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aISTerre, Université Grenoble Alpes and CNRS, F-38000 Grenoble, France, bAdvanced Light

Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, and cIFSTTAR,

F-44344 Bouguenais, France. *E-mail: manceau@ujf-grenoble.fr

Principal component analysis (PCA) is a multivariate data analysis approach

commonly used in X-ray absorption spectroscopy to estimate the number of

pure compounds in multicomponent mixtures. This approach seeks to describe a

large number of multicomponent spectra as weighted sums of a smaller number

of component spectra. These component spectra are in turn considered to be

linear combinations of the spectra from the actual species present in the system

from which the experimental spectra were taken. The dimension of the

experimental dataset is given by the number of meaningful abstract components,

as estimated by the cascade or variance of the eigenvalues (EVs), the factor

indicator function (IND), or the F-test on reduced EVs. It is shown on synthetic

and real spectral mixtures that the performance of the IND and F-test critically

depends on the amount of noise in the data, and may result in considerable

underestimation or overestimation of the number of components even for a

signal-to-noise (s/n) ratio of the order of 80 (� = 20) in a XANES dataset. For a

given s/n ratio, the accuracy of the component recovery from a random mixture

depends on the size of the dataset and number of components, which is not

known in advance, and deteriorates for larger datasets because the analysis picks

up more noise components. The scree plot of the EVs for the components yields

one or two values close to the significant number of components, but the result

can be ambiguous and its uncertainty is unknown. A new estimator, NSS-stat,

which includes the experimental error to XANES data analysis, is introduced

and tested. It is shown that NSS-stat produces superior results compared with

the three traditional forms of PCA-based component-number estimation. A

graphical user-friendly interface for the calculation of EVs, IND, F-test and

NSS-stat from a XANES dataset has been developed under LabVIEW for

Windows and is supplied in the supporting information. Its possible application

to EXAFS data is discussed, and several XANES and EXAFS datasets are also

included for download.
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1. Introduction

The advent of high-brilliance synchrotron radiation sources

and improved X-ray optics has opened some unique possibi-

lities for the micro- and nano-structural characterization of

trace metals in heterogeneous organic and inorganic matrices

with numerous applications in materials, biological and

environmental science. With a mass sensitivity of about one

part per hundred thousand (10 p.p.m. or 10 mg kg�1) and a

good sensitivity to chemical state and bonding environment,

X-ray absorption spectroscopy (XAS) is one of the prime

chemical and structural probes for the analysis of inhomoge-

neous samples. Ideally, one would want to record at least as

many single-component XAS spectra as there are metal

species in the heterogeneous matrix. However, this is rarely

doable because the lack of uniformity often extends over a

large range of spatial scales and every analyzed point has

varying mixtures of two or more species of the same element.

Because no two points generally are identical, inhomogeneous

materials must be sampled at many points to be understood,

with the accrued difficulty that the resultant spectrum at every

point-of-interest (POI) is the weighted sum of the spectra of

its component parts.

Multicomponent systems are analyzed traditionally in two

steps using multivariate statistical analysis (Lochmüller &

Reese, 1998; Malinowski, 2002; Brereton, 2003). In this
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context, the spectral dataset is analysed first by principal

component analysis (PCA), also called factor analysis

(Wasserman, 1997; Wasserman et al., 1999; Ressler et al., 2000;

Frenkel et al., 2002; Manceau et al., 2002; Wang et al., 2004).

The main utility of PCA is to reduce the dimensionality of the

dataset by approximating the spectra as weighted sums of a

subset of linearly independent orthogonal eigenvectors, i.e.

the principal components (PCs), that best explain the varia-

bility in the data. The pure component spectra (i.e. species

identity) and their fractional contribution at each POI (i.e.

species abundance) may be obtained subsequently by target

transformation (Hopke, 1989; Isaure et al., 2002; Struis et al.,

2004; Ryser et al., 2005; Kirpichtchikova et al., 2006; Manceau

& Matynia, 2010; Donner et al., 2011), iterative target factor

analysis (ITFA) (Gampp et al., 1986; Fernandez-Garcia et al.,

1995; Márquez-Alvarez et al., 1997; Iglesias-Juez et al., 2004;

Anunziata et al., 2011; Gemperline, 1984; Rossberg et al., 2003)

or multivariate curve resolution-alternating least squares

(MCR-ALS) (de Juan & Tauler, 2006; Conti et al., 2010;

Jaumot et al., 2005; Brugger, 2007; Testemale et al., 2009)

processing techniques applied to the PCA-reduced dataset.

