. Outside the finite

area the wavefunction seems to be equal to zero, i.e. it is

similar to using a slit in front of the object. Therefore the

calculation result shows artifacts associated with diffraction by

the slit (Kohn & Tsvigun, 2014). Fortunately these artifacts

arise only near the boundaries of the calculated area, while the

central part is calculated accurately. To eliminate the artifacts

we use the property of periodicity for the function Aðx; yÞ.

Indeed, for an infinite periodical system the accurate result

will be periodical at any distance of propagation. Therefore we

apply a numerical procedure which selects the central period

of Aðx; yÞ and improves the outer area according to the

condition of periodicity.

We would like to note that accurate calculation of the X-ray

diffraction by a slit shows oscillations with small periods (high

frequencies) in the central part of the calculating region as

well, but the FFT procedure on the finite number of points

washes out these oscillations. This is why the use of a very high

number of points is not preferential. On the other hand, in

calculating the propagation of X-rays over a small distance we

cannot use a large step because the step has to be at least ten

times smaller than the first Fresnel zone for a Fresnel propa-

gator, i.e. 2ð�hÞ
1=2.

It is necessary to stress that a similar problem exists in

calculating the propagation of X-rays in free space. We cannot

consider a large distance due to the artifacts arising from a slit

diffraction even though the phase shift by matter is absent. We
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Figure 2
The function sðx; yÞ within the calculating area. See text for details.



have to choose the maximum distance for which the artifacts

do not influence the central period and perform calculations

on this distance iteratively, improving the outer region in each

iteration. Therefore the propagation of an X-ray beam over a

long distance is impossible with such an approach.

On the other hand, using a small propagation distance

iteratively is useful because it allows investigation of a fast

transformation of the X-ray beam intensity behind the

photonic crystal. This phenomenon has not been studied so

far. It shows that the photonic crystal is a perfect modulator

of the X-ray beam. The same phenomena exist in electron

transmission microscopy.

4. Results and discussion

The elaborated computer program is able to calculate both the

transmission of an X-ray coherent wave inside the photonic

crystal and the propagation of a strongly modulated wave in

free space behind the crystal on the same set of points. At first,

the complex wavefield was calculated at the exit surface of the

crystal. Since the crystal is thin (only nine layers), the phase

shift is the main effect, but not absorption. However, in the

points where the Ni thickness is maximal, the absorption of

radiation is not small.

The main purpose of our work is calculation of the intensity

transformation during propagation in free space behind the

crystal. We discover that this transformation is strong even in

very small intervals of propagation along the optical axis. The

program allows users to save the complex wavefield to a file at

each iteration step. These data can be used as a starting point

for the next iteration or for creating graphics. In each iteration

step the program creates a two-dimensional map of the

intensity distribution together with the intensity profiles along

the central sections (vertical and horizontal).

The calculations were performed for � = 0.1 nm. The

distance z along the optical axis is counted from the exit

surface of the crystal, and was varied from 0 up to 400 mm with

an iteration step of 4 mm; thus we made 100 iteration steps of

propagation in free space. Fig. 3 shows four images of two-

dimensional intensity maps for distances of 0, 8, 16 and 24 mm.

The images are ordered from left to right and from top to

bottom. They show only the central part of the calculating area

with 512 � 512 points, so they contain just one period hori-

zontally and a longer region vertically to reveal the hexagonal

symmetry of the image.

To make the images more informative, the minimum

intensity value is shown by the black colour and the maximum

value by the white colour, although the contrast is not

constant. The dependence of the minimum and maximum

relative intensity values on the distance from the crystal (or

number of iterations) is shown in Fig. 4. One can see that just

behind the photonic crystal the minimum value is 0.67, while

in front of the crystal it is 1. The contrast at z = 0 is low and has

mainly an absorption nature.

With increasing distance z the phase contrast becomes

much more pronounced. One can see in Fig. 3 that the

intensity distribution deviates more and more from the Ni

thickness map, and interference fringes appear in the images.

We would like to mention that calculations were performed

for the ideal situation, i.e. fully coherent radiation and

unlimited detector resolution. At present it is impossible to

observe these fringes with the experimental HRXRM tech-

nique due to the detector resolution (the best resolution is

0.5 mm). In addition, the requirements of the depth of focus of

the imaging lens are too severe. A comparison with experi-

mental results will be made in the future.

Fig. 5 shows intensity maps calculated for distances z from

40 mm to 400 mm with a step 40 mm, i.e. through ten iteration

steps. The order of the images is the same as in Fig. 3. We note

that in reality the content of the images changes significantly

in each iteration step, but it is difficult to show 100 pictures.

However, they have some common features. The regions of

minimum intensity always correspond to the regions of high Ni

thickness.

We note that the strong change of X-ray beam structure

over a small distance z is not surprising and can be explained

using the Talbot imaging formalism (Talbot, 1836). It is known

that the periodical wavefield becomes self-reproduced at the

distance zT = 2p2=�, where p is the transverse period. Indeed,

the one-dimensional function AðxÞ at z = 0 can be written as a

Fourier series,

Aðx; 0Þ ¼
P1

m¼�1

Am exp i2�mx =pð Þ: ð15Þ
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Figure 3
Intensity distributions at distances 0, 8, 16 and 24 mm. The images are
ordered from left to right and from top to bottom.

Figure 4
Minimum and maximum values of relative intensity distributions at
various distances.



Then the convolution

Aðx; zÞ ¼
R

dx0 Pðx� x0; zÞAðx; 0Þ ð16Þ

has an analytical solution.

The result can be written as follows,

Aðx; zÞ ¼
P1

m¼�1

Am exp i2�mx =p� i�m2�z =p2ð Þ: ð17Þ

It is easy to see that for z = zT the additional phases are a

product of 2� and an integer. The crystal under consideration

has a vertical period p = 0.2887 mm and therefore zT =

1667 mm. It is four times larger than the calculated maximum

distance.

The Talbot effect is similar to the focused image of the

object by a refractive lense. In this case a point-to-point

correspondence between the wavefields at different places

along the optical axis takes place. Another phenomena called

the fractional Talbot effect (Berry & Klein, 1996) occurs at

distances zn = p2=n� which can be very small for large values

of n. Our results just demonstrate some fractional Talbot

images. They are different from the initial image, and their

properties are unknown. Therefore we cannot use the frac-

tional Talbot formalism to verify the calculations.

5. Conclusion

The main result of this work can be formulated as a strong

change of the X-ray beam transverse intensity distribution

over distances of several micrometres if the wavefield is

periodically and strongly modulated. Although the period is

half a micrometre or less, the fragments of the distribution are

changed on much smaller distances.

This allows one to conclude that the ability of the HRXRM

method is not sufficient to observe this effect. It is obvious that

the HRXRM method shows a rather smoothed picture due

to a finite detector resolution and partial coherence of the

X-ray beam.

The methods of calculation of the wavefield inside the

photonic crystal as well as in free space behind the photonic

crystal are developed on the basis of the FFT procedure and

iterational improving the artifacts. The possibility to observe

this effect experimentally will be considered in future work.

The work of VGK was partially supported by RFBR grant

N.13-02-00469 and by The Ministry of Education and Science

of the Russian Federation, project 8364.
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Figure 5
Intensity distributions at distances from 40 mm to 400 mm with a step of
40 mm. The images are ordered from left to right and from top to bottom.
See text for details.
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