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Experiments and modeling are described to perform spectral fitting of multi-

threshold counting measurements on a pixel-array detector. An analytical

model was developed for describing the probability density function of detected

voltage in X-ray photon-counting arrays, utilizing fractional photon counting to

account for edge/corner effects from voltage plumes that spread across multiple

pixels. Each pixel was mathematically calibrated by fitting the detected voltage

distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The

model and established pixel responses were then exploited to statistically

recover images of X-ray intensity as a function of X-ray energy in a simulated

multi-wavelength and multi-counting threshold experiment.
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1. Introduction

Energy-selective X-ray imaging holds great promise at

addressing major challenges in X-ray imaging and diffraction.

Laue diffraction requires broad-bandwidth X-ray sources and

energy assignments for each measured diffraction spot (von

Laue, 1915; Schlichting et al., 1990; Clifton et al., 1997; Srajer et

al., 1996). While this assignment is currently performed by

analysis of the total diffraction pattern, improvements in

assignments could be enabled through independent

measurements of X-ray energies. In materials analysis, the

transmittance of X-rays through different materials can be

highly sensitive to the X-ray wavelength, particularly at

wavelengths close to spectral band-edges. Consequently,

spectral X-ray imaging provides contrast intimately connected

to composition for materials analysis (Frojdh et al., 2013;

Nik et al., 2011; Jakubek, 2007) and biomedical applications

(Jakubek, 2007; Roessl & Proksa, 2007;

Fredenberg et al., 2010; Boone et al.,

1990; Butler et al., 2008). Multi-

wavelength anomalous dispersion

measurements often perform poorly

compared with single-wavelength

measurements, due to the X-ray damage

and 1/f noise attributed to serially

measuring diffraction from each wave-

length (Hendrickson, 2014). Many

practical challenges historically asso-

ciated with spectral X-ray imaging have

the potential to be addressed in whole

or in part through the development of photon-counting array

detectors, in which a programmable counting threshold

provides a means of performing energy-specific imaging

(Procz et al., 2009; Llopart et al., 2002; Ballabriga et al., 2007;

Broennimann et al., 2006; Henrich et al., 2009; Llopart et al.,

2007).

The circuit operation of photon-counting devices compared

with charge integration devices differs only in the way the

amplified voltage signal is handled. Integration-type detectors

integrate and report the amplified voltage over time, while

photon-counting-type detectors simply count and report the

number of times the voltage signal crosses a voltage threshold

with a positive slope. A simplified circuit block diagram is

shown in Fig. 1 for one of the pixels in a PILATUS photon-

counting array [a more complete description of the per-pixel

circuit diagram is provided elsewhere (Brönnimann et al.,

2001)]. Since the initial number of photoelectrons produced

Figure 1
After absorbing an X-ray, the resulting small voltage signal is amplified and threshold counted over
a period of time before being transferred to a computer. The amount of voltage measured by the
comparator per photon, as well as the amount of incident photons, depends upon a variety of
parameters. Modeling these parameters allows quantitative spectral information to be extracted
from multi-threshold data.
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following X-ray absorption is a random process, this spread in

current/voltage per photon adds to the noise in integrating

detectors that is removed upon photon counting. Even in the

absence of charge sharing among pixels (Fig. 2), photon-

counting-type detectors have a signal-to-noise advantage over

integrating-type detectors at low photon fluxes, provided that

the range of random voltages that a single photon generates is

above the counting threshold.

Multi-threshold detectors have an additional and unique

advantage over integrating-type detectors in their ability to

retain information about the photon energy distribution.

However, accurately relating the measured counts back to

X-ray photon energy remains challenging, since the amplified

voltage that is measured by the threshold counter in Fig. 1 is

dependent upon a large variety of factors. Specifically, the

number of measured counts depends upon the voltage peak

height distribution from a single photon absorbing in the

active semiconducting region, the wavelength-dependent

detector backscatter, the quantum efficiency for absorption,

photon-counting paralysis at high count rates, the spatial

distribution in the photoelectron plume over multiple pixels

(Fig. 2), and the pixel-to-pixel variance in these parameters

(Frojdh et al., 2013; Jakubek, 2007; Fredenberg et al., 2010;

Procz et al., 2009). Consequently, the simplest approach of

setting a threshold to detect one and not the other X-ray

photon energy can be subject to significant errors.