Determining the number of statistically significant PCs that

is necessary and sufficient to reconstruct all data within error

is not straightforward. Three estimators are commonly used to

differentiate PCs that contain statistically more variance than

those that span noise: (i) the marginal decline of the eigen-

values from the PCA, which ranks PCs according to their

importance in reproducing a dataset (% of variance), (ii) the

semi-empirical indicator function IND (Malinowski, 2002) and

(iii) Malinowski’s F-test (Malinowski, 1988, 1990). According

to the first estimator, a plot of the eigenvalues (�j) in

descending order against the component number j, often

called a scree plot (Cattell, 1966), shows a break at the number

of meaningful PCs (x). The IND indicator is

INDj ¼

Pm
k¼jþ1

�k

pðm� jÞ
5

0
BB@

1
CCA

1=2

ð1Þ

where m is the number of spectra in the dataset, k 2 ½ jþ 1;m�

is the index to a particular component, and p is the number of

data points for each spectrum. IND is calculated incrementally

by varying the number of considered PCA components. The

number of independent components (x) is the value of j for

which IND is a minimum (INDmin). Malinowski’s F-test is

based on the observation that the following ‘reduced eigen-

value’ function REV is constant (a) for the secondary (i.e.

non-significant) PCs (Malinowski, 1987),

REVj ¼
�j

ð p� jþ 1Þðm� jþ 1Þ
¼ a�2: ð2Þ

The test starts from the smallest eigenvalue �m and goes

through the eigenvalues in increasing order until it finds the

first significant one. Once one eigenvalue has been determined

to be significant, all larger eigenvalues are also considered

significant. The decision of what components correspond to

the noise and what are the PCs is made on the basis of a Fisher

test of the variance (�2) associated with eigenvalue �j and the

summed variance associated with noise eigenvalues (�j+1, . . . ,

�m). The jth component is accepted as a PC ( jth = x) if the

percentage of significance level (%SL) for the F-test is lower

than some test level, generally 5% (Fernandez-Garcia et al.,

1995; Márquez-Alvarez et al., 1997; Iglesias-Juez et al., 2004;

Anunziata et al., 2011; Fay et al., 1992; Menacherry et al., 1997;

Ruitenbeek et al., 2000).

Although the three dimensionality estimators have been

applied successfully in several studies (Fay et al., 1992;

Ruitenbeek et al., 2000; Ciuparu et al., 2005; Jalilehvand et al.,

2006; Kirpichtchikova et al., 2006; Mah & Jalilehvand, 2008,

2010; Breynaert et al., 2010; Manceau & Matynia, 2010;

Wieland et al., 2010), they frequently run into difficulties with

over- or under-estimation of PCs (Manceau et al., 2002; Panfili

et al., 2005; Sarret et al., 2004; Márquez-Alvarez et al., 1997;

Conti et al., 2010). Deviation from the real number of chemical

species (r) notably occurs when the experimental noise is close

to the variation in the data, the data normalized inconsistently

from a spectrum to another, and some component species

either minor, their fractional weight statistically constant in

the dataset, or their spectral features indistinct (Fay et al.,

1992; Beauchemin et al., 2002; Manceau et al., 2002; Rossberg

& Scheinost, 2005).

A situation commonly encountered in natural materials

where multiple species are present in indeterminate number is

shown in Fig. 1 and in Fig. S1 of the supporting information1.

The example is a rhizospheric region from a paddy soil

contaminated by a copper mine (CuFeS2) discharge in

Malaysia (Ali et al., 2004). The soil matrix is a complex

mixture of organic and inorganic Cu species which all three

estimators fail to yield clear values for the number of signifi-

cant components even with a large sampling of 99 independent

m-XANES spectra. Fig. 2 shows that the IND and F-test

suggest that r = 31 and 14, respectively, whereas this number is

expected to be �5 based on elemental associations as seen

from the X-ray fluorescence (XRF) map and visual inspection

of the m-XANES spectra (Fig. S1). The scree plot shows no

large gap in eigenvalue at the jth = x followed by a plateau.