In this work, each pixel in a photon-counting array was

mathematically calibrated both within and beyond the normal

operating parameters and fit according to an analytical model

for the detector response for the purpose of performing a

quantitative spectroscopic measurement. The detector para-

meters for the photoelectron plume spread, voltage amplitude

and voltage standard deviation per incident photon were

modeled on an individual pixel basis. After mathematically

calibrating each of the six million pixels in the array as the

model parameters, this information was in turn used to sepa-

rate multi-threshold spectral images into individual contribu-

tions from different X-ray energies by fast linear fitting. In

addition to successfully modeling fractional photon counts

described in Fig. 2, the mathematical calibration process

grants robustness to parameters such as signal amplification

and offset settings, active area thickness and pixel size. The

separated intensities may then be linearly rescaled for other

effects, such as quantum efficiency and detector backscatter.

2. Theoretical framework

An analytical model for the peak-height distribution as a

function of threshold setting was developed based on the

assumption of a two-dimensional Gaussian spatial distribution

in charge following X-ray absorption, which is consistent with

previous models and simulations (Julien & Kadda, 2012; Trueb

et al., 2012). The distribution has two contributions: one from

X-rays in which the large majority of the plume lies within the

area of a single detector pixel and another from plumes

spreading over two or more pixels. In previous treatments,

efforts to address the issue of charge distribution over multiple

pixels have included setting the counting threshold equal to

roughly half the mean voltage obtained from the plume

centered on a pixel, such that only the pixel with the majority

of charge would register a count (Broennimann et al., 2006;

Mathieson et al., 2002). While highly successful in applications

focused on detection of intensity for monochromatic radia-

tion, this strategy becomes untenable in applications targeting

energy discrimination, in which the mean voltage of a centered

plume is also a variable in the analysis. Even in monochro-

matic X-ray detection, the half-maximum threshold approach

can result in bias from corner effects, in which the plume is

distributed over more than two pixels. As the dimensions of

the array elements continue to be reduced in size, such effects

are likely to become increasingly important.

The fraction of charge expected to be observed by a single

pixel from any photon absorbed by the sensor due to this

plume effect can be described by the two-dimensional surface

integral across the x and y spatial coordinates of the silicon

area above the pixel surface. For a pixel of width w, height h

and a boundary distance of consideration b for photons hitting

near the pixel active area, this surface integral and its solution

is
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The solution of (1) gives the fraction of charge F expected to

be observed from a photon landing at point (�x, �y) with a

Gaussian standard deviation plume of uncertainty of �psf. The

spatial extent of the charge plume is affected by the detector
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Figure 2
Model illustrating the X-ray sensing mechanism of the PILATUS
detector, adapted from Kraft et al. (2009). There is no dead space in
the silicon detector, causing the charge plume deposited by an X-ray
photon to sometimes be fractionally detected across several charge-
collecting pixels.



thickness and reverse bias voltage, both of which vary with

manufacturing tolerances. In addition, the per-photon plume

width itself can vary depending on the depth within the sensor

in which the photon is absorbed, which is only accounted

for phenomenologically in this model through the effective

measured value of �psf. Assuming a uniform X-ray intensity

field over the pixel surface from a monochromatic light source,

a probability density function (PDF) of fractional contribu-

tions was obtained by Monte Carlo simulation.

The peak height of the voltage transient observed by the

threshold-counting electronics from a 100% contribution of a

single photon’s charge is proportional to the energy of the

incident X-ray photon, and has a normally distributed peak

current/voltage. For fractional contributions of photon energy,

the fractional contribution multiplicatively weights the

photon’s energy contribution. The resulting PDF of voltage

peak heights is then described by a multiplication of random

variables, where a random weight is applied to a voltage of

normal uncertainty. The resulting overall PDF for the peak

voltage observed by the counting electronics from any direct

or proximal X-ray photon strike can be obtained by Monte

Carlo simulation or derived numerically using the product

distribution integral. Generally stated, for Z = XY where X

and Y are two independent random variables with PDFs fx and

fy, the PDF of the product fz is given by equation (2) (Springer

& Thompson, 1966),

fZ zð Þ ¼

Z1
�1

fX xð Þ fY

z

x

� � 1

xj j
dx: ð2Þ

A representative peak height distribution is shown in Fig. 3,

along with the complimentary cumulative density function

(cCDF) corresponding to the anticipated measured prob-

ability of observing a count for a photon absorption event.

3. Methods

All data were acquired at beamline 17-ID, IMCA-CAT, at

Argonne National Laboratory. Diffuse scattering of vitreous

ice was measured with a Dectris Pilatus-6M single-threshold

detector at several detector comparator threshold levels (Vth

in Fig. 1). The detector had a pixel size of 172 mm � 172 mm, a

silicon active area thickness of 320 mm, and a bias voltage of

150 V. Five-second exposure times were taken at each detector

threshold for both 13.5 keV and 15 keV incident X-ray ener-

gies in a standard lattice (153 ns between X-ray pulses).

Absolute detector voltage thresholds at each pixel were

automatically calibrated through Pilatus’ internal voltage trim

system to maintain threshold accuracy. A low-gain input

amplifier setting (� = 125 ns) was used for all measurements.

The resulting internal voltage threshold levels are denoted

here as equivalent thresholds in units of keV, which describes

the equivalent X-ray energy that would deposit this mean

level of voltage. The 13.5 keV incident energy measurements

were serially taken with equivalent threshold energies from

7.5 keV to 21.0 keV in steps of 0.5 keV with a detector

distance of 0.700 m. The 15 keV incident energy measure-

ments were serially taken on a later day with a new ice sample

with equivalent threshold energies from 7.5 keV to 20.9 keV

in steps of 0.2 keV with a detector distance of 1.000 m. In all

cases, the incident photon flux was kept low enough to ensure

a low probability of pulse pile-up affecting counting results.

All data analysis was performed in MATLAB with custom

software. Data files were read using the MATLAB macros

package for cSAXS (Paul Scherrer Institute). ImageJ was also

used to view data files using a plugin (CBF reader plugin,

written by JLM).

4. Results/discussion

The validity of the mathematical model was assessed by fitting

it to the detector response averaged across all pixels for weak

scattering of ice from 13.5 keV photons, shown in Fig. 3. The

novel utility of this mathematical approach is that, rather than

satisfying the default intuition that each photon should be

counted once as a full contribution, the unbiased intensity

can be recovered by allowing for fractional photon counting

(Coldwell et al., 2001; Burrell & Rousseau, 1995; Leydesdorff
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Figure 3
(Left) The PDF and complimentary CDF (cCDF) of the amount of equivalent charge observed by a single pixel from a single 13.5 keV X-ray photon.
The Gaussian hump on the right of the PDF represents collection of the full deposited charge following X-ray absorption, and all probabilities to the left
of this hump represent fractional observations of the X-ray deposited charge plume. This distribution has a total of three parameters, with the photon
energy standard deviation and photon energy mean describing the position and width of the Gaussian hump, and the size of the point spread affecting
the depth of the trough to the left of the Gaussian hump. (Right) The cCDF was directly measured by the PILATUS detector from a 13.5 keV
monochromatic source at many comparator threshold voltage levels (Vth in Fig. 1) converted to equivalent units of incident X-ray energy, ranging from
7.5 keV to 21 keV. After averaging all pixel responses at every threshold, the data were fit to the model cCDF with excellent agreement.



et al., 2013), in which the fraction of the photon at that pixel

is included in the measured PDF and cCDF. Further, signal

contributions from photon strikes near pixel corners that were

previously lost by setting the threshold to the equivalent of

50% of the incident photon energy can be now be properly

accounted for by knowledge of the cCDF. The corresponding

signal-to-noise ratio increase will be particularly advantageous

for counting arrays with small pixel sizes, which exhibit

corresponding increases in the probability of the electron

plume spreading over multiple pixels.

The counts were detected as a function of threshold for

every pixel in a 6 Mpixel array detector, and nonlinear fits

were performed for each pixel to determine best-fit values of

the one-photon mean, one-photon standard deviation and

point spread size, representative results of which are provided

in Fig. 4. Raw data consisted of a stack of images of the counts

acquired under different threshold settings from a diffusely

scattering sample of vitreous ice. After performing the fitting,

the best-fit values from each pixel were representable by a

set of three images of the fitting parameters, also shown in

Fig. 4. The nonlinear fits recovered the experimental cCDFs

remarkably well, although with a significant diversity in the

fitting parameters across the array. This process was repeated

for both 13.5 keV and 15.0 keV X-ray energies.