However, the logarithmic first difference of the eigenvalues,

�[log(�j+1) � log (�j)], shows two peaks at j = 4 and 6, which

bracket the expected value of r = 5.

This article has two main goals: (i) to test the performance

of the IND and F-test as a function of m and r in order to

assess the robustness and improve the applicability of the two

estimators to XAS, and (ii) to introduce a new estimator, NSS-

stat, which resolves practical issues dealing with random noise.

The accuracy of the IND and F-test is calculated first from the

analysis of synthetic mixtures from theoretical XANES

spectra. We show that the two estimators are most sensitive to

data noise to the point where accuracy is decreased when the

dataset is larger, thus when it contains theoretically more

information about the mixture. The NSS-stat estimator is

research papers

J. Synchrotron Rad. (2014). 21, 1140–1147 Alain Manceau et al. � Number of pure chemical components in a mixture 1141

1 Supporting information for this paper is available from the IUCr electronic
archives (Reference: HF5263).



introduced next, and we show, also on theoretical mixtures,

that it alleviates the intrusive noise problem. The performance

of NSS-stat on the analysis of real data is discussed in the final

section.

2. Synthetic mixtures of theoretical XANES spectra

Synthetic mixtures were made with random combinations of

seven theoretical spectra: elemental Cu (Suh et al., 1988),

tetragonal (Janosi, 1964) and hexagonal (Evans, 1979) Cu2S,

CuS (Evans & Konnert, 1976), CuFeS2 (Kratz & Fuess, 1989;

Hall & Stewart, 1973), Cu2O (Wyckoff, 1978) and CuO

(Åsbrink & Norrby, 1970; Massarotti et al., 1998). The Cu K-

edge XANES spectra were calculated from �20 eV below the

edge (E0) to +60 eV above with a 0.2 eV step using the

FDMNES software (Joly, 2001) (Fig. S2). Multicomponent

spectra of r spectra were calculated over the r interval [3, 7] by

drawing randomly with a uniform distribution each compo-

nent’s weight using the Mersenne Twister algorithm (Matsu-

moto & Nishimura, 1988). Each combination of r spectra was

sampled m times over the interval [10, 105] (Fig. S3). Then a

Gaussian noise was added randomly to the synthetic mixtures

with the probability distribution P(s/n = 80, � = 20) (Sayers,

2000). Finally, the average values (hxi) and standard errors

[�(x)] of INDmin, the first � for which %SL > 5%, and NSS-stat

were calculated from 100 replications of the r � m matrix

(Fig. S3).

3. Evaluation of the three common estimators

3.1. Eigenvalues

Fig. 3 shows two scree plots of �j for an artificial dataset of

100 spectra (m = 100) and seven components (r = 7), with and

without added noise. Eigenvalues for the unnoised dataset

drop abruptly from approximately 1.0 to 10�14 between the

seventh and eighth PC. In theory, the eighth and higher

eigenvalues should be 0, so the 10�14 value reflects numerical

inaccuracies. In contrast, no break is observed for the noised

dataset: the graph shows an ‘elbow’ at j = 8 and the first PC

accounts for most of the variance. The PCA sees the noise as a

continuum of independent components, as is generally the

case for real data. Two maxima are observed on �[log(�)] at

j = 5 and 7, consistent with results from the paddy soil data

(Fig. 2a).

3.2. IND and F-test

Based on the mathematical definition of the IND and F-test

estimators, and the scree plot for noise-free data which shows

that � ’ 0 for j > r (Fig. 3b), it comes that the two estimators

yield x = r and � = 0 regardless of the size of the dataset when

analyzing noise-free data (Fig. 4). In the presence of noise, the

color-contour maps of hx(IND)i and hx(F-test)i as a function

of r and m show strong variation with the number of spectra

(m). For both estimators, hxi increases with m, and more

rapidly the higher the value of r. The hx(IND)i value increases

from 3 to 34 with m in the interval [10, 105], and hx(F-test)i
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Figure 2
Estimation of the number of significant PCA components for the XANES dataset shown in Fig. 1. (a) Scree plot of the components and the associated
eigenvalues (�j). (b) Malinowski’s IND indicator (Malinowski, 1990). (c) Malinowski’s F-test at 5% significance level (Malinowski, 1988).