The noise in the data trace in the single-pixel plots of Fig. 4

is dominated by 1/f noise from the �2 min required to change

detector thresholds. Inspection of the cCDF measurements

acquired at adjacent pixels produced covariant noise features,

suggesting slow drift in the overall instrument, including the

position of the X-ray source in the sample, the X-ray beam

intensity or the X-ray optics rather than dominance from

white Gaussian noise in the detector. This is actually a

favorable condition for two reasons. First, the 1/f drift was

sufficiently low to still allow complete analysis of the array.

Second, it suggests that significant noise reduction would be

expected by assigning four independent thresholds for a 2 � 2

section, with corresponding improvements in the confidence in

energy assignment.

Inspection of the three parameter images in the bottom of

Fig. 4 reveals several interesting trends. First, the variation in

response characteristics for each of the 12 rows and 5 columns

of Pilatus 100k modules that make up the Pilatus 6M are

clearly apparent from the recovered parameters. The subtle

differences in the construction of each sensor component

results in considerable diversity in the value of the one-photon

mean, one-photon standard deviation and point spread size as

a function of location across the detector array. In general,

there was a strong correlation between the one-photon mean

and one-photon standard deviation, and a strong anti-corre-

lation for the point spread size. For example, the Pilatus 100k

modules shown as the first column of expanded pictures in

Fig. 5 from rows 3 and 4 of column 1 are shown as the whitest

among the modules for both the one-photon mean and one-

standard deviation, and shown as the darkest among the

modules for the point spread. Some small regions in the

detector slightly deviated from these trends as is shown in the

second column of expanded images in Fig. 5, where pixels with

research papers

J. Synchrotron Rad. (2014). 21, 1180–1187 Ryan D. Muir et al. � Linear fitting of multi-threshold counting data 1183

Figure 4
Visual flowchart of the mathematical calibration process that was
performed at each X-ray energy. (Top) Images of diffuse X-ray scattering
of monochromic 13.5 keV photons from ice at several comparator
threshold voltage levels (Vth in Fig. 1), converted to units of electron volts,
ranging from 7.5 keV to 21 keV. One representative pixel was chosen
from the image stack for displaying in a plot along with their fit to the
cCDF model. Noise in the data trace is dominated by 1/f noise from the
�2 min required to change detector voltage thresholds at all six million
pixels. (Bottom) Each of the six million pixels were independently fitted
to the cCDF model, with the three parameters of the fit displayed as
images. These three pixel-specific calibration parameters define the
instrument response of each pixel to X-ray color.



a relatively low voltage per photon have relatively large

standard deviation and point spread. The high sensitivity of

the mathematical calibration was able to detect this relatively

subtle deviance, given that all pixels remain within 2% of the

average detector parameters.

Overall, the values obtained from the fitting at 15 keV

agreed well with those produced independently from the

13.5 keV data, indicating good reproducibility in the fitting

approach. This agreement is particularly noteworthy given the

large differences in the X-ray intensity measured across the

array, indicating that the detector analysis can be reliably

performed independently of detected intensity, provided a

sufficient number of counts are recorded at each location to

perform the nonlinear fitting.

Following calibration, the measured counts as a function of

threshold can serve as a ‘hyperspectral’ signature to separate

out the multi-threshold image stack into independent images

at each X-ray energy through simple linear fitting. In brief, the

measured cCDF ‘spectrum’ can be written as a linear combi-

nation of the cCDFs for the 13.5 keVand the 15.0 keV sources,

cCDFmeas Vthð Þ ¼ a1 cCDF13:5 Vthð Þ þ a2 cCDF15:0 Vthð Þ: ð3Þ

In equation (2), the measured cCDF is expressed as a linear

combination of two other cCDFs, and their amplitude weights

a1 and a2 are the parameters of the linear fit. This expression

can be rewritten in matrix form by defining C to be a matrix of

cCDF ‘spectra’, then inverted to solve for the best-fit values of

the parameters a. Images of each coefficient correspond to the

best-fit estimates of each separated X-ray energy image,

cmeas ¼ C � a; ð4Þ

a ¼ CTC
� ��1

CTcmeas: ð5Þ

Because the matrix C is known in advance following the initial

nonlinear fitting calibration step, the combined inverse and

transpose matrix can also be determined a priori. In the

present case of discrimination between two known energies,

½ CTCð Þ
�1

CT � is a 2 � n matrix, where n is the number of

thresholds used to generate cmeas.

Experimental validation of the algorithm was performed by

separating a composite image generated by summation of the

counts acquired at 13.5 keV and 15.0 keV, shown in Fig. 6. The

monochromatic images were recovered using counting data

from just eight of the acquired threshold data. The target of

eight thresholds was selected based on the potential ease of

acquisition. Assuming two independently adjustable thresh-

olds per pixel as with the Medipix3 technology (Pennicard

et al., 2012), eight-threshold detection could be accomplished

by pooling 2 � 2 pixel spots. Using equation (4) the best-fit

component images were recovered. In general, the number of

unique parameters related to the photon energy must be equal

or less than the number of thresholds used to extract them.

Further, the confidence in the values obtained from the fits

will increase as the number of information-carrying threshold

measurements increases. Although equation (5) is cast with

respect to detection of two monochromatic responses for

simplicity, the approach would work comparably well for
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Figure 5
(Left column) Blow-up of the 100k modules in column 1, rows 2 through
5, featuring the typical correlation between one-photon mean and one-
photon standard deviation, and the anti-correlation with point spread.
(Right column) Blow-up of a small section of pixels which slightly
deviates from the trends depicted in the first column where a smaller
voltage per photon resulted in a larger variance and point spread, from
the 100k module in row 4 and column 3. The high sensitivity of the
mathematical calibration was able to detect this deviance, despite all
pixels remaining within 2% of the average detector parameters.



linear functions of those responses (e.g. derived from principal

component analysis or linear discriminant analysis).

Overall, the recovered images were in good agreement with

the initial monochromatic images, as indicated in the error

analysis shown in Fig. 7. All but a small fraction of the pixels

recovered the correct amplitudes of the original monochro-

matic images to within 20% accuracy for a photon energy

separation of just 11%. Pixels out of 15% tolerance in absolute

accuracy are indicated in images to the right in Fig. 7.

Comparing the error images with the monochromatic images

in Fig. 6 suggests that the multiplex

disadvantage is the major source of

error in the decomposed images. In

brief, pixels with high brightness in one

monochromatic image will introduce

Poisson counting uncertainty propor-

tional to the square root of the number

of photons counted. This noise will be

distributed over both extracted images,

potentially increasing the noise in the

separated channel to a value signifi-

cantly greater than the square root of

the number of counts. From inspection

of Fig. 6, the bright diffraction spot from

the 13.5 keV contribution in the bottom

right generated substantial noise in the

15 keV image, and vice versa for the

bright halo in the center of the 15 keV

contribution.

Although the focus of this work is

on discrimination between two known

energies, the consistency in the

extracted array parameters from the

nonlinear fits suggests that reasonable

estimates for the anticipated parameters

at intermediate photon energies could

be obtained by interpolation. In this

manner, calibration of the array using a

relatively small number of judiciously

selected photon energies could serve

to enable analysis at arbitrary energies

within the calibration window. With the

exception of sharp features associated

with absorption edges (e.g. the K-edge

in Si around 2 keV), the X-ray respon-

sivity of silicon photodiodes varies

smoothly with photon energy (Fraser et

al., 1994). The mathematical calibra-

tions for many colors could then be

interpolated and simultaneously fit.

From the information recovered in

Fig. 3 for the one-photon distribution,

the results of the fitting analysis can be

used to assess the strengths and limita-

tions of energy-dispersive spectral

X-ray imaging for a broader class of

applications. From inspection of Fig. 3,

the one-photon spread in the voltage distribution corresponds

to a relative standard deviation of �0.5–0.6 keV. Using a

standard definition of resolution, R = j�1 � �2j=ð�
2
1 þ �

2
2Þ

1=2

in which �i and �i are the mean and standard deviation,

respectively, of the ith peak, the two peaks are considered

resolvable when R � 1. This definition indicates the potential

ability to resolve photon energies separated by �0.8 keV at

the energies considered. This spectral resolution is lower but

still reasonably close to that achievable by commercial single-

channel energy-dispersive spectrometers used in X-ray fluor-
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Figure 6
(Top image stack) Multi-threshold measurement of two-color diffraction was simulated by summing
the 13.5 keV and 15 keV diffraction image stacks at eight different pairs of matching detector
comparator voltage thresholds. (Middle plots) The three parameters previously recovered for each
color (Fig. 3) were used to re-separate the number of counts contributed by each of the two colors,
demonstrated here for a single pixel. Comparison against the original monochromatic dataset shows
good agreement. (Bottom images) The fit was repeated for all pixels and shown in the top row
of images. Comparison against the original monochromatic dataset qualitatively shows good
agreement.