Figure 1
Dataset of 99 Cu K-edge XANES spectra collected on a thin section from
a paddy soil. (a) Gray-scale micro X-ray fluorescence (XRF) map in
negative contrast showing the inhomogeneous distribution of Cu which
occurs in about six different organic and inorganic forms. Color maps are
shown in Fig. S1 of the supporting information. Image size: 1.57 mm (H)
� 1.04 mm (V); beam size and pixel size: 3.0 mm (H) � 3.0 mm (V). (b)
Micro-XANES spectra collected at 99 spots having different composi-
tions as seen from the XRF map. Data were recorded on beamline 10.3.2
at the ALS (Berkeley).



increases from 2.4 to 17 over the same m interval. �[x(IND)] is

independent of r, and increases uniformly with m; it is 0.6 for

m < 20 and as high as 7 for m = 100. �[x(F-test)] increases

irregularly with both r and m from 0.5 to 2.6. One might expect

that the standard error should decrease

when the size of the dataset (m)

increases, and the estimator values

should be closer to the correct number

of components (r), which is not the case.

The results can be understood as

follows: the noise is overwhelming the

variation in the data, and as the estimate

becomes more accurate for larger m

values it picks up more noise compo-

nents. Although the two estimators give

the correct estimates with no noise, they

both fail once noise is added. Simula-

tions showed that the lower the s/n ratio

then the higher the effective number of

components (x). However, the F-test

varies less with m than IND, which

indicates a lesser sensitivity to noise.

The x(IND) = 31 and x(F-test) = 14

values of the experimental XANES

spectra (Fig. 2, Table 1) are consistent

with the predicted better performance

of the F-test.

When m < �30, the effective number

of components (x) may now be lower

than the real number (r). This situation

is observed typically when r approaches

7 and m approaches 10, i.e. when the

number of species required to describe a set of spectra is

similar to the number of spectra. In this case, data under-

sampling considerably stretches the error bars to the point of

rendering an apparently good agreement between reality and

prediction fortuitous.

In summary, the accuracy of estimation of the number of

independent components in a mixture critically depends on

the amount of noise in the data, which is not known in

advance. The number of components recovered with IND and

the F-test generally is underestimated when m < �20 and

r > �6, and is always overestimated above m ’ 30. Therefore,

there exists a (r, m) range in which the two estimators come

close to the truth; however, because we do not know the

correct answer exactly, the result generally cannot be trusted.

4. NSS-stat estimator

NSS is an abbreviation for Normalized Sum Squared differ-

ence. The idea of this estimator is to measure the degree to

which a PCA fit to denoised spectra with x abstract compo-

nents represents all original spectra in the dataset about

equally well in comparison with the noise level of each spec-

trum. Keeping the same parameter definition as before, the

PCA goodness-of-fit to the denoised spectra is given by

NSSk
c ðdenoisedÞ ¼

Pp
i¼ 1

denoisedk
i � fitk

i;c

� �2
=
Pp
i¼ 1

denoisedk
i

� �2
;

ð3Þ

research papers

J. Synchrotron Rad. (2014). 21, 1140–1147 Alain Manceau et al. � Number of pure chemical components in a mixture 1143

Figure 4
Effect of noise on the effective number of components (x) obtained by
the IND and F-test estimators as a function of the number of pure
components in the mixtures (r) and size of the dataset (m). (a) hINDi. (b)
hF-testi. Mean values calculated from 100 replications of each (r, m)
mixture (Fig. S3).

Figure 3
Effect of noise on the effective number of components (x) deduced from the decrease of
eigenvalues. (a, b) 100 replications of a random mixture of seven pure components (r = 7, m = 100),
and scree plot showing a clear separation between the 7 significant and 93 non-significant
components. (c, d) Same theoretical set after addition of Gaussian noise with a s/n ratio of 80 and a
standard error of 20. The scree plot shows an ‘elbow’ at j = 8, instead of nominally 7, and �[log(�)]
shows two maxima at j = 5 and 7. For clarity, jmax = 30.



where k 2 ½1;m� is the index to a particular spectrum, and fitk
i;c

is the fit to the kth spectrum using c 2 ½1;m� PCA components,

evaluated at the ith point.