escence capable of resolving differences of several hundred

eV. For comparison, wavelength-dispersive benchtop X-ray

spectrometers routinely exhibit considerably better energy

resolution on the order of a few eV. While the imaging

approach described herein may be directly applicable to Laue

diffraction, diffraction using multiple simultaneous mono-

chromatic sources, and some X-ray fluorescence spectral

imaging applications, the spectral resolution achievable in

energy-dispersive X-ray spectrometers will complicate some

of the more challenging applications only possible with high

spectral resolution. Consequently, the trade-off between high-

spectral/low-spatial-temporal resolution of a wavelength-

dispersive system versus high-spatial-temporal/low-spectral

of an energy-dispersive imaging system should be assessed

on an application-specific basis. The primary advantage of the

present approach is the potential ability to perform dual

energy-dispersive imaging at high frame rates (current Pilatus

detectors operate at kHz frame rates) with a Poisson-limited

signal-to-noise ratio (SNR) exhibiting no read noise, on six

million parallel channels.

5. Conclusions

Analytical models for mathematically calibrating the peak

height distribution combined with fractional photon counting

allowed accurate recovery of the

measured counts as a function

of comparator threshold, from which

monochromatic X-ray images were

independently recovered from a single

combined dual-wavelength image. The

model successfully included fractional

photon counts as a means to compen-

sate for photoelectron point spread, as

shown by the fitting agreement between

the model and averaged detector

response in Fig. 3. The advantage of

mathematically calibrating each pixel

individually was observed to account for

the wide variety of individual pixel

characteristics as shown in Fig. 4. In

general, the chromatic intensities of the

pixels recovered from the fitting were in

excellent quantitative agreement with

the intensities within the initial mono-

chromatic images shown in Fig. 6.

Residual error in the fitting shown in

Fig. 7 comes from 1/f noise during the

raw data acquisition, and multiplex

measurement disadvantage. Noise from

1/f will be substantially reduced for

parallelized measurements.

Charge sharing was treated stochas-

tically in this present analysis, meaning

that the measured result is not comple-

tely deterministic. The statistical

analysis described allows one to relate

the measured counts as a function of threshold value back to

the most probable value for the mean intensity at that pixel

based on the observables. The information lost by charge-

sharing in conventional photon counting is recovered through

the statistics of the multi-threshold response.

The presented method of multi-threshold chromatic

imaging can be further improved by compensating for X-ray

wavelength-dependent effects, such as quantum efficiency and

detector backscatter. Fortuitously, these effects can be accu-

rately compensated for after the application of the presented

method by linearly scaling the captured chromatic intensities

with the relative magnitude of these effects at each wave-

length. Because the detector response at each of the two

wavelengths was directly used as the mathematical calibration

points, no assumptions or interpolations were necessary

regarding the responsivity of the detector as a function of

wavelength. Mathematically, the number of X-ray energies

that can be independently discriminated cannot exceed the

number of thresholds used in the analysis, although in practice

reliable discrimination is preferably overdetermined (more

thresholds than values to be fit). However, additional inde-

pendent information regarding the X-ray energy (e.g. via Laue

diffraction) may reduce the total number of unknowns to

allow analysis where the X-ray energies may include several

values or even be continuous functions.
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Figure 7
Quantitative assessment of the error of the fitted values compared with the original monochromatic
dataset. 1/f noise associated with�2 min between threshold measurements contributes the majority
of the error in this fitting, which would be substantially reduced by simultaneous acquisition of all
measurement thresholds. Even with this noise present, the vast majority of all pixels are within 20%
of their original monochromatic dataset values. Pixels that contain more than 15% absolute error
were those subject to multiplex disadvantage (the color that contributes the most signal also
contributes the most noise).



The present analysis was performed on a pixel-by-pixel

basis, with no incorporation of the overall pattern of inten-

sities or image analysis. Significant further improvements in

the energy-discrimination capabilities can emerge from addi-

tional consideration of spatial arrangements. In diffraction

analysis, Laue diffraction can provide independent assessment

of the X-ray photon energy through the pattern of observed

diffraction peaks. In X-ray imaging, the object resulting in

image contrast typically contains rich additional information

accessible through a host of different image analysis algo-

rithms. These options are all beyond the scope of the present

study, focused exclusively on mapping the per-pixel detector

response. However, they could be integrated into application-

specific measurements incorporating multi-threshold imaging

detection with pixel-array detectors.
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