The PCA NSS value versus spectrum number k (ordinate)

and number of components c (abscissa) for the paddy soil

dataset is shown in the upper center of Fig. 5. To analyze the

PCA fit to the denoised spectra statistically, the sum-squared

residuals calculated previously are normalized to the experi-

mental error given by

NSSk
ðdataÞ ¼

Pp
i¼ 1

datak
i � denoisedk

i

� �2
=
Pp
i¼ 1

ðdatak
i Þ

2
: ð4Þ

The experimental error of each spectrum is represented in

the lower center of Fig. 5 as a two-dimensional histogram

of the residuals. Now, dividing NSS(denoised) by NSS(data)

suppresses much of the x variability

with the size of the dataset observed

with IND and the F-test. The intensity

graph of the noise-normalized NSS

values (NSS-stat) as a function of k and

c yields an estimate of the intrinsic

dimensionality of the entire dataset at

every spectrum in the dataset (upper

right of Fig. 5). Then the global esti-

mate (or an estimate over a particular

subset) can be computed by averaging

the local estimates over the whole

dataset (or the subset in question). The

plot in the lower right corner of Fig. 5

shows a scree plot of the standard

deviation of NSS-stat. The logarithmic first difference of the

eigenvalues produces a clear break at c = 4. The analysis of

theoretical mixtures of known dimensionality showed that the

real number of components is r = x(NSS-stat) = c + 1.

Because the denoising step is at the heart of the procedure,

we will describe briefly the method we have used and is

the one implemented in the PCA_Estimator.exe program

included in the supporting information. The XANES abscissae

in eV were transformed so that the minimum physically

reasonable feature width, determined by the core-hole life-

time (� = 2 eV at the Cu K-edge, Table 1), and maximum path

length for the EXAFS features in the extended XANES

region (Rmax = 5 Å) were roughly constant over the whole

enrgy range. Then, a uniform Butterworth filter with adjus-

table cut-off frequency (Fcut parameter, Table 1) was applied
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Figure 5
Flowchart definition of the NSS-stat estimator exemplified with the XANES dataset shown in Fig. 1. k is the spectrum number in the dataset (k 2 ½1;m�)
and c is the number of PCA components used in the reconstruction (c 2 ½1;m�).

Table 1
Summary of the PCA results.

All datasets are included for download in the supplementary information.

Dataset r m � IND F-test NSS-stat � Fcut

Cu-XANES_th_3cp 3 100 3 28 12 3 2.0 0.4
Cu-XANES_th_7cp 7 100 5 + 7 29 18 7 2.0 0.4
Cu-XANES_th_3+7cp 3 + 7 70 + 30 4 29 18 4 + 7 2.0 0.4

Cu-XANES_Paddy-soil 99 4 + 6 14 31 4–5 2.0 0.4–0.7
Fe-XANES_Marcus_2014_Group1 5 209 6 31 18 7 1.5 0.3–0.4
Fe-XANES_Marcus_2014_Group2 4–5 126 6 15 12 6 1.5 0.5–1.0

Cu-EXAFS_Manceau_2010 3 27 3 3 3 4 0.3 3–5
Zn-EXAFS_vanDamme_2010 3 22 3 3 3 3 0.3 2.0
Zn-EXAFS_Isaure_2002 3 13 3 3 3 3 0.3 3–5



and the coordinate transformation reversed. Details are given

in the supporting information.

The performance of the NSS-stat estimator was assessed

with theoretical mixtures over the whole r interval [3, 7] and

m interval [10, 105], similarly to the IND and F-test (Fig. 6).

Results show that NSS-stat gives the correct estimates to

within 30% for m <�50 and 20% above m = 50. In contrast to

the IND and F-test, NSS-stat estimates vary very little across

replications (small standard deviation), and the precision now

increases as the size of the dataset increases, as expected.

The theoretical datasets used heretofore do not represent

well all possible real situations because every component is

present in every spectrum with a random probability of 0 to 1.

In real data, there may exist a certain number of spectra from

spots which have a certain set of components, and some other

spots in which other components are included (Marcus &

Lam, 2014). A theoretical example is shown in Fig. 7 for a

binary set of (r = 3, m = 70) + (r = 7, m = 30) and P(s/n = 80, � =

20). The main and outlier components yield two maxima at

x(NSS-stat) = 4 and 7, with the highest peak at x(NSS-stat) = 7.

The two populations give a single peak at x = 4 on the first

difference of the log of EVs. The IND and F-test, which are by

definition insensitive to coexisting groups of mixtures with

variable proportions of a different number of species, give

x(IND) = 29 and x(F-test) = 18 (Fig. 1 and Table 1).

5. Application to experimental XANES and EXAFS
spectra

As demonstrated above, NSS-stat is a useful estimator for data

analysis of multicomponent XANES spectra. It can help

decide with some statistical significance how many abstract

PCA components to use in PCA-based component-number

estimation of a large dataset. The analysis of the datasets

(Table 1) supplied in the supporting information with the four

estimators confirms that NSS-stat outperforms the three

traditional estimators. It also leads to the following commen-

taries.

(i) As noise level increases all estimators begin to suffer, but

NSS-stat is, as expected, intrinsically less sensitive to noise

than the three others.

(ii) It takes obviously less noise for the estimates to break

down when the spectra are similar than when they are

different (Levina et al., 2007); still NSS-stat provides a better

separation between significant and non-significant PCs.

(iii) The IND estimates of XANES data are systematically,

and sometimes greatly, in excess of the actual values. The main

reason for this difference is the higher sensitivity of this esti-

mator to non-statistical noise (Malinowski, 1990; Maschmeyer

et al., 1995), which is always present in XANES spectra to

some degree as a result of normalization uncertainties.

(iv) Any statistical method, such as the one introduced here,

is limited in that in reality it only measures the dimensionality

of the dataset, not the actual number of components in the

sample. Consider a system which is actually a ternary but for

which all the sampled points lie along a line in the ternary

diagram. In that case the data are correctly described in terms

of one variable, which can be related to the fraction of an end-

member whose composition is represented by one end of the

line. This situation, which occurs when the proportion of one

component is fixed, has been described in natural materials

(Manceau et al., 2002). On the other hand, consider for

example a set of data representing a binary mixture but

affected by over-absorption, which causes a non-linear

distortion of the spectra. In that case the data lie along a one-

dimensional curve in a two-dimensional region, and a linear

method such as PCA will report a dimensionality of at least 2.

Similarly, the spectra of a binary solid-solution series may not

be expressible as linear combinations of the end-member

spectra, as may be the case when a Mn-XANES dataset

contains Jahn-Teller Mn3+ cations (Manceau et al., 2012), so

again the dimensionality will be greater than 1.

The PCA-based NSS statistical method described here, and

in more detail in the supporting information, has been

developed and tested for normalized XANES spectra,

including the EXAFS features in the extended XANES

region, not for kn�(k)-type EXAFS data. We have not yet

developed similar methods for EXAFS which we consider as

trustworthy as the one we described for XANES. One issue is

that the s/n of an EXAFS spectrum tends to be strongly non-

uniform because the counting time and amplitude change with

k. A possible approach would be to take 1 + kn�(k), convert to

energy space the EXAFS data normalized to unit step, and

analyze them as if they were XANES. Alternatively, one could

leave them in k-space and filter with a uniform filter, since

in most cases the lifetime broadening effect is small in the
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Figure 6
Evaluation of the NSS-stat estimator with the same set as in Fig. 4. Note the difference of the hximaximum value, which decreases from�34 for IND to
�17 for the F-test, and to �8 for NSS-stat.



EXAFS region (Table 1). One may argue that the higher

shells, which contribute to the narrowest features, are more

attenuated at high k than the lower shells, due to disorder

effects. In that case, and also because EXAFS data tend to be

noisier at the high end, one might want to filter more severely

(lower cut-off) at the high end. The amount of this effect

would be an adjustable parameter. Three EXAFS datasets

were, however, included in the supplementary information

because the NSS method, although theoretically unsound,

appeared to work in practice and yield the correct number of

components (Table 1). Furthermore, the three traditional

estimators included in the visualization program are general

and can be applied to any type of data from a chemical

mixture.
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